-
自然环境中氨氮最初主要由雷电产生的硝酸盐和动植物分解产生,而磷酸盐来自雨水对矿物的溶解和动物的粪便。但随着经济社会发展,人类活动对生态环境的影响逐步加大,水环境不断恶化[1]。农业生产中使用的大量化肥、城市生活中洗涤剂、水产养殖业排放的废水中通常都含有大量氮磷[2]。过量的氮磷进入水体后,极易造成水体富营养化,藻类大量繁殖,对水体表面形成覆盖,大大降低水体含氧量和透光率,造成水质污染[3]。我国主要河流湖泊水体富营养化问题日益严峻[4-5]。水体中氮磷的去除一直是解决水体富营养化问题的关键。
生物炭是由有机原料在一定的有限氧气热燃烧下产生的富碳材料[6]。因其具备较高的阳离子交换能力、比表面积大和结构稳定等优点,可利用吸附作用去除重金属和有机污染物,在水处理和土壤防治领域具有很好的应用前景[7]。生物炭吸附能力与本身的理化性质相关,而理化性质随制备条件的不同而不同[8]。由高温直接裂解的生物炭存在着吸附量较低的缺点,因此需要添加改性剂进行改性提高其吸附量[9]。常用的改性方法包括使用酸、碱、氧化剂和金属离子等[10-13],均可增强生物炭对各类污染物的吸附效果。
玉米芯是一种年产量很大的农业副产物,在我国其年产量约为4 000×104 t,每年都有大量玉米芯被丢弃,或在田间被焚烧,既浪费了资源又污染了环境[14]。玉米芯具有碳含量高、天然纤维结构、产量大等特点[15],合理利用将会是良好的绿色环保资源。
本实验对玉米芯材料进行高温煅烧处理得到生物炭,通过使用CaCl2溶液作为改性剂对玉米芯生物炭进行改性,分析其形态和结构变化,并进一步研究改性玉米芯生物炭对于模拟水体中氨氮和磷酸盐的吸附性能及其吸附机理,为生物炭处理水环境中氮磷污染物的研究提供相关实验依据。
钙改性玉米芯生物炭对水中氮磷吸附特性
Adsorption characteristics of calcium-modified corncob biochar for nitrogen and phosphorus in water
-
摘要: 以玉米芯为原材料,在500 ℃条件下高温热解制备生物炭,使用CaCl2对其进行改性,通过SEM、EDS、BET-N2、FTIR、XPS等手段对生物炭结构与组成进行了测定。通过吸附实验研究了改性生物炭对水中氮磷的吸附性能和影响因素,分析探讨其吸附机理,为生物炭在水处理中的应用提供参考依据。结果表明:CaCl2改性使玉米芯生物炭比表面积提高了137.57%,微孔和介孔数增加,并产生Ca2+、Cl−离子有效附着。氮磷初始溶液质量浓度、固液比、吸附时间均会对生物炭的吸附性能产生影响。CaCl2改性后的生物炭对氮磷吸附量分别提高了46.6%和78.4%。改性后的生物炭(Ca-BC)对水中氮磷的吸附更符合准二级动力学;Ca-BC对氨氮和磷酸盐的等温吸附更符合Langmuir模型,吸附过程更接近物理吸附为主,化学吸附为辅的单分子层吸附。Ca-BC通过范德华力静电相互作用、离子交换和化学沉淀过程去除水中氮磷。Abstract: Biochar was prepared by pyrolysis of corn cob at 500 ℃. The biochar was modified by CaCl2. The structure and composition of biochar were determined by SEM、EDS、BET-N2、FTIR and XPS. The adsorption properties and influencing factors of modified biochar toward nitrogen and phosphorus in water were studied through the adsorption experiments, and the adsorption mechanism was analyzed, which will provide a reference for the application of biochar in water treatment. The results showed that the specific surface area of corncob biochar increased by 137.57%, the number of micro- and meso-pores increased, and Ca2+ and Cl− ions were effectively attached. All the initial solution concentration of nitrogen and phosphorus, the ratio of solid to liquid and the adsorption time affected the adsorption performance of biochar. The adsorption capacities of nitrogen and phosphorus of biochar modified by CaCl2 increased by 46.6% and 78.4%, respectively. The adsorption kinetic behaviors of nitrogen and phosphorus in water by modified biochar (Ca-BC) were consistent with the quasi-second-order kinetic model. The adsorption isotherms of ammonia nitrogen and phosphate by Ca-BC could be consistent with the Langmuir model, and the adsorption processes were close to the single molecular layer adsorption with physical adsorption as the main one and chemical adsorption as the auxiliary one. Ca-BC removed nitrogen and phosphorus from water through van der Waals electrostatic interaction, ion exchange and chemical precipitation processes.
-
Key words:
- corn cob /
- biochar /
- nitrogen and phosphorus /
- adsorption
-
表 1 BC0,BC,Ca-BC元素含量分析
Table 1. Element content analysis of BC0, BC and Ca-BC %
样品 C O K Ca Cl BC0 90.14 8.53 1.33 — — BC 89.26 9.30 1.44 — — Ca-BC 87.19 9.50 0.65 1.01 1.63 注:“—”表示含量为0。 表 2 生物炭结构参数
Table 2. Structural parameters of biochar
生物炭 SBET/
(m2·g−1)SMicro/
(m2·g−1)VTotal/
(cm3·g−1)VMicro/
(cm3·g−1)BC 66.37 53.59 0.040 0.027 Ca-BC 157.68 124.05 0.090 0.065 表 3 BC和Ca-BC吸附动力学特性
Table 3. Adsorption kinetic characteristics of BC and Ca-BC
生物炭类型 准一级动力学方程 准二级动力学方程 Qe/(mg·g−1) K1 R2 Qe/ mg·g−1) K2 R2 Ca-BC-N 27.49 0.027 0.874 28.456 0.001 9 0.912 Ca-BC-P 10.03 0.030 4 0.864 10.353 0.005 8 0.904 BC-N 19.34 61.6×10−4 0.860 22.80 3.0×10−4 0.826 BC-P 5.46 0.012 9 0.779 6.00 0.003 1 0.727 表 4 Ca-BC对氮磷等温吸附特性
Table 4. Isothermal adsorption characteristics of Ca-BC to nitrogen and phosphorus
生物炭类型 Freundlich方程 Langmuir方程 KF 1/n R2 b/( mg·g−1) KL R2 Ca-BC-N 0.559 8 0.825 0.991 107.68 0.003 0.999 Ca-BC-P 1.745 8 0.47 0.906 11.28 0.126 0.971 表 5 与其他改性生物炭对比
Table 5. Comparison with other modified biochar
-
[1] 孔维芳. 富营养化水体生态修复中水生植物的应用研究[J]. 皮革制作与环保科技, 2021, 2(7): 59-60. [2] 文秋红, 李丹凤, 田望舒, 等. 地表水的氮磷污染及其检测方法研究[J]. 绿色科技, 2015(6): 255-257. [3] 王书锦, 刘云, 张超, 等. 洱海流域入湖河口湿地沉积物氮、磷、有机质分布及污染风险评价[J]. 湖泊科学, 2017, 29(1): 69-77. [4] QI F J, CHEN L, MA J R. Current situation and prospect of reclaimed water reuse[J]. Applied Mechanics and Materials, 2013, 2301: 295-298. [5] KUMAR S, JHA P, BAIER K, et al. Pollution of Ganga River due to urbanization of Varanasi: Adverse conditions faced by the slum population[J]. Environment and Urbanization Asia, 2012, 3(2): 343-352. doi: 10.1177/0975425312473229 [6] SEPEHRI A, SARRAFZADEH M. Effect of nitrifiers community on fouling mitigation and nitrification efficiency in a membrane bioreactor[J]. Chemical Engineering and Processing - Process Intensification, 2018, 128: 10-18. doi: 10.1016/j.cep.2018.04.006 [7] 孙耀胜, 么强, 刘竞依, 等. 生物炭材料在水体有机污染治理中的研究进展[J]. 环境科学与技术, 2021, 44(01): 170-180. [8] AHMAD M, LEE S S, DOU X, et al. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water[J]. Bioresource Technology, 2012, 118: 536-544. doi: 10.1016/j.biortech.2012.05.042 [9] CHA S J, PARK H S, JUNG S, et al. Production and utilization of biochar: A review[J]. Journal of Industrial and Engineering Chemistry, 2016, 40: 1-15. doi: 10.1016/j.jiec.2016.06.002 [10] 林冰峰, 陈志豪, 杨芳俐, 等. 锰铁氧体改性生物炭对四环素的吸附性能研究[J]. 农业环境科学学报, 2023, 42(7): 1585-1596. [11] 梁欣冉, 郭光光, 甄静, 等. 铁改性生物炭的制备及水体修复应用综述[J]. 河南科学, 2023, 41(1): 55-63. [12] 张田田, 杨英, 李卫华, 等. 碱改性生物炭对四环素的吸附研究[J]. 宜春学院学报, 2022, 44(12): 6-12. [13] 江汝清, 余广炜, 王玉, 等. 酸改性猪粪生物炭的制备及其对直接红23染料的吸附性能[J]. 化工进展, 2022, 41(12): 6489-6499. [14] 张茂林, 李领川, 沈晓武, 等. 玉米芯糖化水解及发酵法生物产氢[J]. 化工学报, 2009, 60(2): 465-470. [15] YUAN Q, LI X, YI C, et al. Efficient toluene adsorption/desorption on biochar derived from in situ acid-treated sugarcane bagasse[J]. Environmental Science and Pollution Research International, 2021, 28(44): 62616-62627. doi: 10.1007/s11356-021-15128-2 [16] 杨奇亮, 吴平霄. 改性多孔生物炭的制备及其对水中四环素的吸附性能研究[J]. 环境科学学报, 2019, 39(12): 3973-3984. [17] 郭明帅, 王菲, 张学良, 等. 改性生物炭活化过硫酸盐对水中苯和氯苯的去除机制[J]. 中国环境科学, 2020, 40(12): 5280-5289. [18] 张智霖, 丁磊, 周强, 等. 响应曲面法优化木薯酒精污泥基活性炭制备及对没食子酸的吸附性能[J]. 过程工程学报, 2021, 21(7): 794-806. [19] 马锋锋, 赵保卫, 刁静茹, 等. 磁性生物炭对水体中对硝基苯酚的吸附特性[J]. 中国环境科学, 2019, 39(1): 170-178. doi: 10.3969/j.issn.1000-6923.2019.01.019 [20] ZHU X, LIU Y, ZHOU C, et al. A novel porous carbon derived from hydrothermal carbon for efficient adsorption of tetracycline[J]. Carbon, 2014, 77: 627-636. doi: 10.1016/j.carbon.2014.05.067 [21] LI Q, MU J, ZHOU J, et al. Avoiding the use of corrosive activator to produce nitrogen-doped hierarchical porous carbon materials for high-performance supercapacitor electrode[J]. Journal of Electroanalytical Chemistry, 2019, 832: 284-292. doi: 10.1016/j.jelechem.2018.11.013 [22] 唐艳军, 李友明, 宋晶, 等. 纳米/微米碳酸钙的结构表征和热分解行为[J]. 物理化学学报, 2007(5): 717-722. [23] 段漓童, 刘正猛. 红外光谱图的分区[J]. 华北煤炭医学院学报, 2006(3): 336-337. [24] 王亮, 田伟君, 乔凯丽, 等. 改性大豆秸秆生物炭对咪唑乙烟酸的吸附[J]. 中国环境科学, 2020, 40(10): 4488-4495. [25] 郑庆福, 王志民, 陈保国, 等. 制备生物炭的结构特征及炭化机理的XRD光谱分析[J]. 光谱学与光谱分析, 2016, 36(10): 3355-3359. [26] 史月月, 单锐, 袁浩然. 改性稻壳生物炭对水溶液中甲基橙的吸附效果与机制[J]. 环境科学, 2019, 40(6): 2783-2792. [27] 余剑, 丁恒, 张智霖, 等. 改性菱角壳生物炭吸附水中土霉素性能与机理[J]. 中国环境科学, 2021, 41(12): 5688-5700. doi: 10.3969/j.issn.1000-6923.2021.12.025 [28] 王菁姣. 生物炭对重金属的吸附作用及腐殖酸的影响[D]. 北京: 中国地质大学(北京), 2015. [29] DENG W D, ZHANG D Q, ZHENG X X, et al. Adsorption recovery of phosphate from waste streams by Ca/Mg-biochar synthesis from marble waste, calcium-rich sepiolite and bagasse[J]. Journal of Cleaner Production, 2021, 288: 125638. doi: 10.1016/j.jclepro.2020.125638 [30] YIN Q, LIU M, REN H. Biochar produced from the co-pyrolysis of sewage sludge and walnut shell for ammonium and phosphate adsorption from water[J]. Journal of Environmental Management, 2019, 249(C): 109410. [31] LIU X, SHEN F, QI X. Adsorption recovery of phosphate from aqueous solution by CaO-biochar composites prepared from eggshell and rice straw [J]. Science of the Total Environment, 2019, 666 694-702. [32] 赵志伟, 陈晨, 梁志杰, 等. 锰氧化物改性生物炭对水中四环素的强化吸附[J]. 农业环境科学学报, 2021, 40(1): 194-201. doi: 10.11654/jaes.2020-0803 [33] GONG Y P, NI Z Y, XIONG Z Z, et al. Phosphate and ammonium adsorption of the modified biochar based on Phragmites australis after phytoremediation.[J]. Environmental science and pollution research international, 2017, 24(9): 8326-8335. doi: 10.1007/s11356-017-8499-2 [34] 丁玉琴, 李大鹏, 张帅, 等. 镁改性芦苇生物炭控磷效果及其对水体修复[J]. 环境科学, 2020, 41(4): 1692-1699. [35] 李廷梅, 于鲁冀, 叶露阳, 等. 改性玉米芯表面特征及其对氨氮的吸附作用研究[J]. 环境工程, 2018, 36(1): 42-46. [36] JIANG Y, LI A, DENG H, et al. Characteristics of nitrogen and phosphorus adsorption by Mg-loaded biochar from different feedstocks[J]. Bioresource Technology, 2019, 276: 183-189. doi: 10.1016/j.biortech.2018.12.079 [37] 邓玉, 刘斌, 晏琪涵, 等. 一步法制备Mg改性玉米芯生物炭吸附磷酸盐研究[J]. 水处理技术, 2021, 47(4): 35-39. [38] 宋格. 芦苇生物炭吸附水中氨氮的作用及机制[D]. 杭州: 中国计量大学, 2020. [39] 戴田池. 改性秸秆生物炭吸附水中磷酸盐和四环素效能及机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. [40] 范沾涛, 刘寒, 黄媛, 等. 钙离子对药用植物生长和次生代谢产物积累作用的研究进展[J]. 中国现代中药, 2023, 25(8): 1789-1798. [41] 周成赟, 唐小峰, 渠晓琳, 等. Ce-BDC衍生碳的除氟性能与机理[J]. 环境工程学报, 2023, 17(10): 1-10.