-
漆酶是一类含铜多酚氧化酶,广泛存在于真菌、细菌和部分植物中,其特征在于铜氧还原蛋白结构中含有4个铜离子[1]。依据电磁学特征,T1和T2型2个铜均为单电子受体,呈现顺磁性;而T3型铜含有2个铜离子,为双电子受体,呈现反磁性。T2和T3铜位点构成三核铜簇中心,与T1铜相互连通,参与漆酶的催化氧化过程。漆酶可以利用分子氧为唯一的电子受体,氧化各种酚类、芳香族化合物及其胺类化合物[2-3]。因此,漆酶是一种优良的绿色生物催化剂,广泛应用于生物传感、医药加工、有机合成、及废水处理等工程应用领域[4]。然而,游离漆酶对环境条件表现出极高的敏感性,这意味着漆酶在自然条件下(pH、温度等)的稳定性相对较差[5-6]。漆酶的低稳定性和高生产成本导致漆酶在实际工业应用中受到限制。而且,游离漆酶在复杂环境中极易变性,回收十分困难。提高漆酶的稳定性和可重复使用性是漆酶相关研究的一个重要方向[7],因此,酶的固定化是备受关注的一项关键技术。
漆酶的固定化是将游离漆酶嫁接到不溶性载体基质上[8-10]。吸附法是指漆酶通过分子间作用力(离子键、氢键和范德华力等)吸附到载体的表面和孔隙内部[11]。吸附法制备条件相对简单,但吸附力相对较弱,易于漆酶脱落渗漏,从而降低固定化酶活性。吸附载体多样易得,如生物炭[6]、金属有机骨架材料[12]或蒙脱石[13]等。包埋法是指将漆酶固定在半透性聚合物膜或多面体结构中。常见的包埋材料包括天然凝胶(如明胶、壳聚糖珠等)以及合成凝胶(如聚丙烯酰胺和海藻酸盐珠等),其中海藻酸盐珠由于其无毒温和的凝胶特性[14]最为常见。包埋法的特殊固定方式是漆酶被包裹在高聚物基质中,因此可以有效地防止漆酶的流失和机械损伤,使得包埋后的酶不易漏出,也不会引起酶结构的变化。提高了固定化酶的稳定性。包埋法形成的固定化酶颗粒较小,底物和产物容易扩散到颗粒内部,有利于酶促反应的进行。但可能会造成漆酶与底物的接触效率低和孔扩散受到限制。
碳基材料因其物理强度高和热稳定性优良等特点,被视为一种有前途的固定化载体。生物炭是通过限氧裂解生物质废弃物而来的一类富碳颗粒,被视为廉价的、且环境友好的炭质材料[15]。由于生物质的可再生性,大量低廉的生物质废弃物可为生物炭的规模化生产提供原料。LIU 等[16]针对生物炭的经济性进行了分析,指出水稻秸秆炭和甘蔗渣炭的价格分别为0.79美元·kg−1和0.93 美元·kg−1。据国际生物炭协会(International Biochar Initiative, IBI)调查,全球生物炭价格在0.08~13.48美元·kg−1[17]。碳纳米管(CNT)是同轴圆管状的石墨烯材料,具有超轻重量、高机械强度以及化学稳定性等独特的性质。它因能应用在高性能材料和电化学传感器等领域而备受关注[19]。只是CNT生产成本高,其价格从5美元·g−1到75美元·g−1不等[18],这限制了CNT的技术应用。生物炭和CNT均具有较强的机械强度、可观的比表面积、以及易于功能化等优点,可作为固定化漆酶的碳基载体[20-22]。ZHANG 等[21]利用CNT固定化漆酶去除刚果红,研究发现漆酶-碳纳米管可在前30 min内快速吸附和降解刚果红。在漆酶-碳纳米管体系下,75%刚果红被去除时所需时间仅仅是CNT体系下的50%。
雌二醇(E2)属于典型的环境激素、广泛分布在水体环境中。它能通过干扰或破坏生物体内原生激素的合成、转运、分解等过程,使生物体无法正常代谢。据报道,E2在0.1ng·L−1 的质量浓度水平内就能表现出生物学效应[23]。E2在食物链中的积累可能会导致对人和动物的生长问题、生殖健康问题、低出生率及高肿瘤率等不良影响[23-24]。因此,利用固定化漆酶高效处理水体中E2的研究具有重要实际应用意义。本研究旨在比较性研究生物炭和CNT固定化漆酶的性能及去除水体E2的效果及机制,本研究选用木炭(WB)、竹炭(BB)和CNT作为碳基载体,通过吸附法和包埋法固定游离漆酶,对比游离漆酶和固定化漆酶的活性、稳定性、和可重复使用性;研究WB、BB和CNT固定化漆酶去除E2的效果,以及循环利用率;同时,探究金属离子浓度效应对于吸附法和包埋法固定化漆酶去除水体E2的影响。
生物炭和碳纳米管固定化漆酶去除水体雌二醇
Removal of β-estradiol in wastewater using laccase immobilized by biochar and carbon nano tube
-
摘要: 漆酶是一类具有高效的催化氧化能力的含铜多酚的氧化酶,而固定化漆酶技术在有机废水处理领域受到了越来越多的关注。通过比较吸附法和包埋法利用木炭(WB)、竹炭(BB)和碳纳米管(CNT)固定游离漆酶去除水体雌二醇(E2)。在25 °C 、pH=5条件下,固定化漆酶经120 h 贮存仍保留80%的活性。经过5次循环研究,固载的漆酶仍保留了27%~58%的剩余活性。结合扫描电子显微镜和傅里叶变换红外光谱,证实了漆酶成功地负载在碳基材料上。仅在 8 h内,50 mg·L−1 E2通过吸附法制备的WB、BB、CNT固定化漆酶去除了42.92%、47.66%、43.92%,而包埋法制备的WB、BB、CNT固定化漆酶分别去除84.08%、87.20%、87.86%。结果表明,包埋法固定化漆酶对E2的去除效率更优,这是由于包埋固载在生物炭和CNT的漆酶更为稳定。此外,K+和Mn2+离子可能通过干扰漆酶的电子传递过程影响漆酶的活性,从而抑制E2的去除。本研究旨在为固定化漆酶在有机废水处理的实际应用提供指导。Abstract: Laccase is a class of Cu-containing polyphenol oxidase with high catalytic oxidation ability. The immobilized laccase technique has attracted an increasing attention in organic wastewater treatment. In this study, wood- and bamboo-derived biochars (WB and BB) or carbon nano tube (CNT) were used to immobilize laccase by the adsorption and embedding methods for the removal of β-estradiol (E2) in aqueous environment. At 25 °C and pH=5, 80% activity of the immobilized laccase on WB, BB, and CNT was preserved after 120 h storage. After 5 cycles, the residual activity of the immobilized laccase was 27%~58%. Combined with scanning electron microscopy and Fourier transform infrared spectroscopy, it was confirmed that laccase was successfully loaded on carbon-based materials. Within only 8 h, 42.92%, 47.66%, and 43.92% of 50 mg·L−1 E2 were removed by WB-, BB-, and CNT-immobilized laccases using the adsorption method, while 84.08%, 87.2%, and 87.86% of 50 mg·L−1 E2 were removed by WB-, BB-, and CNT-immobilized laccases using the embedding method. The results showed that the immobilized laccase using the embedding method had a better removal efficiency for E2 due to its stronger stability onto biochars and CNT. In addition, K+ and Mn2+ ions could interfere with electron transfer of laccases, then affect the activity of laccases, diminish E2 removal. The aim of this work can provide a guidance for designing immobilized laccase for organic wastewater treatment.
-
Key words:
- biochars /
- CNT /
- immobilized laccase /
- β-estradiol /
- metal ions
-
-
[1] LIU J, SUN K, ZHU R, et al. Biotransformation of bisphenol A in vivo and in vitro by laccase-producing Trametes hirsuta La-7: Kinetics, products, and mechanisms[J]. Environmental Pollution, 2023, 321: 121155-121166. doi: 10.1016/j.envpol.2023.121155 [2] GUPTA V, BALDA S, GUPTA N, et al. Functional substitution of domain 3 (T1 copper center) of a novel laccase with Cu ions[J]. International journal of biological macromolecules, 2019, 123: 1052-1061. doi: 10.1016/j.ijbiomac.2018.11.174 [3] DATTA S, VEENA R, SAMUEL M S, et al. Immobilization of laccases and applications for the detection and remediation of pollutants: a review[J]. Environmental Chemistry Letters, 2021, 19(1): 521-538. doi: 10.1007/s10311-020-01081-y [4] WANG Z, REN D, YU H, et al. Preparation optimization and stability comparison study of alkali-modified biochar immobilized laccase under multi-immobilization methods[J]. Biochemical Engineering Journal, 2022, 181: 108401-108412. doi: 10.1016/j.bej.2022.108401 [5] BRUGNARI T, PEREIRA M G, BUBNA G A, et al. A highly reusable MANAE-agarose-immobilized Pleurotus ostreatus laccase for degradation of bisphenol A[J]. Science of the Total Environment, 2018, 634: 1346-1351. doi: 10.1016/j.scitotenv.2018.04.051 [6] WANG Z, REN D, JIANG S, et al. The study of laccase immobilization optimization and stability improvement on CTAB-KOH modified biochar[J]. BMC Biotechnology, 2021, 21: 1-13. doi: 10.1186/s12896-020-00660-9 [7] PRIMOŽIČ M, KRAVANJA G, KNEZ Ž, et al. Immobilized laccase in the form of (magnetic) cross-linked enzyme aggregates for sustainable diclofenac (bio) degradation[J]. Journal of Cleaner Production, 2020, 275: 124121-124137. doi: 10.1016/j.jclepro.2020.124121 [8] REN D, WANG Z, JIANG S, et al. Recent environmental applications of and development prospects for immobilized laccase: A review[J]. Biotechnology and Genetic Engineering Reviews, 2020, 36(2): 81-131. doi: 10.1080/02648725.2020.1864187 [9] KOŁODZIEJCZAK-RADZIMSKA A, ZEMBRZUSKA J, SIWIŃSKA-CIESIELCZYK K, et al. Catalytic and physicochemical evaluation of a TiO2/ZnO/laccase biocatalytic system: Application in the decolorization of Azo and Anthraquinone dyes[J]. Materials, 2021, 14(20): 6030-6047. doi: 10.3390/ma14206030 [10] KOŁODZIEJCZAK-RADZIMSKA A, BUDNA A, CIESIELCZYK F, et al. Laccase from Trametes versicolor supported onto mesoporous Al2O3: Stability tests and evaluations of catalytic activity[J]. Process Biochemistry, 2020, 95: 71-80. doi: 10.1016/j.procbio.2020.05.008 [11] NEEDHIDASAN S, RAMALINGAM C. Stratagems employed for 2, 4-dichlorophenoxyacetic acid removal from polluted water sources[J]. Clean Technologies and Environmental Policy, 2017, 19: 1607-1620. doi: 10.1007/s10098-017-1371-8 [12] HAN Z, FAN X, YU S, et al. Metal-organic frameworks (MOFs): A novel platform for laccase immobilization and application[J]. Journal of Environmental Chemical Engineering, 2022: 108795-108821. [13] LI G, NANDGAONKAR A G, LU K, et al. Laccase immobilized on PAN/O-MMT composite nanofibers support for substrate bioremediation: a de novo adsorption and biocatalytic synergy[J]. RSC advances, 2016, 6(47): 41420-41427. doi: 10.1039/C6RA00220J [14] LE T T, MURUGESAN K, LEE C-S, et al. Degradation of synthetic pollutants in real wastewater using laccase encapsulated in core–shell magnetic copper alginate beads[J]. Bioresource Technology, 2016, 216: 203-210. doi: 10.1016/j.biortech.2016.05.077 [15] CHU G, ZHAO J, HUANG Y, et al. Phosphoric acid pretreatment enhances the specific surface areas of biochars by generation of micropores[J]. Environmental Pollution, 2018, 240: 1-9. doi: 10.1016/j.envpol.2018.04.003 [16] LIU Y, YANG X, ZHANG J, et al. Process Simulation of Preparing Biochar by Biomass Pyrolysis Via Aspen Plus and Its Economic Evaluation[J]. Waste and Biomass Valorization, 2022, 13(5): 2609-2622. doi: 10.1007/s12649-021-01671-z [17] CAMPBELL R M, ANDERSON N M, DAUGAARD D E, et al. Financial viability of biofuel and biochar production from forest biomass in the face of market price volatility and uncertainty[J]. Applied Energy, 2018, 230: 330-343. doi: 10.1016/j.apenergy.2018.08.085 [18] MRINAL B. Polymer nanocomposites: A comparison between carbon nanotubes, graphene, and clay as nanofillers[J]. Materials, 2016, 9(4): 262. doi: 10.3390/ma9040262 [19] VITHANAGE M, HERATH I, ALMAROAI Y A, et al. Effects of carbon nanotube and biochar on bioavailability of Pb, Cu and Sb in multi-metal contaminated soil[J]. Environmental geochemistry and health, 2017, 39: 1409-1420. doi: 10.1007/s10653-017-9941-6 [20] XU R, TANG R, ZHOU Q, et al. Enhancement of catalytic activity of immobilized laccase for diclofenac biodegradation by carbon nanotubes[J]. Chemical Engineering Journal, 2015, 262: 88-95. doi: 10.1016/j.cej.2014.09.072 [21] ZHANG W, YANG Q, LUO Q, et al. Laccase-carbon nanotube nanocomposites for enhancing dyes removal[J]. Journal of Cleaner Production, 2020, 242: 118425-118436. doi: 10.1016/j.jclepro.2019.118425 [22] ZHANG Y, PIAO M, HE L, et al. Immobilization of laccase on magnetically separable biochar for highly efficient removal of bisphenol A in water[J]. RSC advances, 2020, 10(8): 4795-4804. doi: 10.1039/C9RA08800H [23] COLEMAN H M, EGGINS B R, BYRNE J A, et al. Photocatalytic degradation of 17-β-oestradiol on immobilized TiO 2[J]. Applied Catalysis B Environmental, 2000, 24(1): 1-5. doi: 10.1016/S0926-3373(99)00091-0 [24] IMRAN, ALI, ZEID, et al. Supra molecular mechanism of the removal of 17-β-oestradiol endocrine disturbing pollutant from water on functionalized iron nano particles[J]. Journal of Molecular Liquids, 2017: 123-129. [25] XU F. Effects of redox potential and hydroxide inhibition on the pH activity profile of fungal laccases[J]. Journal of biological chemistry, 1997, 272(2): 924-928. doi: 10.1074/jbc.272.2.924 [26] HUAN W W, YANG Y X, WU B, et al. Degradation of 2, 4‐DCP by the immobilized laccase on the carrier of Fe3O4@ SiO2‐NH2[J]. Chinese Journal of Chemistry, 2012, 30(12): 2849-2860. doi: 10.1002/cjoc.201200718 [27] HAN Z, WANG H, ZHENG J, et al. Ultrafast synthesis of laccase-copper phosphate hybrid nanoflowers for efficient degradation of tetracycline antibiotics[J]. Environmental Research, 2023, 216: 114690-114701. doi: 10.1016/j.envres.2022.114690 [28] MAURYA S S, NADAR S S, RATHOD V K. Dual activity of laccase-lysine hybrid organic–inorganic nanoflowers for dye decolourization[J]. Environmental Technology & Innovation, 2020, 19: 100798-100811. [29] PANDEY D, DAVEREY A, DUTTA K, et al. Bioremoval of toxic malachite green from water through simultaneous decolorization and degradation using laccase immobilized biochar[J]. Chemosphere, 2022, 297: 134126-134134. doi: 10.1016/j.chemosphere.2022.134126 [30] HE L, YANG Y, KIM J, et al. Multi-layered enzyme coating on highly conductive magnetic biochar nanoparticles for bisphenol A sensing in water[J]. Chemical Engineering Journal, 2020, 384: 123276-123286. doi: 10.1016/j.cej.2019.123276 [31] LIU L, LI Y, FAN S. Preparation of KOH and H3PO4 modified biochar and its application in methylene blue removal from aqueous solution[J]. Processes, 2019, 7(12): 891-911. doi: 10.3390/pr7120891 [32] LEPORE M, PORTACCIO M. Optical detection of different phenolic compounds by means of a novel biosensor based on sol–gel immobilized laccase[J]. Biotechnology and Applied Biochemistry, 2017, 64(6): 782-792. doi: 10.1002/bab.1551 [33] BOKOV D O, MAHMOUD M Z, WIDJAJA G, et al. Transfer hydrogenation of nitroarenes using cellulose filter paper-supported Pd/C by filtration as well as sealed methods[J]. RSC Advances, 2022, 12(18): 10933-10949. doi: 10.1039/D2RA01151D [34] ZHU Y, YI B, YUAN Q, et al. Removal of methylene blue from aqueous solution by cattle manure-derived low temperature biochar[J]. RSC advances, 2018, 8(36): 19917-19929. doi: 10.1039/C8RA03018A [35] ZHENG Z, LIU W, ZHOU Q, et al. Effects of co-modified biochar immobilized laccase on remediation and bacterial community of PAHs-contaminated soil[J]. Journal of Hazardous Materials, 2023, 443: 130372-130383. doi: 10.1016/j.jhazmat.2022.130372 [36] PATEL S K, GUPTA R K, KIM S Y, et al. Rhus vernicifera Laccase Immobilization on Magnetic Nanoparticles to Improve Stability and Its Potential Application in Bisphenol A Degradation[J]. Indian Journal of Microbiology, 2020, 61(1): 45-54. [37] PATEL S K, ANWAR M Z, KUMAR A, et al. Fe2O3 yolk-shell particle-based laccase biosensor for efficient detection of 2, 6-dimethoxyphenol[J]. Biochemical Engineering Journal, 2018, 132: 1-8. doi: 10.1016/j.bej.2017.12.013 [38] WANG Z, REN D, WU J, et al. Study on adsorption-degradation of 2, 4-dichlorophenol by modified biochar immobilized laccase[J]. International Journal of Environmental Science and Technology, 2022, 19: 1393-1406. doi: 10.1007/s13762-021-03151-2 [39] YAOHUA G, PING X, FENG J, et al. Co-immobilization of laccase and ABTS onto novel dual-functionalized cellulose beads for highly improved biodegradation of indole[J]. Journal of hazardous materials, 2018, 365: 118-124. [40] IMAM A, SUMAN S K, SINGH R, et al. Application of laccase immobilized rice straw biochar for anthracene degradation[J]. Environmental Pollution, 2021, 268: 115827-115841. doi: 10.1016/j.envpol.2020.115827 [41] REN X, CHEN C, NAGATSU M, et al. Carbon nanotubes as adsorbents in environmental pollution management: A review[J]. Chemical Engineering Journal, 2011, 170(2-3): 395-410. doi: 10.1016/j.cej.2010.08.045 [42] 任海燕, 纪树兰, 崔成武, 等. 17α-乙炔基雌二醇的降解及其共基质代谢特性[J]. 环境科学研究, 2006, 19(4): 61-64. doi: 10.3321/j.issn:1001-6929.2006.04.012 [43] DARONCH N A, KELBERT M, PEREIRA C S, et al. Elucidating the choice for a precise matrix for laccase immobilization: A review[J]. Chemical Engineering Journal, 2020, 397: 125506-125521. doi: 10.1016/j.cej.2020.125506 [44] ASGHER M, NOREEN S, BILAL M. Enhancement of catalytic, reusability, and long-term stability features of Trametes versicolor IBL-04 laccase immobilized on different polymers[J]. International journal of biological macromolecules, 2017, 95: 54-62. doi: 10.1016/j.ijbiomac.2016.11.012 [45] SHAO B, LIU Z, ZENG G, et al. Immobilization of laccase on hollow mesoporous carbon nanospheres: noteworthy immobilization, excellent stability and efficacious for antibiotic contaminants removal[J]. Journal of hazardous materials, 2019, 362: 318-326. doi: 10.1016/j.jhazmat.2018.08.069 [46] LONAPPAN L, LIU Y, ROUISSI T, et al. Covalent immobilization of laccase on citric acid functionalized micro-biochars derived from different feedstock and removal of diclofenac[J]. Chemical Engineering Journal, 2018, 351: 985-994. doi: 10.1016/j.cej.2018.06.157 [47] LI G, NANDGAONKAR A G, WANG Q, et al. Laccase-immobilized bacterial cellulose/TiO2 functionalized composite membranes: Evaluation for photo-and bio-catalytic dye degradation[J]. Journal of membrane science, 2017, 525: 89-98. doi: 10.1016/j.memsci.2016.10.033 [48] A CHAUDHARI S, R KAR J, S SINGHAL R. Immobilization of proteins in alginate: Functional properties and applications[J]. Current Organic Chemistry, 2015, 19(17): 1732-1754. doi: 10.2174/1385272819666150429232110 [49] OLAJUYIGBE F M, FATOKUN C O. Biochemical characterization of an extremely stable pH-versatile laccase from Sporothrix carnis CPF-05[J]. International Journal of Biological Macromolecules, 2017, 94: 535-543. doi: 10.1016/j.ijbiomac.2016.10.037 [50] JAISWAL N, PANDEY V P, DWIVEDI U N. Purification of a thermostable alkaline laccase from papaya (Carica papaya) using affinity chromatography[J]. International Journal of Biological Macromolecules, 2015, 72: 326-332. doi: 10.1016/j.ijbiomac.2014.08.032 [51] 冯义平, 沈梦瑶, 张伊健, 等. 典型金属离子对漆酶催化降解溴代阻燃剂四溴双酚A的影响研究[J]. 环境科学学报, 2020, 40(6): 2082-2089. [52] YANG B, TANG K, WEI S, et al. Preparation of functionalized mesoporous silica as a novel carrier and immobilization of laccase[J]. Applied Biochemistry and Biotechnology, 2021, 193: 2547-2566. doi: 10.1007/s12010-021-03556-2 [53] YAMAK O, KALKAN N A, AKSOY S, et al. Semi-interpenetrating polymer networks (semi-IPNs) for entrapment of laccase and their use in Acid Orange 52 decolorization[J]. Process Biochemistry, 2009, 44(4): 440-445. doi: 10.1016/j.procbio.2008.12.008 [54] LU J, SHI Y, JI Y, et al. Transformation of triclosan by laccase catalyzed oxidation: The influence of humic acid-metal binding process[J]. Environmental Pollution, 2017, 220: 1418-1423. doi: 10.1016/j.envpol.2016.10.092 [55] WAGNER M, NICELL J A. Impact of dissolved wastewater constituents on peroxidase‐catalyzed treatment of phenol[J]. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 2002, 77(4): 419-428. [56] BRZYSKA M, CIESZCZYK M, ŁOBARZEWSKI J. The effect of the simultaneous operation of two metal ions on soluble and immobilized peroxidase[J]. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental and Clean Technology, 1997, 68(1): 101-109.