-
中国是全球最大的抗生素生产国和消费国,2020年中国使用的全部抗菌药总量约为32776.30吨[1]. 四环素(Tetracycline,TC)占抗生素总产量和使用量的三分之一,广泛用于医疗、畜牧业和水产养殖中治疗各种细菌流行病和致病性微生物感染[2 − 3]. 由于四环素在动物体内不能完全被吸收,超过70%的过剩四环素被直接排放到水中,导致病原细菌接触四环素废水而产生抗性基因(antibiotic resistance genes,ARGs). 近年来,越来越多的环境介质如水体、沉积物、水生生物等均有ARGs检出,而抗生素抗性基因的扩散和传播,会导致水体中产生耐药超级细菌,引发生态毒性效应[4].
四环素因具有生物抑制作用,造成其生物降解率低,且很难被高温消解,迫切需要实用高效的含抗生素污染水治理技术[5]. 目前,多种处理技术被用来去除水溶液中的抗生素,例如臭氧氧化、活性污泥法、微生物降解、光催化降解、膜分离、生物陶瓷过滤、吸附等,在这些方法中,吸附技术因其经济、简单、高效的特性,而成为处理含抗生素污染水的首选策略[6]. 多孔碳是目前最为常见的一种弱极性或非极性碳质吸附材料,它具有孔隙发达、比表面积大(500—3000 m2·g−1)、吸附力强和化学稳定性好的特点,含有丰富的表面基团,对含羧基、羟基和氨基等基团的物质具有良好的吸附性能,可吸附水体中的低浓度或者其他方法难以去除的多种有机污染物,是当前研究最深入、应用最广泛的抗生素吸附材料[7 − 9].
研究表明[10 − 13],多孔碳对抗生素的吸附性能主要受粒径、孔隙结构及表面化学结构等理化性质的影响:微孔(孔径<4 nm)贡献大部分的比表面积,为吸附过程的提供大多数吸附位点;大孔为吸附分子/离子和吸附点提供传输通道,是吸附速度的关键控制步骤;中孔可以提供吸附位点,也可以作为吸附过程的传输通道. 其中,碳质材料吸附抗生素的效果主要受微孔和中孔数量的影响. 此外,含氧和含氮等基团对碳质材料的亲水性、吸附选择性和电荷性等表面化学性质有直接的影响,且可与抗生素分子上的特定官能团发生反应,改善碳质材料的表面对抗生素的吸附性能[14]. 因此,为了改善常规多孔碳选择性低,对抗生素吸附效果易受水体中其他组分影响的缺陷,进一步提高其吸附容量和吸附效率,不少研究者设法通过调控多孔碳的孔道结构和表面化学性质对多孔碳进行物理和化学改性,制备出对低浓度抗生素具有高吸附效率和高选择性的改性多孔碳.
基于此,本文提出聚酰亚胺(PI)衍生的氮氧双掺杂多孔碳(FCPI)的绿色制备思路,利用丰富的表面活性官能团和分级多孔结构相结合,提升材料的对四环素的去除效率. 由于四环素在水体中通常以离子形式存在,天然水的pH值通常约为6.5—8.5,TC分子的三羰基体系和酚二酮部分倾向于失去质子,以TCH−或TC2-的形式存在,在水中呈电负性[15]. 因此,本文将具有优异吸附性能的FCPI制成电容去离子技术(CDI)的电极片,利用电吸附技术增强多孔碳材料对四环素的去除能力. 与传统自吸附、沉淀和离子交换方法相比,基于FCPI电极材料的CDI技术可同时去除水中多种离子污染物和非离子污染物,且具有吸附容量高、吸附速度快、电极再生方便、其操作方便、环境友好、能耗低、循环寿命长等优点,可应用于含抗生素复杂污水、硬水软化和重金属污染物、海水淡化等领域[16 − 18].
氮氧双掺杂多孔碳对四环素的电吸附及其机制
The electro-adsorption of nitrogen and oxygen co-doped porous carbon for tetracycline and its mechanism
-
摘要: 四环素(TC)约占抗生素总产量和使用量的三分之一,且在水体中难以被降解,导致其在环境中的浓度越来越高而引发难以预估危害的细菌耐药性. 因此,开发有效途径对水中四环素进行高效去除具有重要现实意义. 本文通过简单的分散聚合物制备了具有高四环素吸附效率的聚酰亚胺衍生碳材料(FCPI). FCPI独特的分级多孔结构、丰富的氧(14.6%)、氮(4.7%)掺杂量和边缘缺陷等可为四环素的吸附提供丰富的活性位点;较大的比表面积、良好的导电性和化学稳定性,可提供稳定的双电层吸附界面. 因此,将FCPI制备成电容去离子(CDI)器件的电极片后,FCPI对TC的电吸附容量高达989.5 mg·g−1,是传统自吸附的2.3倍(430.2 mg·g−1). FCPI 在自然水体中,经过200次吸-脱附循环后吸附容量仍可保持70%以上,具有优异的再生性和循环稳定性. 且FCPI 在不同水体中均表现出高效的TC吸附性能和同步去除水体中硬度离子的能力,使其在处理复杂水体污染与环境保护方面具有重要的实际意义.Abstract: Tetracycline (TC) accounts for approximately one-third of the total production and usage of antibiotics and is known for its resistance to degradation in water. As a result, its concentration in the environment continues to rise, posing unpredictable risks associated with bacterial resistance. Therefore, it is crucial to develop effective methods for the efficient removal of TC from water. In this study, a polyimide-derived carbon material (FCPI) with high tetracycline adsorption efficiency was prepared via a simple dispersion polymerization process. FCPI exhibits a unique hierarchical porous structure, enriched with a high content of oxygen (14.6%) and nitrogen (4.7%) doping, as well as edge defects, which provide abundant active sites for TC adsorption. Additionally, its large specific surface area, excellent conductivity, and chemical stability ensure a stable double layer adsorption interface. Consequently, when FCPI was fabricated into electrode sheets for capacitive deionization (CDI) devices, it displayed an impressive electro-adsorption capacity for TC, reaching 989.5 mg·g−1, which is 2.3 times higher than that achieved through traditional self-adsorption (430.2 mg·g−1). After undergoing 200 cycles of adsorption-desorption in natural water, FCPI retained over 70% of its adsorption capacity, showcasing exceptional regeneration and cycling stability. Furthermore, FCPI exhibited high-efficiency TC adsorption and simultaneous removal of hardness ions in various water environments, underscoring its significant practical implications for the effective treatment of complex water pollution and environmental protection.
-
表 1 两种实际水体的水质参数
Table 1. Water quality parameter of two water samples
水体类型
Water samples浓度/(mg·L−1)
Concentration色度
ChromapH COD TP NH4+-N NO3−-N NO2−-N SW 29.58 0.593 2.555 5.01 0.106 9 7.43 LW 11.02 0.284 0.051 0.61 0.263 7 7.11 -
[1] 牛颖, 安圣, 陈凯, 等. 2012—2021年中国地下水抗生素污染现状及分析技术研究进展[J]. 岩矿测试, 2023, 42(1): 39-58. NIU Y, AN S, CHEN K, et al. A review of current status and analysis methods of antibiotic contamination in groundwater in China(2012—2021)[J]. Rock and Mineral Analysis, 2023, 42(1): 39-58 (in Chinese).
[2] DANNER M C, ROBERTSON A, BEHRENDS V, et al. Antibiotic pollution in surface fresh waters: Occurrence and effects[J]. Science of the Total Environment, 2019, 664: 793-804. doi: 10.1016/j.scitotenv.2019.01.406 [3] 蒋海燕, 段毅, 刘宇琪, 等. 煅烧高岭土活化过一硫酸盐去除废水中的四环素[J]. 环境工程学报, 2020, 14(9): 2494-2505. JIANG H Y, DUAN Y, LIU Y Q, et al. Removal of tetracycline from wastewater by activated peroxymonosulfate using calcined Kaolin[J]. Chinese Journal of Environmental Engineering, 2020, 14(9): 2494-2505 (in Chinese).
[4] 耿嘉璐. 抗性基因和药物的多介质环境分布特征与生态风险评价[D]. 哈尔滨: 哈尔滨工业大学, 2020. GENG J L. Multi-mediat distribution characteristic and ecological risk assessment of antibiotic resistance genes and pharmaceuticals[D]. Harbin: Harbin Institute of Technology, 2020 (in Chinese).
[5] 李爽, 李永宇, 张怡梦, 等. 四环素分子印迹聚合物的制备及吸附性能研究[J]. 河南化工, 2022, 39(1): 16-21. LI S, LI Y Y, ZHANG Y M, et al. Preparation and adsorption properties research of tetracycline molecularly imprinted polymer[J]. Henan Chemical Industry, 2022, 39(1): 16-21 (in Chinese).
[6] ZHAO R, MA T T, ZHAO S, et al. Uniform and stable immobilization of metal-organic frameworks into chitosan matrix for enhanced tetracycline removal from water[J]. Chemical Engineering Journal, 2020, 382: 122893. doi: 10.1016/j.cej.2019.122893 [7] HOSLETT J, GHAZAL H, KATSOU E, et al. The removal of tetracycline from water using biochar produced from agricultural discarded material[J]. Science of the Total Environment, 2021, 751: 141755. doi: 10.1016/j.scitotenv.2020.141755 [8] MEI Y L, XU J, ZHANG Y, et al. Effect of Fe-N modification on the properties of biochars and their adsorption behavior on tetracycline removal from aqueous solution[J]. Bioresource Technology, 2021, 325: 124732. doi: 10.1016/j.biortech.2021.124732 [9] DAI J W, MENG X F, ZHANG Y H, et al. Effects of modification and magnetization of rice straw derived biochar on adsorption of tetracycline from water[J]. Bioresource Technology, 2020, 311: 123455. doi: 10.1016/j.biortech.2020.123455 [10] 梁好, 刘传胜, 谷静静, 等. 碳质材料对饮用水处理中抗生素吸附的研究回顾[J]. 净水技术, 2018, 37(1): 30-39,111. LIANG H, LIU C S, GU J J, et al. Review and research on carbonaceous material for antibiotics adsorption in drinking water treatment[J]. Water Purification Technology, 2018, 37(1): 30-39,111 (in Chinese).
[11] SUN N, ZHOU H J, ZHANG H M, et al. Synchronous removal of tetracycline and water hardness ions by capacitive deionization[J]. Journal of Cleaner Production, 2021, 316: 128251. doi: 10.1016/j.jclepro.2021.128251 [12] HU F P, LUO W D, LIU C H, et al. Fabrication of graphitic carbon nitride functionalized P-CoFe2O4 for the removal of tetracycline under visible light: Optimization, degradation pathways and mechanism evaluation[J]. Chemosphere, 2021, 274: 129783. doi: 10.1016/j.chemosphere.2021.129783 [13] 韩歆宇, 刘志, 王琪, 等. 共价三嗪多孔聚合材料对水中四环素的吸附行为及其机理[J]. 环境化学, 2022, 41(9): 2995-3002. doi: 10.7524/j.issn.0254-6108.202110303 HAN X Y, LIU Z, WANG Q, et al. Adsorption behavior and mechanism of the porous covalent triazine-based framework for tetracycline in water[J]. Environmental Chemistry, 2022, 41(9): 2995-3002 (in Chinese). doi: 10.7524/j.issn.0254-6108.202110303
[14] GRAJEK H, ŚWIĄTKOWSKI A, WITKIEWICZ Z, et al. Changes in the surface chemistry and adsorptive properties of active carbon previously oxidised and heat-treated at various temperatures. I. physicochemical properties of the modified carbon surface[J]. Adsorption Science & Technology, 2001, 19(7): 565-576. [15] JIN J H, YANG Z H, XIONG W P, et al. Cu and Co nanoparticles co-doped MIL-101 as a novel adsorbent for efficient removal of tetracycline from aqueous solutions[J]. Science of the Total Environment, 2019, 650: 408-418. doi: 10.1016/j.scitotenv.2018.08.434 [16] LIU T Y, SERRANO J, ELLIOTT J, et al. Exceptional capacitive deionization rate and capacity by block copolymer-based porous carbon fibers[J]. Science Advances, 2020, 6(16): eaaz0906. doi: 10.1126/sciadv.aaz0906 [17] GABRIELLI C, MAURIN G, FRANCY-CHAUSSON H, et al. Electrochemical water softening: Principle and application[J]. Desalination, 2006, 201(1/2/3): 150-163. [18] WERNER J J, ARNOLD W A, McNEILL K. Water hardness as a photochemical parameter: Tetracycline photolysis as a function of calcium concentration, magnesium concentration, and pH[J]. Environmental Science & Technology, 2006, 40(23): 7236-7241. [19] 刘子龙, 侯晓楠, 郭丰志, 等. 金属盐对阴离子表面活性剂紫外吸收特性的影响[J]. 应用化工, 2022, 51(5): 1330-1334. LIU Z L, HOU X N, GUO F Z, et al. Effect of metal salts on ultraviolet absorption properties of anionic surfactants[J]. Applied Chemical Industry, 2022, 51(5): 1330-1334 (in Chinese).
[20] 刘总堂, 邵江, 李艳, 等. 碱改性小麦秸秆生物炭对水中四环素的吸附性能[J]. 中国环境科学, 2022, 42(8): 3736-3743. LIU Z T, SHAO J, LI Y, et al. Adsorption performance of tetracycline in water by alkali-modified wheat straw biochars[J]. China Environmental Science, 2022, 42(8): 3736-3743 (in Chinese).
[21] JIN J, SUN K, WANG Z Y, et al. Effects of chemical oxidation on phenanthrene sorption by grass- and manure-derived biochars[J]. Science of the Total Environment, 2017, 598: 789-796. doi: 10.1016/j.scitotenv.2017.04.160 [22] LI Y H, XIAO K, HUANG C, et al. Enhanced potassium-ion storage of the 3D carbon superstructure by manipulating the nitrogen-doped species and morphology[J]. Nano-Micro Letters, 2021, 13(1): 1. doi: 10.1007/s40820-020-00525-y [23] CUI X C, XU G X, GAO Z H, et al. Hierarchically porous and nitrogen-rich carbon materials derived from polyimide waste for high-performance supercapacitor applications[J]. Energy & Fuels, 2023, 37(5): 4038-4047. [24] ANIA C , KHOMENKO V, RAYMUNDO-PIÑERO E, et al. The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template[J]. Advanced Functional Materials, 2007, 17(11): 1828-1836. doi: 10.1002/adfm.200600961 [25] 余良. 氮氧共掺杂多级孔碳材料制备及其超级电容器性能研究[D]. 深圳: 深圳大学, 2018. YU L. Studies on preparation and performances of nitrogen and oxygen co-doped carbon materials for the application of supercapacitor[D]. Shenzhen: Shenzhen University, 2018 (in Chinese).
[26] YANG M, ZHOU Z. Recent breakthroughs in supercapacitors boosted by nitrogen-rich porous carbon materials[J]. Advanced Science, 2017, 4(8): 1600408. doi: 10.1002/advs.201600408 [27] ZHONG S, ZHAN C X, CAO D P. Zeolitic imidazolate framework-derived nitrogen-doped porous carbons as high performance supercapacitor electrode materials[J]. Carbon, 2015, 85: 51-59. doi: 10.1016/j.carbon.2014.12.064 [28] WIGGINS-CAMACHO J D, STEVENSON K J. Effect of nitrogen concentration on capacitance, density of states, electronic conductivity, and morphology of N-doped carbon nanotube electrodes[J]. The Journal of Physical Chemistry C, 2009, 113(44): 19082-19090. doi: 10.1021/jp907160v [29] YANG M, ZHONG Y R, BAO J, et al. Achieving battery-level energy density by constructing aqueous carbonaceous supercapacitors with hierarchical porous N-rich carbon materials[J]. Journal of Materials Chemistry A, 2015, 3(21): 11387-11394. doi: 10.1039/C5TA02584B [30] HAO P, ZHAO Z H, TIAN J, et al. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode[J]. Nanoscale, 2014, 6(20): 12120-12129. doi: 10.1039/C4NR03574G [31] LV Y K, GAN L H, LIU M X, et al. A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes[J]. Journal of Power Sources, 2012, 209: 152-157. doi: 10.1016/j.jpowsour.2012.02.089 [32] MARTINS A C, PEZOTI O, CAZETTA A L, et al. Removal of tetracycline by NaOH-activated carbon produced from Macadamia nut shells: Kinetic and equilibrium studies[J]. Chemical Engineering Journal, 2015, 260: 291-299. doi: 10.1016/j.cej.2014.09.017 [33] ZHANG Z X, ZHANG Y X, MU X M, et al. The carbonization temperature effect on the electrochemical performance of nitrogen-doped carbon monoliths[J]. Electrochimica Acta, 2017, 242: 100-106. doi: 10.1016/j.electacta.2017.05.016 [34] ZHANG R, JING X X, CHU Y T, et al. Nitrogen/oxygen co-doped monolithic carbon electrodes derived from melamine foam for high-performance supercapacitors[J]. Journal of Materials Chemistry A, 2018, 6(36): 17730-17739. doi: 10.1039/C8TA06471G [35] ZHANG X Z, ZHEN D W, LIU F M, et al. An achieved strategy for magnetic biochar for removal of tetracyclines and fluoroquinolones: Adsorption and mechanism studies[J]. Bioresource Technology, 2023, 369: 128440. doi: 10.1016/j.biortech.2022.128440 [36] 魏红, 史刘敏, 钮金芬, 等. 荞麦皮生物炭对奥硝唑的吸附研究[J]. 环境科学学报, 2022, 42(11): 12-24. WEI H, SHI L M, NIU J F, et al. Adsorption of ornidazole on the buckwheat husk biochar[J]. Acta Scientiae Circumstantiae, 2022, 42(11): 12-24 (in Chinese).
[37] ALTUN T, ECEVIT H, KAR Y, et al. Adsorption of Cr(VI) onto cross-linked chitosan-almond shell biochars: Equilibrium, kinetic, and thermodynamic studies[J]. Journal of Analytical Science and Technology, 2021, 12(1): 38. doi: 10.1186/s40543-021-00288-0 [38] WANG T, XUE L, LIU Y H, et al. N self-doped hierarchically porous carbon derived from biomass as an efficient adsorbent for the removal of tetracycline antibiotics[J]. Science of the Total Environment, 2022, 822: 153567. doi: 10.1016/j.scitotenv.2022.153567 [39] 智丹, 王建兵, 周云惠, 等. 钛基锡锑阳极电化学氧化去除水中的四环素[J]. 环境工程学报, 2018, 12(1): 57-64. ZHI D, WANG J B, ZHOU Y H, et al. Electrochemical oxidation of tetracycline in aquatic environment by Ti/SnO2-Sb anode[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 57-64 (in Chinese).
[40] 占鹏, 胡锋平, 朱建华, 等. Fe-Cu/N共掺杂的ZIFs衍生材料活化过硫酸盐降解四环素[J]. 环境科学学报, 2022, 42(3): 187-196. ZHAN P, HU F P, ZHU J H, et al. ZIFs derived carbon-based materials activate persulfate to degrade organic pollutants[J]. Acta Scientiae Circumstantiae, 2022, 42(3): 187-196 (in Chinese).