-
上海市濒江临海,一直以黄浦江为主要供水来源,然而随着城市供水范围扩大,供水需求增加,并且人们对水质的要求越来越高,从长江口取水成为解决上海水源紧缺的关键[1]. 由于长江口特殊的地理位置及“三级分汊,四口入海”的形态格局,长江口时常有盐水入侵的现象发生[2],在枯季大潮期间尤为严重[3]. 特别是近年来,长江流域重大水利工程的实施以及长江口北槽深水航道治理工程的完成,导致长江上游来水的季节分布及长江口北槽河势发生变化,对长江口盐度的时空分布及盐水入侵格局产生潜在作用,盐水入侵成为长江口水源地供水安全的制约因素[4].
盐水入侵影响污染物的在水沙界面的运移,目前鲜有针对由于盐水入侵引起的盐度因子变化对水质常规因素潜在影响的研究. 为保障用水安全以及精准预测水源地水质变化,开展盐度波动对污染物在水沙界面运移影响的室内模拟实验非常必要. 本文研究了总磷及氨氮在水沙界面运移的影响,可为精准预测水源地水质变化提供理论基础.
盐度波动对水体中污染物在水沙界面迁移的影响
Impact of salinity fluctuation on partitioning behavior of pollutants at water-sediment interface
-
摘要: 由于长江口河口在径流和潮流双重作用下,时常有盐水入侵现象的发生,且有长期存在的枯季“咸潮上溯北支倒灌进入南支”现象,因此盐度因子是影响水源地水质的重要因子之一. 为保障用水安全以及精准预测水源地水质变化,本研究开展盐度波动对氨氮和总磷在水沙界面运移影响研究. 结果表明,对于氨氮而言,水流扰动强度和盐度两者的影响效果可以同时提升其在泥沙颗粒相的吸附量,其中盐度的影响效果优于水流扰动强度;当盐度过高时,水沙分配系数随扰动强度增长呈抑制的趋势更明显. 对于总磷而言,水流扰动强度和盐度两者的影响效果难以同时体现并解析,即当盐度为主要影响因素时,水流扰动强度对吸附量的影响基本可以忽略,反之亦然.Abstract: Due to the dual actions of runoff and tidal currents, seawater intrusion often occurs in the estuary of the Yangtze River, and there is a long-term phenomenon of “saltwater flows upstream from the North Branch to the South Branch” particularly in the dry season. Therefore, salinity is an important factor affecting the water quality of water source area. In order to ensure the safety of source water and accurately predict the alteration in its water quality, the influence of salinity and waterflow disturbance on water-sediment partitioning behavior of ammonia nitrogen (NH3-N) and total phosphorus (TP) was herein studied. Our results indicate that, for NH3-N, both turbulence intensity and salinity can increase the sorption on sediment, and the impact of salinity outweighed that of flow turbulence; when the salinity is too high, the water-sediment distribution coefficient shows an obviously restraining trend with the increase of disturbance intensity. For TP, the individual effects of both factors could not be clearly identified and delineated simultaneously. When salinity is the major factor, the effect of flow disturbance intensity on sorption of analytes on sediments can be ignored, and vice versa.
-
-
[1] 天宇, 郭珺. 上海: 加强集中式饮用水水源地环境保护[J]. 中国环境监察, 2018(11): 24-27. [2] 朱宜平. 长江口青草沙水域外海正面盐水入侵特点分析[J]. 华东师范大学学报(自然科学版), 2021(2): 21-29. [3] WANG H, YAN H Y, ZHOU F N, et al. Dynamics of nutrient export from the Yangtze River to the East China Sea[J]. Estuarine, Coastal and Shelf Science, 2019, 229: 106415. doi: 10.1016/j.ecss.2019.106415 [4] WANG H, YAN H Y, ZHOU F N, et al. Changes in nutrient transport from the Yangtze River to the East China Sea linked to the Three-Gorges Dam and water transfer project[J]. Environmental Pollution, 2020, 256: 113376. doi: 10.1016/j.envpol.2019.113376 [5] 王宝强, 李萍萍, 沈清基, 等. 上海城市化对局地气候变化的胁迫效应及主要影响因素研究[J]. 城市发展研究, 2019, 26(9): 107-115. [6] 史军, 崔林丽, 杨涵洧, 等. 上海气候空间格局和时间变化研究[J]. 地球信息科学学报, 2015, 17(11): 1348-1354. [7] 郑庆锋, 史军, 谈建国, 等. 2007—2016年上海颗粒物浓度特征与气候背景异同分析[J]. 环境科学, 2020, 41(1): 14-22. [8] 陈庆强, 孟翊, 周菊珍, 等. 长江口细颗粒泥沙絮凝作用及其制约因素研究[J]. 海洋工程, 2005, 23(1): 74-82. [9] 姜鲁青. 感潮河段沉积物—水界面营养盐交换行为研究: 以青岛李村河为例[D]. 青岛: 中国海洋大学, 2011.