两种铁改性水热炭对土壤中铬固化效能及其形态影响

汲镔桀, 王洪波, 李梅, 李晓辰, 高心雨, 白毛毛, 徐冠虎. 两种铁改性水热炭对土壤中铬固化效能及其形态影响[J]. 环境化学, 2024, 43(3): 1047-1058. doi: 10.7524/j.issn.0254-6108.2022081504
引用本文: 汲镔桀, 王洪波, 李梅, 李晓辰, 高心雨, 白毛毛, 徐冠虎. 两种铁改性水热炭对土壤中铬固化效能及其形态影响[J]. 环境化学, 2024, 43(3): 1047-1058. doi: 10.7524/j.issn.0254-6108.2022081504
JI Binjie, WANG Hongbo, LI Mei, LI Xiaochen, GAO Xinyu, BAI Maomao, XU Guanhu. Effect of two Fe-modified hydrochar carbons on the curing efficiency and morphology of chromium in soil[J]. Environmental Chemistry, 2024, 43(3): 1047-1058. doi: 10.7524/j.issn.0254-6108.2022081504
Citation: JI Binjie, WANG Hongbo, LI Mei, LI Xiaochen, GAO Xinyu, BAI Maomao, XU Guanhu. Effect of two Fe-modified hydrochar carbons on the curing efficiency and morphology of chromium in soil[J]. Environmental Chemistry, 2024, 43(3): 1047-1058. doi: 10.7524/j.issn.0254-6108.2022081504

两种铁改性水热炭对土壤中铬固化效能及其形态影响

    通讯作者: E-mail:wanghongbo@sdjzu.edu.cn

Effect of two Fe-modified hydrochar carbons on the curing efficiency and morphology of chromium in soil

    Corresponding author: WANG Hongbo, wanghongbo@sdjzu.edu.cn
  • 摘要: 本实验采用机械球磨法分别制备零价铁(ZVI)、黄铁矿负载水热炭,通过土壤提取实验和土柱淋溶实验,对比添加不同材料后土壤中铬(Cr)含量的变化,分析淋溶液中Cr累积释放规律及Cr在土柱中的纵向迁移行为. 实验结果表明,与其他材料相比,施加ZVI改性水热炭(ZBC)和黄铁矿改性水热炭(HBC)对土壤中Cr均有优秀的固化效果. 在低投加量(5 g·kg−1)下ZBC、HBC使土壤浸出液中总铬浓度分别降低35.8%、39.6%,而土壤中有效铁含量涨幅均小于0.1%,解决了使用ZVI和黄铁矿引起的土壤铁含量过度增加的问题. 在土柱淋溶实验中,施加ZBC、HBC后淋溶液总铬含量较CK(未加改性水热炭的对照组)分别下降27.3%、39.3%;土柱下部未污染土壤总铬含量分别降低31.4%、56.3%,Cr(Ⅵ)浓度分别降低51.7%、44.4%. 结合表征可得,土壤中的Cr可被ZBC、HBC吸附,水热炭负载的Fe可将Cr(Ⅵ)还原成Cr(Ⅲ)并附着在土壤中,HBC中的FeS2有效参与了对Cr(Ⅵ)的还原. 总的来看,HBC对土壤中Cr的固化效果更好,可为水热炭修复重金属污染土壤的应用提供思路与探索.
  • 制定水质标准的科学依据是水质基准[1],但目前的研究中,很少有针对我国水域的水质基准研究报道[2],我国现行水质标准的确定主要是依据国外的水质基准数值[3-4],但不同的生物区系与水质状况各不相同,这会导致水质基准产生明显差异[5-6]. 因此,基于我国水环境管理的迫切需求,应依据我国国情开展水质基准研究[7].

    荧蒽(fluoranthene,FLU),是多环芳烃中4环芳烃的代表性化合物[8],也是水体中多环芳烃污染物的一个主要成分[9]. 然而,目前我国尚缺乏有关本土水生生物荧蒽的生态毒性数据,因此通过实验开展荧蒽的水生生物基准阈值研究工作,获得有关数据是十分必要的,同时对荧蒽在我国的水生生物基准的建立以及水环境相关工作等具有一定的现实意义与科学意义. 本研究进行了急性与慢性毒理学试验,参考美国的水质基准“指南”要求(“三门八科”最低毒性数据),以及对我国淡水生物区系特征和影响因素等具体分析,最终选取了符合物种筛选规定的9种具有典型代表性的中国本土水生生物进行试验. 根据实验结果得出荧蒽本土水生生物基准阈值,同时,本文分析比较了本土物种与美国物种毒性敏感度是否一致,其中美国物种毒性敏感度基于美国水生生物毒性数据,分析结果可表明在进行我国本土水生生物基准研究时,是否可以直接采用非本土水生生物毒性数据.

    一般来说,复杂水生态系统的功能、基本结构特征可通过鱼类、底栖动物、浮游生物和植物所表征[10-11]. 在推导我国水质基准时,试验生物的确定可依据美国水质基准“指南”中的规定,即“三门八科”最低毒性数据要求,同时参考《中国脊椎动物大全》[12]和《中国生物多样性国情研究报告》[13]等文献资料,试验生物必须包括鲤科鱼类;另外鉴于我国鲤科种类丰富、数量庞大[14],因此本文选用两种鲤科鱼. 如上所述,物种选择应具体分析中国淡水生物群的特点,同时根据源自欧盟和美国水质基准的物种选择原则,本次荧蒽基准研究初步选择了9个本地水生生物物种作为受试物种,它们分别是锦鲤、麦穗鱼、泥鳅、泽蛙蝌蚪,大型溞、青虾、摇蚊幼虫,霍甫水丝蚓,水螅属. 其中锦鲤和麦穗鱼为脊索动物门鲤科,其余依次为鳅科、蛙科、节肢动物门溞科、虾科、摇蚊科、环节动物门颤蚓科和腔肠动物门水螅虫科,共“四门八科”. 另外对照毒性数据筛选原则[15],本研究在搜集荧蒽的水生植物毒性数据数据的过程中,发现所得结果很少能够满足上述筛选原则.

    在“朝来春及大森林水产市场”购入试验所需的9种本土水生动物(既包括淡水,也包括海水),正式试验前均在实验室驯养至少7 d;在中国环境科学研究院环境基准与风险评估国家重点实验室可获得试验所需的大型溞(Daphnia magna),其龄期在24 h之内[15]. 水生生物培养条件为:pH 8.0±0.2,DO (8.3±0.3) mg·L−1,温度(22±2)℃,试验类型采用换水式,每24 h进行一次换水,急性试验不喂食,慢性试验按照0.1%生物重量一天喂食2次;溞类光照周期为12 h:12 h.

    在筛选受试物种时,不同种类的受试生物对其龄期有着不同的要求,其中对于水溞或其他水溞类动物要求为24 h内,蚊类,要求为第二代、三代幼虫,对于鱼类或其他物种,要求为至少先于性腺发育前60 d的幼龄阶段生物[15].

    在“美国Sigma Aldrich化学品公司”购入实验所用荧蒽,其化学式为C16H10,纯度≥98%(HPLC)为色谱纯;其他试剂均为分析纯. 为了确保浓度配置的准确性,在第一次实验之前,通过中国计量学院校准了用于制备蒽溶液的移液枪,对每个浓度组进行了气相色谱测试. 为了避免试验过程中的任何干扰,实验者严格遵循操作规范,在气相色谱分析之前,所有未使用的玻璃器皿都用高价的酸溶液进行冲洗. 在3组空白实验中加入内标荧蒽-d10,96 h后测定其回收率,结果显示,荧蒽-d10的回收率为74.3%—89.6%. US EPA[15]公布的回收率为70%—130%,试验结果满足其要求,证明了本实验结果的可靠性和准确性.

    根据美国材料与试验协会[16]标准方法[17-18]进行急性实验,设空白对照组、助溶剂(二甲基亚砜, DMSO)对照组、浓度组,每组3个重复. 急性实验的时间设置为:溞类48 h,其余水生生物96 h. 具体实验信息如表1所示.

    表 1  FLU 9种本土水生生物急性毒性实验信息
    Table 1.  Acute toxicity tests information of FLU to nine resident aquatic organisms
    分类Classification生物科Families物种Species生长阶段Growth phase体重/gWeight体长/cmLength实验时间/hTime浓度设置/ (mg·L−1)Concentration
    脊索动物门鲤科锦鲤(Rhodens sinensis幼龄期(<30 d)0.25 ± 0.053.0 ± 0.5960.00, 2.40, 3.10, 4.00, 5.20, 6.80, 8.80, 11.40
    麦穗(Pseudorasbora parva)幼龄期(<30 d)0.25 ± 0.022.5 ± 0.2960.00, 2.40, 3.10, 4.00, 5.20, 6.80, 8.80, 11.40
    鳅科泥鳅(Misgurnus anguillicaudatus)幼龄期(<30 d)0.70 ± 0.056.0 ± 0.5960.00, 0.96, 1.16, 1.39, 1.67, 2.00, 2.40, 2.88
    蛙科泽蛙蝌蚪(Rana limnocharis幼龄期(<10 d)0.20 ± 0.021.6 ± 0.2960.00, 3.50, 4.60, 5.50, 7.80, 10.10, 13.20, 17.10
    节肢动物门溞科大型溞(Daphnia magna<24 h480.00, 2.70, 3.60, 4.70, 6.20, 8.00, 10.40, 13.50
    虾科青虾(Macrobrachium nipponense幼龄期(<10 d)0.25 ± 0.053.0 ± 0.2960.00, 2.40, 3.10, 4.00, 5.20, 6.80, 8.80, 11.40
    摇蚊科摇蚊幼虫(Chironomus plumosus第3代(幼虫)0.03 ± 0.011.0 ± 0.2960.00, 2.70, 3.60, 4.70, 6.20, 8.00, 10.40, 13.50
    环节动物门颤蚓科霍甫水丝蚓(Limnodrilus hoffmeisteri幼龄期(<10 d)0.05 ± 0.011.5 ± 0.2960.00, 3.40, 4.40, 5.70, 7.40, 9.60, 12.50, 16.20
    腔肠动物门水螅虫科水螅属(Hydra sp.幼龄期(<10 d)0.03 ± 0.011.0 ± 0.2960.00, 1.39, 1.67, 2.00, 2.40, 2.88, 3.74, 4.87
     | Show Table
    DownLoad: CSV

    在急性毒性实验结束后,参考荧蒽对麦穗、泥鳅和大型溞的急性实验结果开展慢性实验,设空白对照组、助溶剂(二甲基亚砜, DMSO)对照组、浓度组,每组3个重复. 慢性实验的组次中,其最高浓度不得高于急性毒性LC50值. 受试液和喂食的频率为1 d,采用静态更新试液法. 慢性毒理学实验时间设置为:溞类不得少于21 d,麦穗、泥鳅不得少于8 d. 具体实验浓度设置如下:麦穗为0.00、0.42、0.55、0.72、0.94、1.22、1.59 mg·L−1 FLU;泥鳅为0.00、0.35、0.46、0.60、0.78、1.01、1.32 mg·L−1 FLU;大型溞为0.00、0.42、0.55、0.72、0.94、1.22、1.59 mg·L−1 FLU. 试验中需要记录的内容如下:大型溞的产卵数量、时间(第一窝及总数)、麦穗和泥鳅的生长指标(体重、体长等),以上数据每天记录一次.

    数据选自ELSEVIER数据库(http://www.sciencedirect.com)、US EPA ECOTOX 毒性数据库(http://cfpub.epa.gov/ecotox/)、和CNKI数据库(http://www.cnki.net)等. 在进行筛选数据时应满足以下要求:①数据无法使用的情况有:使用受权限、信息保密、测试信息不完全、由于其他因素而无法传播、试验缺少对照组、试验生物受污染、试验设计不科学等;②可以使用具有不稳定性质(易挥发、易水解、易降解)的物质进行试验,但一般仅可采用流水式试验的结果;③若慢性NOEC和LOEC值均出现在测试终点中,NOEC值的选取具有优先权[19]. 另外,对于水生植物,前人研究发现FLU对淡水藻[20]Scenedesmus subspicatus)的96-h EC50为7.447 mg·L−1,本文选用此数据.

    另外,实验数据的正态分布检验方法有如下两种:K-S检验、T检验. 本文选用前者检验表2中数据是否符合正态分布,检验结果表明美国水生生物毒性数据对FLU毒性敏感的总体分布情况是大致吻合的,符合正态分布(P =0.08>0.05).

    表 2  FLU美国水生生物急性毒性数据
    Table 2.  Acute toxicity data of FLU to American aquatic organisms
    排序 Rank物种 Species(LC50/EC50)/(mg·L−1t/h
    1美洲海螯虾0.696
    2浅绛单孔蚓0.796
    3俄勒冈虾0.896
    4蓝鳃太阳鱼20.996
    5斑点叉尾鮰36.096
    6端足虫44.096
    7非洲爪蟾52.096
    8隐居蜾嬴蜚54.096
    9沙蟹74.096
    10虹鳟91.096
    11呆头鲦鱼118.396
    12宽纹北箭蜓139.996
    13伸展摇蚊250.096
     | Show Table
    DownLoad: CSV

    EC/LCx可通过概率单位直线回归法和95%置信区间来计算,按照测试标准所规定的浓度规定,若实测浓度与名义浓度的差值在20%以内,即可采用名义浓度,x值分别取50(急性毒性实验)和10(慢性毒性实验),通过在试验开始的前后,对溶液中的FLU浓度进行检测,对比检测结果后计算实测和名义浓度的比率,结果为90.03%—99.15%,满足要求[21],因此本文在计算EC/LCx时,浓度采用名义浓度.

    表3显示了9种本土水生生物的急性毒性试验结果,其中空白对照组和助溶剂对照组在试验期间中没有出现死亡现象. 窗体顶端结果表明泥鳅对FLU暴露最为敏感,其96-h LC50为1.887 mg·L−1, 其次是水螅属、青虾、麦穗鱼、大型溞、锦鲤、霍甫水丝蚓和摇蚊幼虫,对FLU最不敏感的是泽蛙蝌蚪,其96-h LC50为8.695 mg·L−1.

    表 3  FLU本土水生生物急性试验结果
    Table 3.  Results of acute toxicity tests of FLU to resident aquatic organisms
    物种 Species暴露时间/h Exposure time公式 FormulaR2PLC50/(mg·L−1
    锦鲤96y = 3.4458x + 2.25890.9268<0.016.251 (5.748—6.443)
    泥鳅96y = 1.4976x + 4.58750.9436<0.011.887 (1.594—2.258)
    大型溞48y = 3.8675x –2.01470.9850<0.015.487 (5.012—5.897)
    青虾96y = 2.5612x + 3.77440.9089<0.013.011 (2.412—3.647)
    霍甫水丝蚓96y = 1.5825x + 3.73470.9065<0.016.313 (5.688—6.578)
    麦穗96y = 1.6443x + 3.82620.854<0.015.177 (4.231—5.593)
    摇蚊幼虫96y = 2.3053x + 2.96640.9243<0.017.628 (7.390—8.159)
    水螅属96y = 1.3879x + 1.99760.9017<0.012.032 (1.785—3.074)
    泽蛙蝌蚪96y = 1.9267x + 3.19110.9044<0.018.695(8.393—90.145)
     | Show Table
    DownLoad: CSV

    在慢性毒性实验中各试验浓度组均未出现死亡现象. 对于慢性毒性数据(表4),Barata等[22]研究表明大型溞的存活率21-d NOEC为0.937 mg·L−1,这一结果与本试验中大型溞总繁殖数量的21-d EC10为0.881 mg·L−1十分接近. 根据表4,对于大型溞,对FLU暴露的产卵总数量试验终点相比于其存活率,表现出更为敏感的趋势. 在慢性毒性试验中,3种水生生物中对FLU暴露的敏感性最低的为大型溞,最高的为泥鳅. 结果表明泥鳅在急性与慢性实验中,对FLU暴露都表现出最高的敏感性.

    表 4  FLU本土水生生物慢性试验结果
    Table 4.  Results of chronic toxicity tests of FLU to resident aquatic organisms.
    物种 Species暴露时间/d Exposure time终点 Endpoint公式 FormulaR2PEC10/( mg·L−1
    锦鲤28生长(t/d)y = 4.5521x +2.80040.9930<0.010.798
    泥鳅28生长(t/d)y = 5.3131x –1.9890.9743<0.010.269
    大型溞28生长(t/d)y = 4.7745x+ 1.6670.8971<0.051.187
    第一窝时间 (t/d)y = 2.8499x+ 1.5250.9572<0.011.243
    第一窝数量 (ny = 3.8261x+ 0.6570.9315<0.010.987
    总数量 (ny= 3.7966x+ 1.08010.9203<0.010.881
    总窝数 (ny= 3.7450x+ 1.46230.9364<0.011.471
     | Show Table
    DownLoad: CSV

    Davies等提出“灵活使用毒性数据”的设想[23],即在某一地区进行生态风险评估时,可使用其他地区的生物毒性数据. 但由于不同地区的水中溶解氧浓度、水温差别较大,且不同种类生物对于相同有害物质的敏感程度也各不相同[24],因此这一设想在提出后受到多方面质疑. 本研究将本地(表2)和美国(表3)的生物毒性数据进行SSD曲线拟合,并进行比较讨论,探讨 "灵活使用毒性数据 "这一概念的可行性. 受限于相对缺少慢性数据,本研究仅采用急性毒性数据. 本研究以本土、美国、本土+美国的FLU毒性数据为基础,共得出3条SSD拟合曲线(图1). 在对FLU暴露的敏感性方面,图中本土数据(黑)、总体数据(蓝)与美国数据(红)从左到右存在显著的位移分布,意味着美国生物比本土生物表现出更加敏感的趋势. 经过计算,总体数据、本土数据及非本土数据三条曲线的HC5值分别是1.527、1.869、2.142 mg·L−1.

    图 1  FLU本土、美国及全部生物毒性数据SSD曲线拟合比较
    Figure 1.  Species sensitivity distribution of native, American and all species toxicity data for FLU

    Two-sample Kolmogorov-Smirnov(K-S test)检验常用于数学统计中,可用于对两样本总体分布差异性的检验[24]. 利用此方法,研究美国毒性数据和本土毒性数据是否存在较为明显的不同具有十分重要的学术和科学意义:若二者差异明显,则在本土进行相关的基准阈值研究时,应选取本土水生生物;若二者较为一致,那么证明美国水生生物毒性数据可用于本土基准阈值的推导过程,从而降低受试生物的消耗以及节省资源的投入. K-S结果如下:(ks = 1.342, n1 = 9, n2 = 13, P = 0.01). P= 0.0114<0.05,按a=0.05水准,结果表明两组数据在FLU毒性敏感的总体分布上并为呈现较高的一致性,两组数据之间存在的差异十分显著(图1). 另外,由于浮游类不被包含在非本土生物毒性数据中,因此在本土生物数据中浮游类大型溞的毒性数据暂时去除之后,对数据再次进行K-S检验,两者之间仍然存在较为显著的差异(ks= 0.830, n1 = 8, n2= 13, P = 0.0183). 因此我们可以初步判断本土对FLU的敏感性与非本土生物有着较大差别,需要进一步开展针对本土化的相关研究工作(图1).

    以实测数据为基础,在计算FLU水生生物基准阈值时,本文采用了USEPA“指南”推荐的SSR方法[15],9种本土物种的SMAV值和GMAV值及其排序如表5所示,CMC(FLU的急性基准阈值)=FAV/评价因子,其中FAV取1.141 mg·L−1,评价因子通常取值为2,最后计算出我国FLU的急性基准阈值结果为0.570 mg·L-1[25-26]. 鉴于我国FLU慢性毒性数据较少,FCV值可通过“指南”所推荐的方法计算,即FCV=FAV/FACR,FACR的值是3种水生生物SACR的几何平均值(如表所示,3种水生生物的SAVR值分别为:大型溞6.23、麦穗6.49、泥鳅7.01),最终计算得出FACR值为6.57,FCV值为0.174 mg·L−1,已知淡水藻的FLU植物毒性值为7.447 mg·L−1,远远大于计算所得的FCV值,因此对植物的保护作用得到验证[27]. CCC的确定按“指南”所指出的方法,即由FPV、FCV和FRV三者中最小的值所确定[28]. 相比于动物,植物的敏感性要低得多,且我国缺少相应的BCF和MPC值,因而CCC可直接通过FCV值计算,在很多情况下FRV则不被考虑,最后计算出我国FLU的慢性基准阈值CCC为0.174 mg·L−1.

    表 5  FLU水生生物种平均值及急慢性比
    Table 5.  Ranked GMAVs with SACRs.
    排序 Rank物种 SpeciesSMAVs/(mg·L−1GMAVs/(mg·L−1SACRs来源 Source
    1泥鳅1.8871.8877.01本研究
    2水螅属2.0322.032本研究
    3青虾3.0113.011本研究
    4麦穗5.1775.1776.49本研究
    5大型溞5.4875.4876.23本研究
    6锦鲤6.2516.251本研究
    7霍甫水丝蚓6.3136.313本研究
    8摇蚊幼虫7.6287.628本研究
    9泽蛙蝌蚪8.6958.695本研究
    植物淡水藻7.4477.447[20]
     | Show Table
    DownLoad: CSV

    另外,本文也对比了FLU对美国水生生物的毒性. 例如,本研究中本土代表性鱼类敏感性相对较高,泥鳅、麦穗鱼和锦鲤的96-h LC50分别为1.887、5.177、6.251 mg·L−1 FLU,而作为非本土鱼类的蓝鳃太阳鱼[29]、斑点叉尾鮰[30]、虹鳟[31]和呆头鲦鱼[32]的96-h LC50分别为20.90、36.00、91.00、118.3 mg·L−1 FLU,数值不在一个数量级,本土鱼类更加敏感;已经报道的非本土两栖类动物非洲爪蟾[33]的96-h LC50为52.00 mg·L−1FLU,远远高于本土两栖类泽蛙蝌蚪的实测值(8.695 mg·L−1 FLU);本土底栖动物节肢动物门的摇蚊幼虫96-h LC50为7.628 mg·L−1 FLU,而已报道的非本土昆虫类生物是端足虫[30]和伸展摇蚊[34],96-h LC50分别为44.00 mg·L−1和250.00 mg·L−1 FLU,差异较为明显,本土节肢动物门相对敏感. 综上所述,可以确定本土水生生物中鱼类、两栖类对FLU和底栖节肢动物门比非本土同类生物更加敏感.

    本土底栖动物中环节动物门受试生物为霍甫水丝蚓,96-h LC50为6.313 mg·L−1 FLU,非本土浅绛单孔蚓[30]96-h LC50为0.700 mg·L−1 FLU,此外还有底栖甲壳类生物差异较大,本土青虾96-h LC50为3.011 mg·L−1FLU,而非本土底栖甲壳类动物美洲海螯虾[35]和俄勒冈虾[35]96-h LC50相对较低,为0.600 mg·L−1及0.800 mg·L−1 FLU. 因此可以确定非本土水生生物中底栖环节动物及甲壳类动物对FLU比本土生物更加敏感.

    另外,借助荷兰RIVM公布的ETX2.0软件及逻辑斯蒂SSD曲线求出HC5值,分别是1.657 mg·L−1和1.869 mg·L−1. 因此当评价因子取值为2时,CMC在这两种SSD曲线下,计算的结果分别为0.829 mg·L−1和0.935 mg·L−1,上文采用US EPA“指南”中推荐的SSR法计算的CMC值为0.570 mg·L−1,由此可见,计算结果都同在一个数量级.

    (1) 基于US EPA“指南”推荐的方法,荧蒽本土水生生物急性基准阈值(CMC)为0.570 mg·L−1,慢性基准阈值(CCC)为0.174 mg·L−1;另外,通过荷兰RIVM公布的ETX2.0软件及欧盟推荐的SSD方法所得的基准阈值与本文所得结果(SSR方法得出)在数量级上一致,本文结果得到验证.

    (2) 在敏感性方面,通过比较分析本土与美国物种的一致性较低,说明在进行我国荧蒽水生生物基准阈值的推导时,可利用美国水生生物毒性数据的概率很小.

    致谢:感谢中国环境科学研究院刘征涛研究员在文章修改中给予的帮助.

  • 图 1  BC、SBC施加后土壤中Cr的赋存形态

    Figure 1.  Speciation of chromium in soil after application of BC or SBC

    图 2  ZVI改性水热炭(a)、黄铁矿改性水热炭(b)对土壤中Cr固化效能的影响

    Figure 2.  Effect of ZVI modified hydrochar (a) or pyrite modified hydrochar (b) on the immobilization efficiency of Cr in soil

    图 3  ZVI、黄铁矿、BC、SBC、ZBC、HBC对土壤中Cr固化效能的影响

    Figure 3.  Effect of ZVI, pyrite, BC, SBC, ZBC, and HBC on the immobilization efficiency of Cr in soil

    图 4  ZVI、黄铁矿、ZBC 和 HBC投加量对土壤有效铁含量的影响

    Figure 4.  Effect of dosage of ZVI, pyrite, ZBC, and HBC on available iron content in soil

    图 5  不同改性水热炭扫描电镜图及mapping图

    Figure 5.  Scanning electron microscope (SEM) and mapping images of different modified hydrochar

    图 6  SBC及改性水热炭FTIR谱图

    Figure 6.  FTIR images of SBC and modified hydrochar

    图 7  不同改性水热炭XPS谱图:

    Figure 7.  XPS images of different modified hydrochar

    图 8  土柱淋溶液累积总铬含量变化

    Figure 8.  Changes of cumulative total chromium content in soil column leaching solution

    图 9  双常数速率方程拟合图(a),抛物线扩散方程拟合图(b)

    Figure 9.  Fitting figure of two-constant rate equation (a) and parabolic diffusion equation (b)

    图 10  各土柱中总铬与Cr(Ⅵ)浓度

    Figure 10.  Concentrations of total Chromium and Cr(Ⅵ) in each soil column

    表 1  土壤理化性质

    Table 1.  Soil physicochemical properties

    土壤SoilpH有机质/(g·kg−1)Organic matter阳离子交换容量/(cmol·kg−1)Cation exchange capacity总铬/(mg·kg−1)Total chromiumCr(Ⅵ)/(mg·kg−1有效铁/(mg·kg−1)Available iron
    污染土壤8.49 ± 0.0540.64 ± 0.0521.84 ± 1.059540.51 ± 7.51059.51 ± 527.86 ± 2.51
    未污染土壤7.64 ± 0.0520.51 ± 1.0412.44 ± 0.75NDND4.86 ± 1.05
      注:ND未检出. ND, no detected.
    土壤SoilpH有机质/(g·kg−1)Organic matter阳离子交换容量/(cmol·kg−1)Cation exchange capacity总铬/(mg·kg−1)Total chromiumCr(Ⅵ)/(mg·kg−1有效铁/(mg·kg−1)Available iron
    污染土壤8.49 ± 0.0540.64 ± 0.0521.84 ± 1.059540.51 ± 7.51059.51 ± 527.86 ± 2.51
    未污染土壤7.64 ± 0.0520.51 ± 1.0412.44 ± 0.75NDND4.86 ± 1.05
      注:ND未检出. ND, no detected.
    下载: 导出CSV

    表 2  主要实验仪器

    Table 2.  Main experimental instruments

    名称Instrument name型号Product model厂家Manufacturer
    火焰原子吸收分光光度计ICE 3500赛默飞世尔科技公司
    行星式球磨仪QXQM-80长沙天创粉末技术有限公司
    马弗炉SX2-8-10Z上海博迅实业有限公司医疗设备厂
    反应釜SLM100北京世纪森朗实验仪器有限公司
    恒温振荡摇床SHA-CA常州恒睿仪器设备制造有限公司
    扫描电子显微镜FEI Quanta 400 FEG美国FEI公司
    傅里叶变换红外光谱仪TENSOR Ⅱ德国布鲁克光谱仪器公司
    X射线光电子能谱仪K-Alpha赛默飞世尔科技公司
    名称Instrument name型号Product model厂家Manufacturer
    火焰原子吸收分光光度计ICE 3500赛默飞世尔科技公司
    行星式球磨仪QXQM-80长沙天创粉末技术有限公司
    马弗炉SX2-8-10Z上海博迅实业有限公司医疗设备厂
    反应釜SLM100北京世纪森朗实验仪器有限公司
    恒温振荡摇床SHA-CA常州恒睿仪器设备制造有限公司
    扫描电子显微镜FEI Quanta 400 FEG美国FEI公司
    傅里叶变换红外光谱仪TENSOR Ⅱ德国布鲁克光谱仪器公司
    X射线光电子能谱仪K-Alpha赛默飞世尔科技公司
    下载: 导出CSV

    表 3  总铬累积释放的动力学拟合结果

    Table 3.  Kinetic fitting results of cumulative release of total chromium

    土柱Soil column双常数速率方程Two-constant rate equation抛物线扩散方程Parabolic diffusion equation
    abR2abR2
    CK11.15070.75060.9985−346.683669.60500.9882
    ZBC24.34990.59190.9900−140.859849.73650.9954
    HBC32.31840.52030.9865−41.481538.59620.9887
    土柱Soil column双常数速率方程Two-constant rate equation抛物线扩散方程Parabolic diffusion equation
    abR2abR2
    CK11.15070.75060.9985−346.683669.60500.9882
    ZBC24.34990.59190.9900−140.859849.73650.9954
    HBC32.31840.52030.9865−41.481538.59620.9887
    下载: 导出CSV
  • [1] LIU X Y, BAI Z K, SHI H D, et al. Heavy metal pollution of soils from coal mines in China [J]. Natural Hazards, 2019, 99(2): 1163-1177. doi: 10.1007/s11069-019-03771-5
    [2] YANG Q Q, LI Z Y, LU X N, et al. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment [J]. Science of the Total Environment, 2018, 642: 690-700. doi: 10.1016/j.scitotenv.2018.06.068
    [3] MA Y, WANG L N, CAO Y Z, et al. Stabilization and remediation of heavy metal-contaminated soils in China: insights from a decade-long national survey [J]. Environmental Science and Pollution Research, 2022, 29(26): 39077-39087. doi: 10.1007/s11356-021-18346-w
    [4] KEITH L, TELLIARD W. ES&T special report: priority pollutants: Ia perspective view [J]. Environmental Science & Technology, 1979, 13(4): 416-423.
    [5] SAHA R, NANDI R, SAHA B. Sources and toxicity of hexavalent chromium [J]. Journal of Coordination Chemistry, 2011, 64(10): 1782-1806. doi: 10.1080/00958972.2011.583646
    [6] ALVAREZ C C, GÓMEZ M E B, ZAVALA A H. Hexavalent chromium: Regulation and health effects [J]. Journal of Trace Elements in Medicine and Biology, 2021, 65: 126729. doi: 10.1016/j.jtemb.2021.126729
    [7] COETZEE J J, BANSAL N, CHIRWA E M N. Chromium in environment, its toxic effect from chromite-mining and ferrochrome industries, and its possible bioremediation [J]. Exposure and Health, 2020, 12(1): 51-62. doi: 10.1007/s12403-018-0284-z
    [8] DHAL B, THATOI H N, DAS N N, et al. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review [J]. Journal of Hazardous Materials, 2013, 250: 272-291.
    [9] HE B, YUN Z J, SHI J B, et al. Research progress of heavy metal pollution in China: Sources, analytical methods, status, and toxicity [J]. Chinese Science Bulletin, 2013, 58(2): 134-140. doi: 10.1007/s11434-012-5541-0
    [10] ZHANG X Y, ZHONG T Y, LIU L, et al. Chromium occurrences in arable soil and its influence on food production in China [J]. Environmental Earth Sciences, 2016, 75(3): 1-8.
    [11] ZHU F, LIU T, ZHANG Z C, et al. Remediation of hexavalent chromium in column by green synthesized nanoscale zero-valent iron/nickel: Factors, migration model and numerical simulation [J]. Ecotoxicology and Environmental Safety, 2021, 207: 111572. doi: 10.1016/j.ecoenv.2020.111572
    [12] CHEN X L, LI X M, XU D D, et al. Application of nanoscale zero-valent iron in hexavalent chromium-contaminated soil: A review [J]. Nanotechnology Reviews, 2020, 9(1): 736-750. doi: 10.1515/ntrev-2020-0059
    [13] WANG T, QIAN T W, HUO L J, et al. Immobilization of hexavalent chromium in soil and groundwater using synthetic pyrite particles [J]. Environmental Pollution, 2019, 255: 112992. doi: 10.1016/j.envpol.2019.112992
    [14] SU H J, FANG Z Q, TSANG P E, et al. Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in situ remediation of hexavalent chromium in soil [J]. Environmental Pollution, 2016, 214: 94-100. doi: 10.1016/j.envpol.2016.03.072
    [15] SNEATH H E, HUTCHINGS T R, DELEIJ F A A M. Assessment of biochar and iron filing amendments for the remediation of a metal, arsenic and phenanthrene co-contaminated spoil [J]. Environmental Pollution, 2013, 178: 361-366. doi: 10.1016/j.envpol.2013.03.009
    [16] YE Y X, SHAN C, ZHANG X L, et al. Water decontamination from Cr(Ⅲ)-organic complexes based on pyrite/H2O2: Performance, mechanism, and validation [J]. Environmental Science & Technology, 2018, 52(18): 10657-10664.
    [17] ZHENG C J, YANG Z H, SI M Y, et al. Application of biochars in the remediation of chromium contamination: Fabrication, mechanisms, and interfering species [J]. Journal of Hazardous Materials, 2021, 407: 124376. doi: 10.1016/j.jhazmat.2020.124376
    [18] HASSAN M, LIU Y J, NAIDU R, et al. Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis [J]. Science of the Total Environment, 2020, 744: 140714. doi: 10.1016/j.scitotenv.2020.140714
    [19] CHEN W F, MENG J, HAN X R, et al. Past, present, and future of biochar [J]. Biochar, 2019, 1(1): 75-87. doi: 10.1007/s42773-019-00008-3
    [20] BAO Z J, FENG H Y, TU W Y, et al. Method and mechanism of chromium removal from soil: A systematic review [J]. Environmental Science and Pollution Research, 2022, 29(24): 35501-35517. doi: 10.1007/s11356-022-19452-z
    [21] ABDIN Y, USMAN A, OK Y S, et al. Competitive sorption and availability of coexisting heavy metals in mining-contaminated soil: Contrasting effects of mesquite and fishbone biochars [J]. Environmental Research, 2020, 181: 108846. doi: 10.1016/j.envres.2019.108846
    [22] ANTÓN-HERRERO R, GARCÍA-DELGADO C, ALONSO-IZQUIERDO M, et al. Comparative adsorption of tetracyclines on biochars and stevensite: Looking for the most effective adsorbent [J]. Applied Clay Science, 2018, 160: 162-172. doi: 10.1016/j.clay.2017.12.023
    [23] CHEN H B, QIN P, YANG X, et al. Sorption of diethyl phthalate and cadmium by pig carcass and green waste-derived biochars under single and binary systems [J]. Environmental Research, 2021, 193: 110594. doi: 10.1016/j.envres.2020.110594
    [24] ZHU S H, WANG S, YANG X, et al. Green sustainable and highly efficient hematite nanoparticles modified biochar-clay granular composite for Cr(VI) removal and related mechanism [J]. Journal of Cleaner Production, 2020, 276: 123009. doi: 10.1016/j.jclepro.2020.123009
    [25] LI Y Y, ZHANG T T, NING Z, et al. Characteristics and applications of sewage sludge biochar modified by ferrous sulfate for remediating Cr(Ⅵ)-contaminated soils [J]. Advances in Civil Engineering, 2020, 2020: 6521638.
    [26] WANG S S, ZHAO M Y, ZHOU M, et al. Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: A critical review [J]. Journal of Hazardous Materials, 2019, 373: 820-834. doi: 10.1016/j.jhazmat.2019.03.080
    [27] NZEDIEGWU C, NAETH M A, CHANG S X. Carbonization temperature and feedstock type interactively affect chemical, fuel, and surface properties of hydrochars [J]. Bioresource Technology, 2021, 330: 124976. doi: 10.1016/j.biortech.2021.124976
    [28] KHAN N, MOHAN S, DINESHA P. Regimes of hydrochar yield from hydrothermal degradation of various lignocellulosic biomass: A review [J]. Journal of Cleaner Production, 2021, 288: 125629. doi: 10.1016/j.jclepro.2020.125629
    [29] WANG T F, ZHAI Y B, ZHU Y, et al. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties [J]. Renewable and Sustainable Energy Reviews, 2018, 90: 223-247. doi: 10.1016/j.rser.2018.03.071
    [30] TENG F Y, ZHANG Y X, WANG D Q, et al. Iron-modified rice husk hydrochar and its immobilization effect for Pb and Sb in contaminated soil [J]. Journal of Hazardous Materials, 2020, 398: 122977. doi: 10.1016/j.jhazmat.2020.122977
    [31] XIA Y, LUO H N, LI D, et al. Efficient immobilization of toxic heavy metals in multi-contaminated agricultural soils by amino-functionalized hydrochar: Performance, plant responses and immobilization mechanisms [J]. Environmental Pollution, 2020, 261: 114217. doi: 10.1016/j.envpol.2020.114217
    [32] ZHANG Q R, WANG J M, LYU H H, et al. Ball-milled biochar for galaxolide removal: Sorption performance and governing mechanisms [J]. Science of the Total Environment, 2019, 659: 1537-1545. doi: 10.1016/j.scitotenv.2019.01.005
    [33] TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals [J]. Analytical Chemistry, 1979, 51(7): 844-851. doi: 10.1021/ac50043a017
    [34] FUENTES A, LLORÉNS M, SÁEZ J, et al. Comparative study of six different sludges by sequential speciation of heavy metals [J]. Bioresource Technology, 2008, 99(3): 517-525. doi: 10.1016/j.biortech.2007.01.025
    [35] ZHANG S Q, ZHANG H Q, LIU F, et al. Effective removal of Cr(Ⅵ) from aqueous solution by biochar supported manganese sulfide [J]. RSC Advances, 2019, 9(54): 31333-31342. doi: 10.1039/C9RA06028F
    [36] DONG X L, MA L Q, LI Y C. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing [J]. Journal of Hazardous Materials, 2011, 190(1/2/3): 909-915.
    [37] REN J, WANG F H, ZHAI Y B, et al. Effect of sewage sludge hydrochar on soil properties and Cd immobilization in a contaminated soil [J]. Chemosphere, 2017, 189: 627-633. doi: 10.1016/j.chemosphere.2017.09.102
    [38] FONSECA B, MAIO H, QUINTELAS C, et al. Retention of Cr(Ⅵ) and Pb(Ⅱ) on a loamy sand soil [J]. Chemical Engineering Journal, 2009, 152(1): 212-219. doi: 10.1016/j.cej.2009.04.045
    [39] FU R B, ZHANG X, XU Z, et al. Fast and highly efficient removal of chromium (Ⅵ) using humus-supported nanoscale zero-valent iron: Influencing factors, kinetics and mechanism [J]. Separation and Purification Technology, 2017, 174: 362-371. doi: 10.1016/j.seppur.2016.10.058
    [40] REGMI P, GARCIA MOSCOSO J L, KUMAR S, et al. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process [J]. Journal of Environmental Management, 2012, 109: 61-69.
    [41] ZHANG P, BING X, JIAO L, et al. Amelioration effects of coastal saline-alkali soil by ball-milled red phosphorus-loaded biochar [J]. Chemical Engineering Journal, 2022, 431: 133904. doi: 10.1016/j.cej.2021.133904
    [42] SHAN D N, DENG S B, ZHAO T N, et al. Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling [J]. Journal of Hazardous Materials, 2016, 305: 156-163. doi: 10.1016/j.jhazmat.2015.11.047
    [43] INYANG M, GAO B, YAO Y, et al. Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass [J]. Bioresource Technology, 2012, 110: 50-56. doi: 10.1016/j.biortech.2012.01.072
    [44] ZHANG Y T, JIAO X Q, LIU N, et al. Enhanced removal of aqueous Cr(Ⅵ) by a green synthesized nanoscale zero-valent iron supported on oak wood biochar [J]. Chemosphere, 2020, 245: 125542. doi: 10.1016/j.chemosphere.2019.125542
    [45] LAAJALEHTO K, KARTIO I, NOWAK P. XPS study of clean metal sulfide surfaces [J]. Applied Surface Science, 1994, 81(1): 11-15. doi: 10.1016/0169-4332(94)90080-9
    [46] VAN DER HEIDE H, HEMMEL R, VAN BRUGGEN C F, et al. X-ray photoelectron spectra of 3d transition metal pyrites [J]. Journal of Solid State Chemistry, 1980, 33(1): 17-25. doi: 10.1016/0022-4596(80)90543-5
    [47] YOLSHINA V A, YOLSHINA L A, PRYAKHINA V I. SEM and XPS study of Cr6+ removal from wastewater via reduction and adsorption by hierarchically structured carbon composite in neutral media [J]. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31(8): 3624-3635. doi: 10.1007/s10904-021-02003-3
    [48] DAI Z J, WANG L L, TANG H, et al. Speciation analysis and leaching behaviors of selected trace elements in spent SCR catalyst [J]. Chemosphere, 2018, 207: 440-448. doi: 10.1016/j.chemosphere.2018.05.119
    [49] YU J Z, KLARUP D. Extraction kinetics of copper, zinc, iron, and manganese from contaminated sediment using disodium ethylenediaminetetraacetate [J]. Water, Air, and Soil Pollution, 1994, 75(3/4): 205-225.
    [50] MOTAGHIAN H R, HOSSEINPUR A R. Copper desorption kinetics in wheat (Triticum aestivum L. ) rhizosphere in some sewage sludge amended soils [J]. Environmental Earth Sciences, 2013, 70(4): 1571-1580. doi: 10.1007/s12665-013-2242-1
    [51] JI B, SHU Y R, LI Y X, et al. Chromium (Ⅵ) removal from water using starch coated nanoscale zerovalent iron particles supported on activated carbon [J]. Chemical Engineering Communications, 2019, 206(6): 708-715. doi: 10.1080/00986445.2018.1521390
    [52] LI Y Y, LIANG J L, HE X, et al. Kinetics and mechanisms of amorphous FeS2 induced Cr(Ⅵ) reduction [J]. Journal of Hazardous Materials, 2016, 320: 216-225. doi: 10.1016/j.jhazmat.2016.08.010
  • 加载中
图( 10) 表( 3)
计量
  • 文章访问数:  1927
  • HTML全文浏览数:  1927
  • PDF下载数:  55
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-08-15
  • 录用日期:  2022-12-03
  • 刊出日期:  2024-03-27
汲镔桀, 王洪波, 李梅, 李晓辰, 高心雨, 白毛毛, 徐冠虎. 两种铁改性水热炭对土壤中铬固化效能及其形态影响[J]. 环境化学, 2024, 43(3): 1047-1058. doi: 10.7524/j.issn.0254-6108.2022081504
引用本文: 汲镔桀, 王洪波, 李梅, 李晓辰, 高心雨, 白毛毛, 徐冠虎. 两种铁改性水热炭对土壤中铬固化效能及其形态影响[J]. 环境化学, 2024, 43(3): 1047-1058. doi: 10.7524/j.issn.0254-6108.2022081504
JI Binjie, WANG Hongbo, LI Mei, LI Xiaochen, GAO Xinyu, BAI Maomao, XU Guanhu. Effect of two Fe-modified hydrochar carbons on the curing efficiency and morphology of chromium in soil[J]. Environmental Chemistry, 2024, 43(3): 1047-1058. doi: 10.7524/j.issn.0254-6108.2022081504
Citation: JI Binjie, WANG Hongbo, LI Mei, LI Xiaochen, GAO Xinyu, BAI Maomao, XU Guanhu. Effect of two Fe-modified hydrochar carbons on the curing efficiency and morphology of chromium in soil[J]. Environmental Chemistry, 2024, 43(3): 1047-1058. doi: 10.7524/j.issn.0254-6108.2022081504

两种铁改性水热炭对土壤中铬固化效能及其形态影响

    通讯作者: E-mail:wanghongbo@sdjzu.edu.cn
  • 1. 山东建筑大学,济南,250101
  • 2. 山东建筑大学资源与环境创新研究院,济南,250101
  • 3. 北京交通大学环境学院,北京,100044

摘要: 本实验采用机械球磨法分别制备零价铁(ZVI)、黄铁矿负载水热炭,通过土壤提取实验和土柱淋溶实验,对比添加不同材料后土壤中铬(Cr)含量的变化,分析淋溶液中Cr累积释放规律及Cr在土柱中的纵向迁移行为. 实验结果表明,与其他材料相比,施加ZVI改性水热炭(ZBC)和黄铁矿改性水热炭(HBC)对土壤中Cr均有优秀的固化效果. 在低投加量(5 g·kg−1)下ZBC、HBC使土壤浸出液中总铬浓度分别降低35.8%、39.6%,而土壤中有效铁含量涨幅均小于0.1%,解决了使用ZVI和黄铁矿引起的土壤铁含量过度增加的问题. 在土柱淋溶实验中,施加ZBC、HBC后淋溶液总铬含量较CK(未加改性水热炭的对照组)分别下降27.3%、39.3%;土柱下部未污染土壤总铬含量分别降低31.4%、56.3%,Cr(Ⅵ)浓度分别降低51.7%、44.4%. 结合表征可得,土壤中的Cr可被ZBC、HBC吸附,水热炭负载的Fe可将Cr(Ⅵ)还原成Cr(Ⅲ)并附着在土壤中,HBC中的FeS2有效参与了对Cr(Ⅵ)的还原. 总的来看,HBC对土壤中Cr的固化效果更好,可为水热炭修复重金属污染土壤的应用提供思路与探索.

English Abstract

  • 我国重金属的生产量与消费量与日俱增,这带来了一系列环境污染问题[1-3]. 铬(Cr)具有高毒性、普遍性和持久性,被美国环保署(EPA)列为首要污染物之一[4]. Cr一般以两种形式存在于环境中:Cr(Ⅵ)和Cr(Ⅲ). Cr(Ⅲ)毒性较小且不溶,而Cr(Ⅵ)毒性是Cr(Ⅲ)的100倍,且具有高度的溶解性和流动性[5],对人体有严重危害[6]. 全球大约80%的Cr被开采后用于冶金行业[7],这些Cr废弃物的自然浸出会使得Cr(Ⅵ)在环境中迁移,造成污染[8]. 我国每年产出大量的Cr废弃物[9],土壤中Cr含量平均值已达78.94 mg·kg-1[10],高于规定要求,需要对Cr污染土壤进行有效治理.

    零价铁(ZVI)具有比表面积大、反应活性高、还原能力强等优点,被广泛应用于Cr(Ⅵ)污染土壤的修复[11-12]. 黄铁矿(FeS2)常被用于吸附有机污染物和重金属,其成分为Fe2+和S22−还原基团,可以有效地促进Cr(Ⅵ)的还原与固定[13]. 但ZVI容易表面聚集,会降低其还原能力,且在施用过程中存在过度释放Fe的问题[14],导致土壤孔隙度降低并引起骨料胶结,影响土壤结构[15];天然黄铁矿表面钝化严重[16],导致其与Cr(Ⅵ)反应较慢,这些问题限制了二者的应用. 生物炭(Biochar)是由富含碳的生物质在缺氧条件下热解产生的[17],其原料来源广且价格低[18],是一种环境友好型材料[19]. 生物炭表面官能团丰富,其中羟基、氧羧基和酚类官能团可与土壤中的污染物结合[20],羧酸(COOH)、C=O等可与重金属结合[21]. 生物炭的多孔结构和大比表面积为重金属提供了可观的吸附位点[22],可降低其在土壤中的迁移性[23],已被广泛应用于土壤修复方面[24-25]. 此外,生物炭可作为ZVI等金属材料的载体[26],起到分散作用,减缓钝化现象,有利于重金属污染的治理. 水热炭(Hydrochar)是指一定湿度的生物质在较低温度和一定压力下进行炭化得到的生物炭[27]. 相比热解炭,水热炭无需预处理,耗能低,产率高,孔隙结构发达,有机质含量更高[28-29],对污染土壤具有良好的修复潜力. Teng等[30]利用Fe改性水热炭降低了土壤中Pb和Sb的生物有效性. Xia等[31]制备氨基改性水热炭,施用后土壤中Cu、Pb和Cd的生物有效性、淋溶毒性及在水稻中的富集量均不同程度下降. 然而相比于热解生物炭的广泛应用,水热炭针对特定土壤环境的改性应用研究较少,需要进一步进行实验探究.

    机械球磨法[32]可将材料尺寸粉碎至纳米级,并使元素分布均匀,经济高效且操作简单. 本实验采用机械球磨法将ZVI、黄铁矿分别负载在玉米秸秆水热炭上,制备成两种铁改性水热炭,主要目的如下:(1)通过土壤提取实验,研究ZVI、黄铁矿、水热炭及改性炭对土壤中Cr的固定作用,并测定土壤中有效铁的含量,验证两种改性水热炭是否有助于解决过度释放Fe的问题;(2)通过土柱淋溶实验进一步探索改性水热炭对土壤中Cr的固化效能,分析土壤中Cr的纵向迁移规律,同时对实验材料进行表征分析,初步探究水热炭对Cr污染土壤的机制,得出最佳改性水热炭.

    • Cr污染土壤取自山东省某化工厂,土壤风干后,去除石子等杂质,研磨后过40目筛备用,同时取普通未污染土壤进行相同处理. 对两种土壤基本理化性质进行测定,结果见表1. 主要实验仪器见表2,实验所用零价铁(ZVI)平均粒径为48 μm;黄铁矿(FeS2)平均粒径为45 μm.

    • 将玉米秸秆置于马弗炉中,在500 ℃下反应3 h,制得热解生物炭(BC);将玉米秸秆与水以1:20的质量比混合后置于反应釜中,在300 ℃下反应1 h,制得水热生物炭(SBC);将SBC分别与ZVI、黄铁矿以不同质量比置于球磨机中,以550 r·min−1运行3 h,制得不同炭铁质量比的ZVI改性水热生物炭(ZBC)和黄铁矿改性水热生物炭(HBC),所有制得的生物炭均过100目筛使其均质. 对改性水热炭的表面形貌、官能团以及施加到土壤前后的元素及价态的变化进行表征.

    • (1)热解炭与水热炭对土壤中Cr赋存形态的影响

      以8 g·kg−1 的投加量向20 g污染土壤分别投加BC、SBC,混匀后置于50 mL离心管,调土壤含水率为30%,静置15 d后采用Tessier法[33]对土壤的Cr进行提取分析,每个处理重复3次并作对照实验.

      (2)改性水热炭对土壤中Cr固化效能的影响

      以10 g·kg−1 的投加量向10 g污染土壤分别投加不同改性水热炭,混匀后置于锥形瓶中,再加入100 mL水后放置于摇床中,设置速度为120 r·min−1振荡48 h,分时间取上清液过0.45 μm滤膜后测定总铬浓度,每个处理重复3次并作对照实验.

      (3)不同材料对土壤中Cr固化效能的影响

      以不同投加量向20 g污染土壤分别投加不同材料,混匀后置于50 mL离心管,调土壤含水率为30%,静置15 d后测定土壤浸出液总铬浓度,并对投加ZVI、黄铁矿、ZBC和HBC的土壤有效铁含量进行测定,每个处理重复3次并作对照实验.

    • 向Cr污染土壤中分别加入5 g·kg−1的ZBC和HBC,保持土壤含水率为30%,在恒温培养箱中培养20 d备用,并作未施加炭的对照实验(CK). 土柱装置为高20 cm、内径4 cm的圆型有机玻璃柱,底部开口连接橡胶管,用于收集浸出液. 向土柱下层填充10 cm的未污染土壤,上层分别填充8 cm不同处理的污染土壤,每个处理重复3次. 从底部注水使土壤饱和后静置24 h,随后从顶部进行淋洗,淋洗液总体积为900 mL,采用间歇浸出法. 得到的浸出液过0.45 μm滤膜后测定总铬浓度. 实验结束后将土柱上下层分段取出,将上层土壤风干后过100目筛得到施加到土壤中的炭,并进行表征;测定下层土壤总铬与Cr(Ⅵ)浓度,观察Cr的纵向迁移性.

    • 土壤总铬浓度的测定参照HJ 491—2019,Cr(Ⅵ)浓度的测定参照HJ 1082—2019,土壤浸出液中总铬浓度的测定参照HJ 749—2015;土壤有效铁含量的测定采用火焰原子吸收分光光度法测定,测定前使用二乙基三氨五乙酸法浸提.

    • Tessier五步提取法可以把土壤中的Cr分为5种形态,这些形态按照生物利用度和其毒性大小由低到高依次为残渣晶格结合态(RES)、有机质及硫化物结合态(OM)、铁锰氧化物结合态(FeMnOx)、碳酸盐结合态(Cab)、金属可交换态(EXC). 结果如图1所示,与对照土壤相比,施用生物炭处理促进了EXC、Cab和FeMnOx向OM和RES转化,土壤中Cr的稳定性提高,毒性下降. EXC、Cab和FeMnOx组分主要由可溶性高、交换性较强的重金属离子及其碳酸盐态组成[34],这些组分的减少说明生物炭施用后土壤中Cr的稳定性提高. 除生物炭的吸附作用外[35],生物炭与Cr(Ⅵ)的静电吸引以及与Cr(Ⅲ)的络合反应[36]也可能是Cr稳定性提升的原因. 而与BC处理相比,SBC处理后(OM+RES)组分占比增加更为显著,这表明水热炭对土壤中Cr的固定效果更好,可能是由于水热炭拥有更丰富的表面官能团,通过配位键等作用将重金属由活性状态转化为惰性状态[37].

    • 按炭铁质量比2:1、1:1、1:2,将ZVI改性水热炭依次记作Ⅰ-ZBC、Ⅱ-ZBC、Ⅲ-ZBC,将黄铁矿改性生物炭依次记作Ⅰ-HBC、Ⅱ-HBC、Ⅲ-HBC. 由图2可知,施用改性水热炭均降低浸出液总铬含量. 其中施用Ⅰ-ZBC、Ⅱ-ZBC、Ⅲ-ZBC浸出液总铬浓度分别下降27.4%、29.7%、30.0%,彼此无显著差异;施用Ⅰ-HBC、Ⅱ-HBC、Ⅲ-HBC浸出液总铬浓度分别下降32.0%、33.4%、38.9%,整体处理效果优于ZBC,Ⅲ-HBC处理效果突出.

      图2中看出,Cr的释放过程分为两个阶段[38]. 第一阶段土壤表面吸附的Cr和土壤中迁移性较强的Cr(Ⅵ)迅速释放到溶液中,浸出液总铬浓度快速升高. 与对照实验(CK)相比,添加ZBC、HBC后总铬含量显著降低,且增长速率减缓. 在反应进行1 h后进入第二阶段,此时Cr的释放由土壤颗粒表面转为内部,释放速度降低. 施加ZBC、HBC的土壤浸出液总铬浓度在4 h达到最大值后呈下降趋势. 而未投加炭的对照组总铬浓度在6 h后变化趋于平稳,但仍呈上升状态. 因此,施加ZBC、HBC对土壤中的Cr有固定作用. 根据实验结果,选择处理效果较好的Ⅲ-ZBC和Ⅲ-HBC进行后续实验研究,后续提到的ZBC、HBC均为Ⅲ-ZBC、Ⅲ-HBC.

    • 图3可知,随材料投加量的增加,土壤浸出液中总铬含量整体均呈下降趋势. ZVI在投加量为8 g·kg−1时达到最佳处理效果,此时总铬含量为29.012 mg·L−1,与对照组相比降低27.5%. 增大投加量到10 g·kg−1时,总铬浓度反而上升,可能是高投加量下ZVI会因其磁性造成颗粒团聚,导致炭表面活性位点减少[14]. 且ZVI将Cr(Ⅵ)还原成Cr(Ⅲ)会在其表面形成氧化膜,阻碍活性位点与重金属接触[39]. 相比ZVI,黄铁矿处理效果更好,在投加量为8 g·kg−1时浸出液总铬含量降低到27.3 mg·L−1,与对照组相比降低31.8%. 在所有材料中,BC处理效果最差,投加量为10 g·kg−1时浸出液总铬含量仅降低13.4%,而SBC处理效果较好. 随SBC投加量的增加,其处理效果显著增强. 当投加量为10 g·kg−1时,浸出液总铬含量降低到26.4 mg·L−1,与对照组相比降低35.0%. 这可能是由于水热炭拥有更丰富的表面含氧官能团(如羧基、羟基等),对Cr有更强的吸附能力[40]. 两种改性水热炭处理效果更为优秀,且达到最佳处理效果所需投加量较低,节省材料使用量. 这可能是因为球磨改性后炭颗粒粒径变小,比表面积增大[41],ZVI、黄铁矿较好地负载到炭骨架上,且铁颗粒的团聚现象减弱,增强改性炭对土壤中Cr的吸附和还原能力[26]. 在5 g·kg−1最佳投加量下,ZBC处理后浸出液总铬含量降低到26.0 mg·L−1,比对照组降低35.8%;而HBC处理效果最好,其浸出液总铬含量降低到24.5 mg·L−1,比对照组降低39.6%.

      施用ZVI、黄铁矿等进行土壤修复时存在Fe释放过度的问题[14],因此对投加ZVI、黄铁矿、ZBC和HBC的土壤中的有效铁含量进行测定,结果如图4所示.

      随ZVI、黄铁矿投加量的增加,土壤中有效铁含量增加. 在最佳投加量8 g·kg−1的条件下,ZVI处理使土壤中有效铁含量增加40.1%,黄铁矿处理使土壤中有效铁含量增加10.1%. 而ZBC、HBC投加量的增加对土壤中有效铁含量影响较小,在投加量为5 g·kg−1的条件下,土壤中有效铁含量的分别增长0.6 mg·L−1和0.4 mg·L−1,涨幅均小于0.1%,有效解决Fe释放过度的问题.

    • 6种改性水热炭的表面形貌及对应的mapping测试结果见图5,可以看到经过球磨后,ZVI、黄铁矿在炭表面分散,炭的表面粗糙,结构不规则. 低铁炭掺杂比的炭存在着Fe元素分布较少或颗粒团聚的现象[14],这可能会导致炭有效孔隙和活性位点减少,降低炭的吸附能力. 随着铁炭掺杂比增大,Fe元素重量百分比上升,分布愈发均匀. 这可能是由于较多ZVI、黄铁矿可与水热炭在球磨过程中更充分地相互摩擦和碰撞,通过球磨介质的作用,使其在生物炭断裂、变形过程中分布到生物炭的表面及孔隙结构中[26],增加炭的活性位点,增强对Cr的吸附能力[42].

    • 为进一步探究水热炭改性后对土壤中Cr的固定机理,对SBC和6种改性水热炭的红外特征峰进行分析(图6). O—H等氧化还原活性官能团被认为是生物炭氧化还原能力的驱动力[17],可与重金属阳离子交换[43]. 1730—1734 cm−1处羧基、醛、酮和酯类基团上的C=O峰和1612—1615 cm−1处C=C、C=O峰的强度随着铁炭掺杂比的增加而增大,说明改性后炭含氧官能团增加. C=O等含氧官能团可以为重金属提供大量结合位点,增加炭吸附能力,形成络合物[21]. 543 cm−1处为Fe—O的弱峰[44],证明Fe与含氧基团结合,成功地负载在水热炭表面.

    • 对两种改性水热炭施加到土壤前后的样品进行XPS测定,结果如图7所示. 观察全谱图可得,二者全谱图中均存在Fe峰,说明Fe成功负载到炭骨架上,其中HBC表面还存在S元素. 炭在施加到土壤后全谱图中均出现Cr峰,且O峰的强度增加,说明改性水热炭可能将Cr吸附在表面并形成铁铬氧化物. 对比施加前后的Fe2p谱图,代表Fe(Ⅱ)的峰强度均下降,Fe(Ⅲ)峰强度相对增强,表明ZBC、HBC中的Fe对土中的Cr(Ⅵ)具有还原能力. 在HBC的Fe2p谱图中,代表FeS2[45-46]的峰强度前后变化明显,这表明FeS2参与了对Cr(Ⅵ)的还原. Cr2p谱图中在577—579 eV处存在代表Cr(Ⅲ)的多重轨道分裂峰[47],表明炭表面存在Cr的氧化物和氢氧化物;在580 eV附近存在代表Cr(VI)的弱峰且拟合较差,进一步说明ZBC、HBC将污染土中的Cr(Ⅵ)还原成Cr(Ⅲ),炭表面不存在或存在极少量的Cr(Ⅵ).

    • 各土柱淋溶液中总铬累积含量变化如图8所示. 在淋溶初期,可溶态重金属快速释放到浸出液中[48],淋溶液中的重金属累积量均快速增加,当淋溶液体积达到300 mL时,ZBC、HBC凭借表面官能团和优秀的吸附性能,将土壤颗粒内部释放的Cr(Ⅵ)还原为较稳定的Cr(Ⅲ)并吸附在炭表面,使得淋溶液中总铬含量的增长速率减缓,而CK淋溶液中的总铬含量一直呈快速上升状态. 实验结束时CK、ZBC、HBC淋溶液总铬含量分别为1700.22、1235.22、1031.49 mg·L−1. 与CK相比,ZBC、HBC总铬含量分别下降27.3%、39.3%,均表现出良好的Cr固定效果,降低了Cr的迁移性.

      土壤中重金属迁移、释放和转化的影响因素复杂,采用动力学模型拟合重金属的累积释放有助于了解过程,阐述机理. 双常数速率方程、抛物线扩散方程常用于描述土壤化学过程,表达式如下:

      式中,y表示重金属释放量;x表示淋溶体积;ab为常数.

      双常数速率方程是一种经验方程,可用于反映重金属与土壤表面吸附亲和力的差异[49]. 而抛物线扩散方程常用于描述土壤内部物质的扩散,反映多个扩散机制共同控制的动力学过程[50]. 采用这两种方程对土壤中Cr的累积释放过程进行拟合,得到结果如图9表3所示. 总的来说两种动力学模型均能较好地描述各土柱淋溶时释放Cr的动力学过程,这说明Cr在炭土环境中的释放机制复杂. 其中双常数速率方程对CK的拟合效果更为优秀,其模拟结果R2值为0.9985. 这说明未投加改性水热炭时,土壤表面吸附点位对Cr亲和力的差异较大,不能有效固定Cr. 抛物线扩散方程对ZBC和HBC的拟合效果更为优秀,其模拟结果R2值分别为0.9954、0.9887. 这说明投加改性水热炭后,土壤表面的Cr被有效吸附,淋溶液中的Cr主要来自于土壤颗粒内部的扩散作用.

    • 图10可知,CK土柱中Cr表现出较强的纵向迁移性,在水的淋洗与重力沉降等作用下由上部污染土壤向下部未污染土壤迁移,最终CK土柱下部土壤中总铬浓度为1378.550 mg·kg−1,Cr(Ⅵ)浓度为197.802 mg·kg−1,污染严重. 与CK相比,施加ZBC和HBC后土柱下部土壤的总铬和Cr(Ⅵ)浓度明显下降,其中投加ZBC的土柱下部土壤中总铬含量相比CK降低31.4%,Cr(Ⅵ)浓度相比CK降低51.7%;投加HBC的土柱下部土壤中总铬含量相比CK降低56.3%,Cr(Ⅵ)浓度相比CK降低44.4%.

      Cr(Ⅵ)在土壤中的离子态主要为HCrO4和CrO4,由于污染土壤pH为8.49,偏碱性,HCrO4更多地转变为CrO4. 负载ZVI的ZBC会与CrO4在土壤中发生以下反应[51]

      通过Fe0、Fe2+的还原能力,最终将Cr(Ⅵ)还原成Cr(Ⅲ),并形成CrxFe1-x(OH)3,固定在土壤中. 从反应式可以看出,酸性条件更利于反应进行,而本实验污染土壤偏碱性,这可能是导致ZBC施加后总铬浓度降低效果较HBC差的一个原因. 而负载黄铁矿(FeS2)的HBC则与CrO4在土壤中发生以下反应[52]

      且最终Fe3+与Cr3+会发生式(5)反应. 其中S0及其水解产物(S2O32−、S22−)可长期保持土壤对Cr(Ⅵ)的还原能力[52]. 结合XPS表征结果,可知HBC中的FeS2参加反应,而在整个氧化过程中,FeS2可向Fe3+和SO42−提供15个电子,更有利于对Cr(Ⅵ)的还原,故施加HBC后土柱总铬浓度下降明显,更多的Cr(Ⅵ)被还原成Cr(Ⅲ)固定在土壤中. 但ZBC施加后Cr(Ⅵ)浓度降低效果优于HBC,结合浸出液总铬浓度进行分析,可能是由于土壤偏碱性,ZBC与土壤中的Cr(Ⅵ)反应较缓,未完全反应的Cr(Ⅵ)随淋洗液的冲洗快速下沉,使得浸出液中总铬浓度明显升高,而土柱中Cr(Ⅵ)浓度下降. 总的来看,施加HBC后土柱及其淋洗液中的总铬浓度下降程度更大,说明其对污染土壤中的Cr具有更好的固定效果.

    • (1)施加水热炭(SBC)使土壤中稳定性高、毒性低的有机质及硫化物结合态(OM)和残渣晶格结合态(RES)的Cr增加17%,处理效果优于热解炭(BC).

      (2)土壤提取实验表明,较大铁炭掺杂比(2:1)制备的改性水热炭ZBC、HBC在低投加量(5 g·kg−1)下对土壤中的Cr表现出更好的固定效果,与对照组相比其土壤浸出液中总铬浓度分别降低了35.8%、39.6%,既节省了材料用量,且不存在向土壤中过度释放铁的现象.

      (3)土柱淋溶实验表明,Cr在炭土环境中的释放机制复杂,双常数速率方程对CK土柱拟合较好,表明未施加炭时,土壤表面吸附点位对Cr亲和力的差异较大,不能有效固定Cr;抛物线扩散方程对ZBC和HBC土柱拟合较好,表明投加炭后土壤表面的Cr被有效吸附,淋溶液中的Cr主要来自土壤颗粒内部的扩散作用.

      (4)土柱实验结束后,ZBC土柱下部未污染土壤中总铬含量相比CK降低了31.4%,Cr(Ⅵ)浓度相比CK降低了51.7%;HBC土柱下部未污染土壤中总铬含量相比CK降低了56.3%,Cr(Ⅵ)浓度相比CK降低了44.4%. 结合表征结果可得,ZBC、HBC可吸附对土中的Cr,水热炭负载的Fe对土中的Cr(Ⅵ)具有还原能力,可将其还原成Cr(Ⅲ)固定在土壤中. HBC中存在FeS2,有效参与对Cr(Ⅵ)的还原,对污染土壤中Cr的固化效果更好. 此材料可为水热炭修复重金属污染土壤的应用提供思路与探索.

    参考文献 (52)

返回顶部

目录

/

返回文章
返回