[1] 中华人民共和国生态环境部. 生态环境部通报2022年12月和1—12月全国环境空气质量状况[EB/OL]. [2023-01-28].
[2] LIN Z H, WANG Y H, ZHENG F X, et al. Rapid mass growth and enhanced light extinction of atmospheric aerosols during the heating season haze episodes in Beijing revealed by aerosol–chemistry–radiation–boundary layer interaction[J]. Atmospheric Chemistry and Physics, 2021, 21(16): 12173-12187. doi: 10.5194/acp-21-12173-2021
[3] TSAI P J, YOUNG L H, HWANG B F, et al. Source and health risk apportionment for PM2.5 collected in Sha-Lu area, Taiwan[J]. Atmospheric Pollution Research, 2020, 11(5): 851-858. doi: 10.1016/j.apr.2020.01.013
[4] LIU L, KUANG Y, ZHAI M M, et al. Strong light scattering of highly oxygenated organic aerosols impacts significantly on visibility degradation[J]. Atmospheric Chemistry and Physics, 2022, 22(11): 7713-7726. doi: 10.5194/acp-22-7713-2022
[5] TAO Y, YUAN Y, CUI Y J, et al. Comparative analysis of the chemical characteristics and sources of fine atmospheric particulate matter (PM2.5) at two sites in Changzhou, China[J]. Atmospheric Pollution Research, 2021, 12(8): 101124. doi: 10.1016/j.apr.2021.101124
[6] WOOD D A. Trend decomposition aids forecasts of air particulate matter (PM2.5) assisted by machine and deep learning without recourse to exogenous data[J]. Atmospheric Pollution Research, 2022, 13(3): 101352. doi: 10.1016/j.apr.2022.101352
[7] MENG F L, ZHANG Y B, KANG J H, et al. Trends in secondary inorganic aerosol pollution in China and its responses to emission controls of precursors in wintertime[J]. Atmospheric Chemistry and Physics, 2022, 22(9): 6291-6308. doi: 10.5194/acp-22-6291-2022
[8] LUO Y H, ZHAO T L, YANG Y J, et al. Seasonal changes in the recent decline of combined high PM2.5 and O3 pollution and associated chemical and meteorological drivers in the Beijing–Tianjin–Hebei region, China[J]. Science of the Total Environment, 2022, 838: 156312. doi: 10.1016/j.scitotenv.2022.156312
[9] LU X, HONG J Y, ZHANG L, et al. Severe surface ozone pollution in China: A global perspective[J]. Environmental Science & Technology Letters, 2018, 5(8): 487-494.
[10] LU X, ZHANG L, WANG X L, et al. Rapid increases in warm-season surface ozone and resulting health impact in China since 2013[J]. Environmental Science & Technology Letters, 2020, 7(4): 240-247.
[11] WANG X P, MAUZERALL D L. Evaluating impacts of air pollution in China on public health: Implications for future air pollution and energy policies[J]. Atmospheric Environment, 2006, 40(9): 1706-1721. doi: 10.1016/j.atmosenv.2005.10.066
[12] LIU Z Y, QI Z L, NI X F, et al. How to apply O3 and PM2.5 collaborative control to practical management in China: A study based on meta-analysis and machine learning[J]. Science of the Total Environment, 2021, 772: 145392. doi: 10.1016/j.scitotenv.2021.145392
[13] WANG H L, KE Y, TAN Y, et al. Observational evidence for the dual roles of BC in the megacity of Eastern China: Enhanced O3 and decreased PM2.5 pollution[J]. Chemosphere, 2023, 327: 138548. doi: 10.1016/j.chemosphere.2023.138548
[14] 姜华, 高健, 李红, 等. 我国大气污染协同防控理论框架初探[J]. 环境科学研究, 2022, 35(3): 601-610. JIANG H, GAO J, LI H, et al. Preliminary research on theoretical framework of cooperative control of air pollution in China[J]. Research of Environmental Sciences, 2022, 35(3): 601-610(in Chinese).
[15] XING L, MAO X L, DUAN K Q. Impacts of urban–rural disparities in the trends of PM2.5 and ozone levels in China during 2013—2019[J]. Atmospheric Pollution Research, 2022, 13(11): 101590. doi: 10.1016/j.apr.2022.101590
[16] WANG P, CAO J J, SHEN Z X, et al. Spatial and seasonal variations of PM2.5 mass and species during 2010 in Xi’an, China[J]. Science of the Total Environment, 2015, 508: 477-487. doi: 10.1016/j.scitotenv.2014.11.007
[17] GAO M, GAO J H, ZHU B, et al. Ozone pollution over China and India: Seasonality and sources[J]. Atmospheric Chemistry and Physics, 2022, 20(7): 4399-4414.
[18] GRANGE S K, CARSLAW D C, LEWIS A C, et al. Random forest meteorological normalisation models for Swiss PM10 trend analysis[J]. Atmospheric Chemistry and Physics, 2018, 18(9): 6223-6239. doi: 10.5194/acp-18-6223-2018
[19] WANG D, ZHAO W J, YING N, et al. Revealing the driving effect of emissions and meteorology on PM2.5 and O3 trends through a new algorithmic model[J]. Chemosphere, 2022, 295: 133756. doi: 10.1016/j.chemosphere.2022.133756
[20] LEE Y S, CHOI E, PARK M, et al. Feature extraction and prediction of fine particulate matter (PM2.5) chemical constituents using four machine learning models[J]. Expert Systems with Applications, 2023, 221: 119696. doi: 10.1016/j.eswa.2023.119696
[21] CASTELLI M, CLEMENTE F M, POPOVIČ A, et al. A machine learning approach to predict air quality in California[J]. Complexity, 2020, 2020: 8049504.
[22] WANG M, ZHANG Z Z, YUAN Q, et al. Slower than expected reduction in annual PM2.5 in Xi’an revealed by machine learning-based meteorological normalization[J]. Science of the Total Environment, 2022, 841: 156740. doi: 10.1016/j.scitotenv.2022.156740
[23] 龚德才, 杜宁, 王莉, 等. 基于 XGBoost-LME模型的京津冀地区近地面臭氧浓度估算[J/OL].环境科学:1-16[2024-05-07].https://doi.org/10.13227/j.hjkx.202307110. GONG D C, DU N, WANG L, et al. Estimation of near-surface ozone concentration in the Beijing-Tianjin-Hebei region based on XGBoost-LME mode[J/OL].Environmental Science:1-16[2024-05-07].https://doi.org/10.13227/j.hjkx.202307110.3(in Chinese).
[24] 田义超, 杨棠, 徐欣. 北部湾典型入海流域植被净初级生产力时空分布特征及其影响因素[J]. 生态环境学报, 2021, 30(5): 938-948. TIAN Y C, YANG T, XU X. Temporal and spatial distribution characteristics and influencing factors of net primary productivity of vegetation in typical basin entering the sea in Beibu gulf[J]. Ecology and Environmental Sciences, 2021, 30(5): 938-948(in Chinese).
[25] 刘朋, 马海搏, 陈正元. 基于GAM的鞍山气象条件对PM2.5和SO2的影响研究[J]. 能源环境保护, 2022, 36(4): 104-108. doi: 10.3969/j.issn.1006-8759.2022.04.014 LIU P, MA H B, CHEN Z Y. Study on the influence of Anshan meteorological conditions on PM2.5 and SO2 based on GAM[J]. Energy Environmental Protection, 2022, 36(4): 104-108(in Chinese). doi: 10.3969/j.issn.1006-8759.2022.04.014
[26] HAN D L, ZHANG T T, ZHANG X D, et al. Study on spatiotemporal characteristics and influencing factors of pedestrian-level PM2.5 concentrations in outdoor open spaces of Harbin in winter, using a generalized additive model (GAM)[J]. Urban Climate, 2022, 46: 101313. doi: 10.1016/j.uclim.2022.101313
[27] LIN C S, HUANG R J, ZHONG H B, et al. Elucidating ozone and PM2.5 pollution in the Fenwei Plain reveals the co-benefits of controlling precursor gas emissions in winter haze[J]. Atmospheric Chemistry and Physics, 2023, 23(6): 3595-3607. doi: 10.5194/acp-23-3595-2023
[28] 姜楠, 郝雪新, 郝祺, 等. COVID-19管控前后不同污染阶段PM2.5中二次无机离子变化特征[J]. 环境科学, 2023, 44(5): 2430-2440. JIANG N, HAO X X, HAO Q, et al. Changes in secondary inorganic ions in PM2.5 at different pollution stages before and after COVID-19 control[J]. Environmental Science, 2023, 44(5): 2430-2440(in Chinese).
[29] FENG R, XU H M, WANG Z X, et al. Quantifying air pollutant variations during COVID-19 lockdown in a capital city in Northwest China[J]. Atmosphere, 2021, 12(6): 788. doi: 10.3390/atmos12060788
[30] GONG S L, ZHANG L, LIU C, et al. Multi-scale analysis of the impacts of meteorology and emissions on PM2.5 and O3 trends at various regions in China from 2013 to 2020 2. Key weather elements and emissions[J]. Science of the Total Environment, 2022, 824: 153847. doi: 10.1016/j.scitotenv.2022.153847
[31] 邰姗姗, 祖彪, 万敬华. 2016—2020年辽西四城市PM2.5和O3 污染特征对比分析[J]. 环境科学与技术, 2023, 46(增刊2): 142-149. TAI S S, ZU B, WAN J H. Comparative analysis of pollution characteristics of PM2.5 and O3 in four cities in western Liaoning from 2016 to 2020[J]. Environmental Science & Technology, 2023, 46(Sup2): 142-149(in Chinese).
[32] 纪传文, 肖浩, 李亲凯, 等. 天津市 2018—2020 年春节 PM2.5 中水溶性无机离子特征及重污染过程分析[J]. 环境化学, 2024, 43(1): 1-10. doi: 10.7524/j.issn.0254-6108.2023021407 JI C W, XIAO H, LI Q K, et al. Characteristics of water-soluble inorganic ions in PM2.5 and study of heavy pollution period during2018—2020 Spring Festival in Tianjin[J]. Environmental Chemistry, 2024, 43(1): 1-10(in Chinese). doi: 10.7524/j.issn.0254-6108.2023021407
[33] 王璐瑶, 何婧, 张婷, 等. 烟花爆竹燃放事件对宝鸡市空气质量的影响及健康风险评估[J]. 环境化学, 2023, 42(9): 3004-3016. doi: 10.7524/j.issn.0254-6108.2022091605 WANG L Y, HE J, ZHANG T, et al. Impact of fireworks displays events on air quality and health risk assessment in Baoji[J]. Environmental Chemistry, 2023, 42(9): 3004-3016(in Chinese). doi: 10.7524/j.issn.0254-6108.2022091605
[34] 罗悦函, 赵天良, 孟凯, 等. 华北平原和山区城市PM2.5 和O3 变化关系比较分析[J]. 中国环境科学, 2021, 41(9): 3981-3989. doi: 10.3969/j.issn.1000-6923.2021.09.002 LUO Y H, ZHAO T L, MENG K, et al. Comparative analysis of the relationship between PM2.5 and O3 in plain and mountainous cities in North China[J]. China Environmental Science, 2021, 41(9): 3981-3989(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.09.002
[35] 袁方, 翟园, 洪超, 等. 西安地区近44年降水时空变化特征[J]. 安徽农业科学, 2014, 42(34): 12195-12198,12202. doi: 10.3969/j.issn.0517-6611.2014.34.070 YUAN F, ZHAI Y, HONG C, et al. Temporal and spatial variation characteristics of precipitation in Xi'an in recent 44 years[J]. Journal of Anhui Agricultural Sciences, 2014, 42(34): 12195-12198,12202(in Chinese). doi: 10.3969/j.issn.0517-6611.2014.34.070
[36] 刀谞, 吉东生, 张显, 等. 京津冀及周边地区采暖季PM2.5化学组分变化特征[J]. 环境科学研究, 2021, 34(1): 1-10. DAO X, JI D S, ZHANG X, et al. Characteristics of chemical composition of PM2.5 in Beijing-Tianjin-Hebei and its surrounding areas during the heating period[J]. Research of Environmental Sciences, 2021, 34(1): 1-10(in Chinese).
[37] 孙丹丹, 杨书运, 王体健, 等. 长三角地区城市O3和PM2.5污染特征及影响因素分析[J]. 气象科学, 2019, 39(2): 164-177. SUN D D, YANG S Y, WANG T J, et al. Characteristics of O3 and PM2.5 and its impact factors in Yangtze River Delta[J]. Journal of the Meteorological Sciences, 2019, 39(2): 164-177(in Chinese).
[38] 王闯, 王帅, 杨碧波, 等. 气象条件对沈阳市环境空气臭氧浓度影响研究[J]. 中国环境监测, 2015, 31(3): 32-37. doi: 10.3969/j.issn.1002-6002.2015.03.007 WANG C, WANG S, YANG B B, et al. Study of the effect of meteorological conditions on the ambient air ozone concentrations in Shenyang[J]. Environmental Monitoring in China, 2015, 31(3): 32-37(in Chinese). doi: 10.3969/j.issn.1002-6002.2015.03.007
[39] 贺祥, 林振山. 基于GAM模型分析影响因素交互作用对PM2.5浓度变化的影响[J]. 环境科学, 2017, 38(1): 22-32. HE X, LIN Z S. Interactive effects of the influencing factors on the changes of PM2.5 concentration based on GAM model[J]. Environmental Science, 2017, 38(1): 22-32(in Chinese).
[40] PAN X L, YAN P, TANG J, et al. Observational study of influence of aerosol hygroscopic growth on scattering coefficient over rural area near Beijing mega-city[J]. Atmospheric Chemistry & Physics, 2009, 9(19): 7519-7530.
[41] CHENG B W, MA Y X, FENG F L, et al. Influence of weather and air pollution on concentration change of PM2.5 using a generalized additive model and gradient boosting machine[J]. Atmospheric Environment, 2021, 255: 118437. doi: 10.1016/j.atmosenv.2021.118437
[42] XU J M, YAN F X, XIE Y, et al. Impact of meteorological conditions on a nine-day particulate matter pollution event observed in December 2013, Shanghai, China[J]. Particuology, 2015, 20: 69-79. doi: 10.1016/j.partic.2014.09.001
[43] 王琰玮, 王媛, 张增凯, 等. 不同季节天津市PM2.5与O3潜在源区及传输路径分析[J]. 环境科学研究, 2022, 35(3): 673-682. WANG Y W, WANG Y, ZHANG Z K, et al. Analysis of potential source areas and transport pathways of PM2.5 and O3 in Tianjin by season[J]. Research of Environmental Sciences, 2022, 35(3): 673-682(in Chinese).
[44] TIAN M, WANG H B, CHEN Y, et al. Highly time-resolved characterization of water-soluble inorganic ions in PM2.5 in a humid and acidic mega city in Sichuan Basin, China[J]. Science of the Total Environment, 2017, 580: 224-234. doi: 10.1016/j.scitotenv.2016.12.048
[45] WANG S Y, REN Y, XIA B S. PM2.5 and O3 concentration estimation based on interpretable machine learning[J]. Atmospheric Pollution Research, 2023, 14(9): 101866. doi: 10.1016/j.apr.2023.101866
[46] FENG T, BEI N F, ZHAO S Y, et al. Nitrate debuts as a dominant contributor to particulate pollution in Beijing: Roles of enhanced atmospheric oxidizing capacity and decreased sulfur dioxide emission[J]. Atmospheric Environment, 2021, 244: 117995. doi: 10.1016/j.atmosenv.2020.117995
[47] 石玉珍, 徐永福, 王庚辰, 等. 北京市夏季O3、NO x等污染物“周末效应”研究[J]. 环境科学, 2009, 30(10): 2832-2838. doi: 10.3321/j.issn:0250-3301.2009.10.004 SHI Y Z, XU Y F, WANG G C, et al. Study of the “weekend effect” of O3, NO x and other pollutants in summer of Beijing[J]. Environmental Science, 2009, 30(10): 2832-2838(in Chinese). doi: 10.3321/j.issn:0250-3301.2009.10.004
[48] 王占山, 李云婷, 陈添, 等. 北京城区臭氧日变化特征及与前体物的相关性分析[J]. 中国环境科学, 2014, 34(12): 3001-3008. WANG Z S, LI Y T, CHEN T, et al. Analysis on diurnal variation characteristics of ozone and correlations with its precursors in urban atmosphere of Beijing[J]. China Environmental Science, 2014, 34(12): 3001-3008(in Chinese).
[49] 张鸿宇, 王媛, 卢亚灵, 等. 我国臭氧污染控制分区及其控制类型识别[J]. 中国环境科学, 2021, 41(9): 4051-4059. doi: 10.3969/j.issn.1000-6923.2021.09.010 ZHANG H Y, WANG Y, LU Y L, et al. Identification of ozone pollution control zones and types in China[J]. China Environmental Science, 2021, 41(9): 4051-4059(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.09.010
[50] 付卫康, 赵天良, 燕莹莹, 等. 近年山东德州PM2.5和O3 相互作用的季节变化及其机理分析[J]. 环境科学学报, 2023, 43(8): 248-256. FU W K, ZHAO T L, YAN Y Y, et al. Analysis on seasonal changes with the mechanisms of interaction between PM2.5 and O3 in Dezhou, Shandong Province over recent years[J]. Acta Scientiae Circumstantiae, 2023, 43(8): 248-256(in Chinese).
[51] 王羽琴, 李升苹, 陈庆彩, 等. 西安市大气 PM2.5的化学组分及其来源[J]. 环境化学, 2021, 40(5): 1431-1441. doi: 10.7524/j.issn.0254-6108.2019121803 WANG Y Q, LI S P, CHEN Q C, et al. Study on chemical composition and pollution source of atmospheric PM2.5 in Xi’an City[J]. Environmental Chemistry, 2021, 40(5): 1431-1441(in Chinese). doi: 10.7524/j.issn.0254-6108.2019121803
[52] WANG N, LYU X P, DENG X J, et al. Aggravating O3 pollution due to NO x emission control in Eastern China[J]. Science of the Total Environment, 2019, 677: 732-744. doi: 10.1016/j.scitotenv.2019.04.388
[53] 王田. 陕西省大气污染物排放现状及减排潜力研究[D]. 西安: 西安建筑科技大学, 2020. WANG T. Study on the present situation of air pollutant emission and the potential of emission reduction in Shaanxi Province[D]. Xi’an: Xi’an University of Architecture and Technology, 2020(in Chinese).
[54] 汪晶发, 宋慧, 巴利萌, 等. 西安市机动车污染物排放清单与空间分布特征[J]. 环境污染与防治, 2020, 42(6): 666-671,677. WANG J F, SONG H, BA L M, et al. Study on the vehicle emission inventory and spatial distribution characteristics in Xi’an[J]. Environmental Pollution & Control, 2020, 42(6): 666-671,677(in Chinese).
[55] 李琦, 桂丽, 刘明, 等. 西安人为源VOCs排放特征及其对O3和SOA生成潜势的影响[J]. 环境科学研究, 2019, 32(2): 253-262. LI Q, GUI L, LIU M, et al. Emission characteristics of anthropogenic VOCs in Xi’an city and its contribution to ozone formation potential and secondary organic aerosols formation potential[J]. Research of Environmental Sciences, 2019, 32(2): 253-262(in Chinese).
[56] 苏航. 西安市大气污染源排放清单的建立及研究[D]. 西安: 西安建筑科技大学, 2016. SU H. The study of air pollutant emission inventory in Xi’an[D]. Xi’an: Xi’an University of Architecture and Technology, 2016(in Chinese).
[57] 陶双成, 邓顺熙, 郝艳召, 等. 关中城市群道路移动源气态污染物排放特征[J]. 中国环境科学, 2019, 39(2): 542-553. doi: 10.3969/j.issn.1000-6923.2019.02.012 TAO S C, DENG S X, HAO Y Z, et al. Vehicle emission characteristics of gaseous pollutants in Guanzhong urban agglomeration[J]. China Environmental Science, 2019, 39(2): 542-553(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.02.012
[58] 张磊. 西安市近几年机动车尾气污染物排放特征及对策[D]. 西安: 西安工程大学, 2020. ZHANG L. The emission characteristics and countermeasures of automobile exhaust in Xi’an in recent years[D]. Xi’an: Xi’an Polytechnic University, 2020(in Chinese).
[59] 张雅瑞. 关中地区机动车温室效应污染物排放清单及其削减潜力研究[D]. 西安: 长安大学, 2022. ZHANG Y R. Emission inventory and reduction strategy of motor vehicle on greenhouse pollutants in Guanzhong region, China[D]. Xi’an: Changan University, 2022(in Chinese).