-
近年来,虽然我国采取了一系列针对生态环境问题的有力举措,使得空气质量得到很大程度的改善,但城市空气污染的防治形势依然比较严峻. 2022年京津冀及周边地区“2+26”城市和汾渭平原11个城市PM2.5的年均浓度分别为44 μg·m−3和46 μg·m−3,超过环境空气质量标准(GB3095-2012)中要求的PM2.5污染物浓度24小时平均限值一级标准35 μg·m−3;O3 日最大8小时浓度(O3_8h)分别为179 μg·m−3和167 μg·m−3,较2021年增长了4.7%、7.3%和1.2%,均超过了O3_8h浓度日最大8小时平均限值二级标准160 μg·m-3[1]. 我国空气污染的现状是不仅PM2.5尚未得到根本性控制,O3也呈现污染逐渐严重的趋势,O3浓度缓慢升高. 已有的研究表明,高浓度的PM2.5会影响能见度,给生产、生活带来诸多不便,也会对人体的呼吸系统和心脑血管系统等产生损害,甚至会改变区域气候[2 − 7]. O3浓度的升高不仅会直接对人体健康造成损害,还会增强大气氧化性,导致二次PM2.5比例的增加等[8],已成为仅次于PM2.5影响空气质量的重要因素[9 − 13]. 因此,PM2.5 和 O3 协同控制已成为我国持续改善空气质量的焦点[14 − 15].
基于以上原因,我国政府在《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》中提出到2025年全国重度及以上污染天气基本消除;PM2.5和臭氧协同控制取得积极成效,臭氧浓度增长趋势得到有效遏制等目标. 因此,识别大气环境中PM2.5及O3的变化趋势和关键驱动因素至关重要,有助于制定行之有效的精准控制措施,降低污染物浓度,综合改善大气环境的质量[13 − 15].
污染源排放和气象状况是PM2.5和O3的两种关键驱动因素[16 − 17],然而它们对PM2.5和O3生成与消耗大气化学过程的影响是多路径、多相态、动态变化的,导致PM2.5和O3之间的关系非常复杂. 随着大数据技术的发展,机器学习模型具有训练速度快、回归能力强等优点,在处理复杂非线性问题方面表现出良好的性能,在捕获多元关系、判断重要因素和扩展PM2.5和O3浓度分析方面提供了可靠的方法[18 − 20]. Castelli等[20]和Lee等[21]使用机器学习成功预测PM2.5、PM10和气态空气污染物的浓度. Wang 等[22] 利用随机森林模型实现PM2.5浓度的预测,并采用偏依赖算法,揭示复杂城市环境下PM2.5的排放源和形成过程. 龚德才等[23]使用XGBoost-LME模型估算京津冀地区近地面臭氧浓度,并发现在估算变量中地表温度、露点温度、地表太阳向下辐射、甲醛和二氧化氮是影响京津冀地区近地面臭氧浓度的重要因素. 然而之前的研究多集中在应用机器学习模型单独预测PM2.5和O3的浓度和影响因素识别,针对多因素相互作用对PM2.5和O3的影响和协同减排的研究相对较少.
汾渭平原是我国大气污染防治行动计划中,与京津冀和长三角并列的三大重点区域之一. 随着其他两个地区大气污染的有效控制和空气质量的显著改善,汾渭平原将成为未来我国空气污染控制的重点及难点区域,持续改善任务艰巨. 西安市是汾渭平原的中心城市,空气污染主要受本地排放、区域传输、气象和地形等多因素的综合影响. 因此,通过机器学习多年大量数据的方法获得西安市PM2.5和O3质量浓度的变化趋势并探讨其影响因素和协同控制措施,对研究汾渭平原在内的我国北方城市PM2.5和O3的生成机制、驱动因素及变化规律等具有科学意义,为相关部门制定精细化的大气颗粒物及O3污染控制措施提供基础数据支撑,为长期提升我国城市地区空气质量具有重要的现实意义.
基于机器学习的汾渭平原PM2.5和O3变化特征及影响因素
Variation characteristics and influencing factors of PM2.5 and O3 based on machine learning in Fenwei Plain
-
摘要: 本文以2017—2021年汾渭平原典型城市西安大气PM2.5和O3浓度数据为基础,运用机器学习方法分析了PM2.5和O3的变化特征和趋势,讨论了污染气体(NO2、SO2、CO和HCHO)与气象因素(温度、相对湿度、风速、大气压力、边界层高度和太阳辐射)对PM2.5和O3浓度变化的交互影响. Theil-Sen趋势分析发现2017—2021年西安市PM2.5和O3分别以每年6.03%和2.06%的速度下降. 单因素广义加性模型(GAM)中,NO2 、SO2和CO对PM2.5浓度变化影响的模型解释率较高,温度、太阳辐射和大气压对O3浓度变化影响的模型解释率较高. 多因素GAM模型中,PM2.5和O3均呈现非线性变化,模型的解释方差分别为84.9%和75.0%,拟合程度较高. 通过等高线图分析了多个气象因素和多种污染气体两两交互作用分别对PM2.5和O3浓度的影响,其中温度和污染气体(NO2、SO2、CO和O3)对PM2.5浓度的影响更大;温度和太阳辐射对O3的影响更大. NO2和CO分别与气象条件两两相互作用时,PM2.5浓度随NO2和CO的增高而增高,O3浓度则与NO2和CO的变化趋势相反. 结合本地污染物源清单,建议加强控制工业源和移动源排放,有助于降低PM2.5和O3的浓度.Abstract: Based on the concentrations of PM2.5 and O3 in Xi'an, Fenwei Plain from 2017 to 2021, this study analyzed the change characteristics and trend of PM2.5 and O3, and discussed the interaction effects of pollutant gases (NO2, SO2, CO and HCHO) and meteorological factors (temperature, RH, wind speed, atmospheric pressure, boundary layer height and solar radiation) on PM2.5 and O3 by using machine learning method. Theil-Sen trend analysis found that PM2.5 and O3 decreased by 6.03% and 2.06% per year from 2017 to 2021, respectively. For the single influencing factor GAM models, the model explanation rate of the effects of NO2, SO2 and CO on PM2.5 is higher, temperature, solar radiation and pressure on O3 is higher. In the multiple influencing factors GAM model, all factors exhibited a non-linear relationship with PM2.5 and O3, and the contributions to the change of PM2.5 and O3 are 84.9% and 75.0% with significant impact, also suggesting a good model fit. Contour map were used to analyze the pairwise interaction of several meteorological factors and polluting gases on the concentration of PM2.5 and O3, respectively, which found that temperature and pollution gases (NO2, SO2, CO and O3) have considerable impact on PM2.5 concentration. For O3, the influence of temperature and solar radiation is greater. NO2 and CO interact with meteorological conditions, PM2.5 increased with the increase of NO2 and CO, however O3 showed opposite trends. According to the local pollutant source inventory, it is suggested to strengthen the emission of pollutants from industrial sources and mobile sources, which helps to reduce the concentration of PM2.5 and O3.
-
Key words:
- PM2.5 /
- O3 /
- Machine learning /
- Changing trend /
- Influencing factors
-
表 1 2017—2021年气象条件和污染气体月度均值
Table 1. monthly average of meteorological conditions and pollutants from 2017 to 2021
时间
Time温度/℃
Temperature湿度/%
RH大气压/
HPa
Pressure风速/
(km·h−1)
Wind speed边界层
高度/m
BLH太阳辐射/(kwh·m−2)
RadSO2/
(μg·m−3)CO/
(mg·m−3)NO2/
(μg·m−3)O3/
(μg·m−3)PM2.5/
(μg·m−3)HCHO/
(×1016 molec·cm−2)1月 1.58 0.56 1029.37 7.44 303.19 8.78 21.44 1.78 67.65 39.96 118.66 1.33 2月 6.10 0.48 1025.61 7.65 427.61 13.17 18.41 1.34 55.37 77.82 92.84 1.21 3月 12.22 0.51 1018.85 8.98 492.09 14.77 12.88 1.01 55.73 81.12 69.66 1.09 4月 16.90 0.56 1015.13 9.40 544.57 17.28 10.10 0.88 50.07 95.99 54.75 1.10 5月 22.06 0.53 1009.72 8.62 559.92 19.96 8.52 0.73 44.52 122.86 47.38 1.18 6月 26.08 0.58 1004.27 8.13 510.36 18.43 7.10 0.75 34.97 148.37 35.51 1.70 7月 27.98 0.66 1002.34 8.71 438.30 18.88 5.95 0.78 31.22 144.40 33.25 1.71 8月 26.71 0.69 1005.50 8.79 416.37 17.08 6.80 0.79 32.35 134.24 32.63 1.67 9月 21.36 0.73 1013.75 7.85 365.57 13.59 8.07 0.85 40.59 99.20 35.52 1.33 10月 14.16 0.74 1023.14 7.30 325.03 9.49 8.76 0.94 47.04 51.88 45.45 1.18 11月 8.68 0.65 1026.02 7.13 282.14 9.57 12.92 1.17 61.59 41.63 68.93 1.25 12月 2.74 0.53 1031.04 6.91 268.55 8.70 17.88 1.30 62.73 32.69 75.58 1.42 表 2 PM2.5浓度与单影响因素的GAM模型假设检验结果
Table 2. Hypothesis test results of GAM model for PM2.5 and single influencing factors
估计自由度
edf参考自由度
Ref.dfP 方差解释
Deviance explained调整判断系数
Adjust R2s(Temp) 8.87 9.00 <2e-16 27.7% 0.21 s(RH) 8.88 9.00 <2e-16 6.2% 0.04 s(Pressure) 8.88 9.00 <2e-16 18.4% 0.13 s(Wind speed) 8.96 9.00 <2e-16 6.2% 0.04 s(PBL) 8.66 8.97 <2e-16 8.3% 0.06 s(Rad) 8.54 8.94 <2e-16 10.6% 0.08 s(SO2) 8.95 9.00 <2e-16 51.3% 0.51 s(CO) 8.86 8.99 <2e-16 60.2% 0.64 s(NO2) 8.88 9.00 <2e-16 51.1% 0.50 s(O3) 8.82 8.99 <2e-16 13.4% 0.10 表 3 O3浓度与单影响因素的GAM模型假设检验结果
Table 3. Hypothesis test results of GAM model for O3 and single influencing factors
估计自由度
edf参考自由度
Ref.dfP 方差解释
Deviance explained调整判断系数
Adjust R2s(Temp) 8.882 8.995 <2e-16 67.8% 0.71 s(RH) 8.697 8.971 <2e-16 12.1% 0.11 s(Pressure) 8.788 8.986 <2e-16 60.6% 0.62 s(Wind speed) 8.664 8.966 <2e-16 6.5% 0.06 s(PBL) 8.78 8.985 <2e-16 41.8% 0.40 s(Rad) 8.915 8.998 <2e-16 60.7% 0.62 s(SO2) 8.903 8.996 <2e-16 12.8% 0.11 s(CO) 8.448 8.856 <2e-16 15.9% 0.14 s(NO2) 8.828 8.985 <2e-16 13.8% 0.12 s(HCHO) 8.86 8.994 <2e-16 11.6% 0.10 表 4 PM2.5浓度与多影响因素的GAM模型假设检验结果
Table 4. Hypothesis test results of GAM model for PM2.5 and multiple influencing factors
s(Temp) s(RH) s(Pressure) s(Wind speed) s(PBL) s(Rad) s(SO2) s(CO) s(NO2) s(O3) edf 7.717 8.841 8.631 8.943 7.718 7.208 6.877 8.871 8.813 7.826 Ref.df 8.602 8.991 8.96 8.999 8.599 8.242 7.898 8.992 8.987 8.589 P <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 表 5 O3浓度与多影响因素的GAM模型假设检验结果
Table 5. Hypothesis test results of GAM model for O3 and multiple influencing factors
s(Temp) s(RH) s(Pressure) s(Wind speed) s(PBL) s(Rad) s(SO2) s(CO) s(NO2) s(HCHO) edf 7.74 6.75 8.7 5.31 8.06 8.91 6.92 8.29 6.33 8.11 Ref.df 8.59 7.84 8.97 6.46 8.76 9 7.8 8.76 7.36 8.79 P <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 <2e-3 表 6 大气污染物源排放清单(104t)
Table 6. Emission inventory of air pollution sources(104t)
-
[1] 中华人民共和国生态环境部. 生态环境部通报2022年12月和1—12月全国环境空气质量状况[EB/OL]. [2023-01-28]. [2] LIN Z H, WANG Y H, ZHENG F X, et al. Rapid mass growth and enhanced light extinction of atmospheric aerosols during the heating season haze episodes in Beijing revealed by aerosol–chemistry–radiation–boundary layer interaction[J]. Atmospheric Chemistry and Physics, 2021, 21(16): 12173-12187. doi: 10.5194/acp-21-12173-2021 [3] TSAI P J, YOUNG L H, HWANG B F, et al. Source and health risk apportionment for PM2.5 collected in Sha-Lu area, Taiwan[J]. Atmospheric Pollution Research, 2020, 11(5): 851-858. doi: 10.1016/j.apr.2020.01.013 [4] LIU L, KUANG Y, ZHAI M M, et al. Strong light scattering of highly oxygenated organic aerosols impacts significantly on visibility degradation[J]. Atmospheric Chemistry and Physics, 2022, 22(11): 7713-7726. doi: 10.5194/acp-22-7713-2022 [5] TAO Y, YUAN Y, CUI Y J, et al. Comparative analysis of the chemical characteristics and sources of fine atmospheric particulate matter (PM2.5) at two sites in Changzhou, China[J]. Atmospheric Pollution Research, 2021, 12(8): 101124. doi: 10.1016/j.apr.2021.101124 [6] WOOD D A. Trend decomposition aids forecasts of air particulate matter (PM2.5) assisted by machine and deep learning without recourse to exogenous data[J]. Atmospheric Pollution Research, 2022, 13(3): 101352. doi: 10.1016/j.apr.2022.101352 [7] MENG F L, ZHANG Y B, KANG J H, et al. Trends in secondary inorganic aerosol pollution in China and its responses to emission controls of precursors in wintertime[J]. Atmospheric Chemistry and Physics, 2022, 22(9): 6291-6308. doi: 10.5194/acp-22-6291-2022 [8] LUO Y H, ZHAO T L, YANG Y J, et al. Seasonal changes in the recent decline of combined high PM2.5 and O3 pollution and associated chemical and meteorological drivers in the Beijing–Tianjin–Hebei region, China[J]. Science of the Total Environment, 2022, 838: 156312. doi: 10.1016/j.scitotenv.2022.156312 [9] LU X, HONG J Y, ZHANG L, et al. Severe surface ozone pollution in China: A global perspective[J]. Environmental Science & Technology Letters, 2018, 5(8): 487-494. [10] LU X, ZHANG L, WANG X L, et al. Rapid increases in warm-season surface ozone and resulting health impact in China since 2013[J]. Environmental Science & Technology Letters, 2020, 7(4): 240-247. [11] WANG X P, MAUZERALL D L. Evaluating impacts of air pollution in China on public health: Implications for future air pollution and energy policies[J]. Atmospheric Environment, 2006, 40(9): 1706-1721. doi: 10.1016/j.atmosenv.2005.10.066 [12] LIU Z Y, QI Z L, NI X F, et al. How to apply O3 and PM2.5 collaborative control to practical management in China: A study based on meta-analysis and machine learning[J]. Science of the Total Environment, 2021, 772: 145392. doi: 10.1016/j.scitotenv.2021.145392 [13] WANG H L, KE Y, TAN Y, et al. Observational evidence for the dual roles of BC in the megacity of Eastern China: Enhanced O3 and decreased PM2.5 pollution[J]. Chemosphere, 2023, 327: 138548. doi: 10.1016/j.chemosphere.2023.138548 [14] 姜华, 高健, 李红, 等. 我国大气污染协同防控理论框架初探[J]. 环境科学研究, 2022, 35(3): 601-610. JIANG H, GAO J, LI H, et al. Preliminary research on theoretical framework of cooperative control of air pollution in China[J]. Research of Environmental Sciences, 2022, 35(3): 601-610(in Chinese).
[15] XING L, MAO X L, DUAN K Q. Impacts of urban–rural disparities in the trends of PM2.5 and ozone levels in China during 2013—2019[J]. Atmospheric Pollution Research, 2022, 13(11): 101590. doi: 10.1016/j.apr.2022.101590 [16] WANG P, CAO J J, SHEN Z X, et al. Spatial and seasonal variations of PM2.5 mass and species during 2010 in Xi’an, China[J]. Science of the Total Environment, 2015, 508: 477-487. doi: 10.1016/j.scitotenv.2014.11.007 [17] GAO M, GAO J H, ZHU B, et al. Ozone pollution over China and India: Seasonality and sources[J]. Atmospheric Chemistry and Physics, 2022, 20(7): 4399-4414. [18] GRANGE S K, CARSLAW D C, LEWIS A C, et al. Random forest meteorological normalisation models for Swiss PM10 trend analysis[J]. Atmospheric Chemistry and Physics, 2018, 18(9): 6223-6239. doi: 10.5194/acp-18-6223-2018 [19] WANG D, ZHAO W J, YING N, et al. Revealing the driving effect of emissions and meteorology on PM2.5 and O3 trends through a new algorithmic model[J]. Chemosphere, 2022, 295: 133756. doi: 10.1016/j.chemosphere.2022.133756 [20] LEE Y S, CHOI E, PARK M, et al. Feature extraction and prediction of fine particulate matter (PM2.5) chemical constituents using four machine learning models[J]. Expert Systems with Applications, 2023, 221: 119696. doi: 10.1016/j.eswa.2023.119696 [21] CASTELLI M, CLEMENTE F M, POPOVIČ A, et al. A machine learning approach to predict air quality in California[J]. Complexity, 2020, 2020: 8049504. [22] WANG M, ZHANG Z Z, YUAN Q, et al. Slower than expected reduction in annual PM2.5 in Xi’an revealed by machine learning-based meteorological normalization[J]. Science of the Total Environment, 2022, 841: 156740. doi: 10.1016/j.scitotenv.2022.156740 [23] 龚德才, 杜宁, 王莉, 等. 基于 XGBoost-LME模型的京津冀地区近地面臭氧浓度估算[J/OL].环境科学:1-16[2024-05-07].https://doi.org/10.13227/j.hjkx.202307110. GONG D C, DU N, WANG L, et al. Estimation of near-surface ozone concentration in the Beijing-Tianjin-Hebei region based on XGBoost-LME mode[J/OL].Environmental Science:1-16[2024-05-07].https://doi.org/10.13227/j.hjkx.202307110.3(in Chinese).
[24] 田义超, 杨棠, 徐欣. 北部湾典型入海流域植被净初级生产力时空分布特征及其影响因素[J]. 生态环境学报, 2021, 30(5): 938-948. TIAN Y C, YANG T, XU X. Temporal and spatial distribution characteristics and influencing factors of net primary productivity of vegetation in typical basin entering the sea in Beibu gulf[J]. Ecology and Environmental Sciences, 2021, 30(5): 938-948(in Chinese).
[25] 刘朋, 马海搏, 陈正元. 基于GAM的鞍山气象条件对PM2.5和SO2的影响研究[J]. 能源环境保护, 2022, 36(4): 104-108. doi: 10.3969/j.issn.1006-8759.2022.04.014 LIU P, MA H B, CHEN Z Y. Study on the influence of Anshan meteorological conditions on PM2.5 and SO2 based on GAM[J]. Energy Environmental Protection, 2022, 36(4): 104-108(in Chinese). doi: 10.3969/j.issn.1006-8759.2022.04.014
[26] HAN D L, ZHANG T T, ZHANG X D, et al. Study on spatiotemporal characteristics and influencing factors of pedestrian-level PM2.5 concentrations in outdoor open spaces of Harbin in winter, using a generalized additive model (GAM)[J]. Urban Climate, 2022, 46: 101313. doi: 10.1016/j.uclim.2022.101313 [27] LIN C S, HUANG R J, ZHONG H B, et al. Elucidating ozone and PM2.5 pollution in the Fenwei Plain reveals the co-benefits of controlling precursor gas emissions in winter haze[J]. Atmospheric Chemistry and Physics, 2023, 23(6): 3595-3607. doi: 10.5194/acp-23-3595-2023 [28] 姜楠, 郝雪新, 郝祺, 等. COVID-19管控前后不同污染阶段PM2.5中二次无机离子变化特征[J]. 环境科学, 2023, 44(5): 2430-2440. JIANG N, HAO X X, HAO Q, et al. Changes in secondary inorganic ions in PM2.5 at different pollution stages before and after COVID-19 control[J]. Environmental Science, 2023, 44(5): 2430-2440(in Chinese).
[29] FENG R, XU H M, WANG Z X, et al. Quantifying air pollutant variations during COVID-19 lockdown in a capital city in Northwest China[J]. Atmosphere, 2021, 12(6): 788. doi: 10.3390/atmos12060788 [30] GONG S L, ZHANG L, LIU C, et al. Multi-scale analysis of the impacts of meteorology and emissions on PM2.5 and O3 trends at various regions in China from 2013 to 2020 2. Key weather elements and emissions[J]. Science of the Total Environment, 2022, 824: 153847. doi: 10.1016/j.scitotenv.2022.153847 [31] 邰姗姗, 祖彪, 万敬华. 2016—2020年辽西四城市PM2.5和O3 污染特征对比分析[J]. 环境科学与技术, 2023, 46(增刊2): 142-149. TAI S S, ZU B, WAN J H. Comparative analysis of pollution characteristics of PM2.5 and O3 in four cities in western Liaoning from 2016 to 2020[J]. Environmental Science & Technology, 2023, 46(Sup2): 142-149(in Chinese).
[32] 纪传文, 肖浩, 李亲凯, 等. 天津市 2018—2020 年春节 PM2.5 中水溶性无机离子特征及重污染过程分析[J]. 环境化学, 2024, 43(1): 1-10. doi: 10.7524/j.issn.0254-6108.2023021407 JI C W, XIAO H, LI Q K, et al. Characteristics of water-soluble inorganic ions in PM2.5 and study of heavy pollution period during2018—2020 Spring Festival in Tianjin[J]. Environmental Chemistry, 2024, 43(1): 1-10(in Chinese). doi: 10.7524/j.issn.0254-6108.2023021407
[33] 王璐瑶, 何婧, 张婷, 等. 烟花爆竹燃放事件对宝鸡市空气质量的影响及健康风险评估[J]. 环境化学, 2023, 42(9): 3004-3016. doi: 10.7524/j.issn.0254-6108.2022091605 WANG L Y, HE J, ZHANG T, et al. Impact of fireworks displays events on air quality and health risk assessment in Baoji[J]. Environmental Chemistry, 2023, 42(9): 3004-3016(in Chinese). doi: 10.7524/j.issn.0254-6108.2022091605
[34] 罗悦函, 赵天良, 孟凯, 等. 华北平原和山区城市PM2.5 和O3 变化关系比较分析[J]. 中国环境科学, 2021, 41(9): 3981-3989. doi: 10.3969/j.issn.1000-6923.2021.09.002 LUO Y H, ZHAO T L, MENG K, et al. Comparative analysis of the relationship between PM2.5 and O3 in plain and mountainous cities in North China[J]. China Environmental Science, 2021, 41(9): 3981-3989(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.09.002
[35] 袁方, 翟园, 洪超, 等. 西安地区近44年降水时空变化特征[J]. 安徽农业科学, 2014, 42(34): 12195-12198,12202. doi: 10.3969/j.issn.0517-6611.2014.34.070 YUAN F, ZHAI Y, HONG C, et al. Temporal and spatial variation characteristics of precipitation in Xi'an in recent 44 years[J]. Journal of Anhui Agricultural Sciences, 2014, 42(34): 12195-12198,12202(in Chinese). doi: 10.3969/j.issn.0517-6611.2014.34.070
[36] 刀谞, 吉东生, 张显, 等. 京津冀及周边地区采暖季PM2.5化学组分变化特征[J]. 环境科学研究, 2021, 34(1): 1-10. DAO X, JI D S, ZHANG X, et al. Characteristics of chemical composition of PM2.5 in Beijing-Tianjin-Hebei and its surrounding areas during the heating period[J]. Research of Environmental Sciences, 2021, 34(1): 1-10(in Chinese).
[37] 孙丹丹, 杨书运, 王体健, 等. 长三角地区城市O3和PM2.5污染特征及影响因素分析[J]. 气象科学, 2019, 39(2): 164-177. SUN D D, YANG S Y, WANG T J, et al. Characteristics of O3 and PM2.5 and its impact factors in Yangtze River Delta[J]. Journal of the Meteorological Sciences, 2019, 39(2): 164-177(in Chinese).
[38] 王闯, 王帅, 杨碧波, 等. 气象条件对沈阳市环境空气臭氧浓度影响研究[J]. 中国环境监测, 2015, 31(3): 32-37. doi: 10.3969/j.issn.1002-6002.2015.03.007 WANG C, WANG S, YANG B B, et al. Study of the effect of meteorological conditions on the ambient air ozone concentrations in Shenyang[J]. Environmental Monitoring in China, 2015, 31(3): 32-37(in Chinese). doi: 10.3969/j.issn.1002-6002.2015.03.007
[39] 贺祥, 林振山. 基于GAM模型分析影响因素交互作用对PM2.5浓度变化的影响[J]. 环境科学, 2017, 38(1): 22-32. HE X, LIN Z S. Interactive effects of the influencing factors on the changes of PM2.5 concentration based on GAM model[J]. Environmental Science, 2017, 38(1): 22-32(in Chinese).
[40] PAN X L, YAN P, TANG J, et al. Observational study of influence of aerosol hygroscopic growth on scattering coefficient over rural area near Beijing mega-city[J]. Atmospheric Chemistry & Physics, 2009, 9(19): 7519-7530. [41] CHENG B W, MA Y X, FENG F L, et al. Influence of weather and air pollution on concentration change of PM2.5 using a generalized additive model and gradient boosting machine[J]. Atmospheric Environment, 2021, 255: 118437. doi: 10.1016/j.atmosenv.2021.118437 [42] XU J M, YAN F X, XIE Y, et al. Impact of meteorological conditions on a nine-day particulate matter pollution event observed in December 2013, Shanghai, China[J]. Particuology, 2015, 20: 69-79. doi: 10.1016/j.partic.2014.09.001 [43] 王琰玮, 王媛, 张增凯, 等. 不同季节天津市PM2.5与O3潜在源区及传输路径分析[J]. 环境科学研究, 2022, 35(3): 673-682. WANG Y W, WANG Y, ZHANG Z K, et al. Analysis of potential source areas and transport pathways of PM2.5 and O3 in Tianjin by season[J]. Research of Environmental Sciences, 2022, 35(3): 673-682(in Chinese).
[44] TIAN M, WANG H B, CHEN Y, et al. Highly time-resolved characterization of water-soluble inorganic ions in PM2.5 in a humid and acidic mega city in Sichuan Basin, China[J]. Science of the Total Environment, 2017, 580: 224-234. doi: 10.1016/j.scitotenv.2016.12.048 [45] WANG S Y, REN Y, XIA B S. PM2.5 and O3 concentration estimation based on interpretable machine learning[J]. Atmospheric Pollution Research, 2023, 14(9): 101866. doi: 10.1016/j.apr.2023.101866 [46] FENG T, BEI N F, ZHAO S Y, et al. Nitrate debuts as a dominant contributor to particulate pollution in Beijing: Roles of enhanced atmospheric oxidizing capacity and decreased sulfur dioxide emission[J]. Atmospheric Environment, 2021, 244: 117995. doi: 10.1016/j.atmosenv.2020.117995 [47] 石玉珍, 徐永福, 王庚辰, 等. 北京市夏季O3、NO x等污染物“周末效应”研究[J]. 环境科学, 2009, 30(10): 2832-2838. doi: 10.3321/j.issn:0250-3301.2009.10.004 SHI Y Z, XU Y F, WANG G C, et al. Study of the “weekend effect” of O3, NO x and other pollutants in summer of Beijing[J]. Environmental Science, 2009, 30(10): 2832-2838(in Chinese). doi: 10.3321/j.issn:0250-3301.2009.10.004
[48] 王占山, 李云婷, 陈添, 等. 北京城区臭氧日变化特征及与前体物的相关性分析[J]. 中国环境科学, 2014, 34(12): 3001-3008. WANG Z S, LI Y T, CHEN T, et al. Analysis on diurnal variation characteristics of ozone and correlations with its precursors in urban atmosphere of Beijing[J]. China Environmental Science, 2014, 34(12): 3001-3008(in Chinese).
[49] 张鸿宇, 王媛, 卢亚灵, 等. 我国臭氧污染控制分区及其控制类型识别[J]. 中国环境科学, 2021, 41(9): 4051-4059. doi: 10.3969/j.issn.1000-6923.2021.09.010 ZHANG H Y, WANG Y, LU Y L, et al. Identification of ozone pollution control zones and types in China[J]. China Environmental Science, 2021, 41(9): 4051-4059(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.09.010
[50] 付卫康, 赵天良, 燕莹莹, 等. 近年山东德州PM2.5和O3 相互作用的季节变化及其机理分析[J]. 环境科学学报, 2023, 43(8): 248-256. FU W K, ZHAO T L, YAN Y Y, et al. Analysis on seasonal changes with the mechanisms of interaction between PM2.5 and O3 in Dezhou, Shandong Province over recent years[J]. Acta Scientiae Circumstantiae, 2023, 43(8): 248-256(in Chinese).
[51] 王羽琴, 李升苹, 陈庆彩, 等. 西安市大气 PM2.5的化学组分及其来源[J]. 环境化学, 2021, 40(5): 1431-1441. doi: 10.7524/j.issn.0254-6108.2019121803 WANG Y Q, LI S P, CHEN Q C, et al. Study on chemical composition and pollution source of atmospheric PM2.5 in Xi’an City[J]. Environmental Chemistry, 2021, 40(5): 1431-1441(in Chinese). doi: 10.7524/j.issn.0254-6108.2019121803
[52] WANG N, LYU X P, DENG X J, et al. Aggravating O3 pollution due to NO x emission control in Eastern China[J]. Science of the Total Environment, 2019, 677: 732-744. doi: 10.1016/j.scitotenv.2019.04.388 [53] 王田. 陕西省大气污染物排放现状及减排潜力研究[D]. 西安: 西安建筑科技大学, 2020. WANG T. Study on the present situation of air pollutant emission and the potential of emission reduction in Shaanxi Province[D]. Xi’an: Xi’an University of Architecture and Technology, 2020(in Chinese).
[54] 汪晶发, 宋慧, 巴利萌, 等. 西安市机动车污染物排放清单与空间分布特征[J]. 环境污染与防治, 2020, 42(6): 666-671,677. WANG J F, SONG H, BA L M, et al. Study on the vehicle emission inventory and spatial distribution characteristics in Xi’an[J]. Environmental Pollution & Control, 2020, 42(6): 666-671,677(in Chinese).
[55] 李琦, 桂丽, 刘明, 等. 西安人为源VOCs排放特征及其对O3和SOA生成潜势的影响[J]. 环境科学研究, 2019, 32(2): 253-262. LI Q, GUI L, LIU M, et al. Emission characteristics of anthropogenic VOCs in Xi’an city and its contribution to ozone formation potential and secondary organic aerosols formation potential[J]. Research of Environmental Sciences, 2019, 32(2): 253-262(in Chinese).
[56] 苏航. 西安市大气污染源排放清单的建立及研究[D]. 西安: 西安建筑科技大学, 2016. SU H. The study of air pollutant emission inventory in Xi’an[D]. Xi’an: Xi’an University of Architecture and Technology, 2016(in Chinese).
[57] 陶双成, 邓顺熙, 郝艳召, 等. 关中城市群道路移动源气态污染物排放特征[J]. 中国环境科学, 2019, 39(2): 542-553. doi: 10.3969/j.issn.1000-6923.2019.02.012 TAO S C, DENG S X, HAO Y Z, et al. Vehicle emission characteristics of gaseous pollutants in Guanzhong urban agglomeration[J]. China Environmental Science, 2019, 39(2): 542-553(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.02.012
[58] 张磊. 西安市近几年机动车尾气污染物排放特征及对策[D]. 西安: 西安工程大学, 2020. ZHANG L. The emission characteristics and countermeasures of automobile exhaust in Xi’an in recent years[D]. Xi’an: Xi’an Polytechnic University, 2020(in Chinese).
[59] 张雅瑞. 关中地区机动车温室效应污染物排放清单及其削减潜力研究[D]. 西安: 长安大学, 2022. ZHANG Y R. Emission inventory and reduction strategy of motor vehicle on greenhouse pollutants in Guanzhong region, China[D]. Xi’an: Changan University, 2022(in Chinese).