[1] |
牛颖, 安圣, 陈凯, 等. 2012—2021年中国地下水抗生素污染现状及分析技术研究进展[J]. 岩矿测试, 2023, 42(1): 39-58.
NIU Y, AN S, CHEN K, et al. A review of current status and analysis methods of antibiotic contamination in groundwater in China(2012—2021)[J]. Rock and Mineral Analysis, 2023, 42(1): 39-58 (in Chinese).
|
[2] |
DANNER M C, ROBERTSON A, BEHRENDS V, et al. Antibiotic pollution in surface fresh waters: Occurrence and effects[J]. Science of the Total Environment, 2019, 664: 793-804. doi: 10.1016/j.scitotenv.2019.01.406
|
[3] |
蒋海燕, 段毅, 刘宇琪, 等. 煅烧高岭土活化过一硫酸盐去除废水中的四环素[J]. 环境工程学报, 2020, 14(9): 2494-2505.
JIANG H Y, DUAN Y, LIU Y Q, et al. Removal of tetracycline from wastewater by activated peroxymonosulfate using calcined Kaolin[J]. Chinese Journal of Environmental Engineering, 2020, 14(9): 2494-2505 (in Chinese).
|
[4] |
耿嘉璐. 抗性基因和药物的多介质环境分布特征与生态风险评价[D]. 哈尔滨: 哈尔滨工业大学, 2020.
GENG J L. Multi-mediat distribution characteristic and ecological risk assessment of antibiotic resistance genes and pharmaceuticals[D]. Harbin: Harbin Institute of Technology, 2020 (in Chinese).
|
[5] |
李爽, 李永宇, 张怡梦, 等. 四环素分子印迹聚合物的制备及吸附性能研究[J]. 河南化工, 2022, 39(1): 16-21.
LI S, LI Y Y, ZHANG Y M, et al. Preparation and adsorption properties research of tetracycline molecularly imprinted polymer[J]. Henan Chemical Industry, 2022, 39(1): 16-21 (in Chinese).
|
[6] |
ZHAO R, MA T T, ZHAO S, et al. Uniform and stable immobilization of metal-organic frameworks into chitosan matrix for enhanced tetracycline removal from water[J]. Chemical Engineering Journal, 2020, 382: 122893. doi: 10.1016/j.cej.2019.122893
|
[7] |
HOSLETT J, GHAZAL H, KATSOU E, et al. The removal of tetracycline from water using biochar produced from agricultural discarded material[J]. Science of the Total Environment, 2021, 751: 141755. doi: 10.1016/j.scitotenv.2020.141755
|
[8] |
MEI Y L, XU J, ZHANG Y, et al. Effect of Fe-N modification on the properties of biochars and their adsorption behavior on tetracycline removal from aqueous solution[J]. Bioresource Technology, 2021, 325: 124732. doi: 10.1016/j.biortech.2021.124732
|
[9] |
DAI J W, MENG X F, ZHANG Y H, et al. Effects of modification and magnetization of rice straw derived biochar on adsorption of tetracycline from water[J]. Bioresource Technology, 2020, 311: 123455. doi: 10.1016/j.biortech.2020.123455
|
[10] |
梁好, 刘传胜, 谷静静, 等. 碳质材料对饮用水处理中抗生素吸附的研究回顾[J]. 净水技术, 2018, 37(1): 30-39,111.
LIANG H, LIU C S, GU J J, et al. Review and research on carbonaceous material for antibiotics adsorption in drinking water treatment[J]. Water Purification Technology, 2018, 37(1): 30-39,111 (in Chinese).
|
[11] |
SUN N, ZHOU H J, ZHANG H M, et al. Synchronous removal of tetracycline and water hardness ions by capacitive deionization[J]. Journal of Cleaner Production, 2021, 316: 128251. doi: 10.1016/j.jclepro.2021.128251
|
[12] |
HU F P, LUO W D, LIU C H, et al. Fabrication of graphitic carbon nitride functionalized P-CoFe2O4 for the removal of tetracycline under visible light: Optimization, degradation pathways and mechanism evaluation[J]. Chemosphere, 2021, 274: 129783. doi: 10.1016/j.chemosphere.2021.129783
|
[13] |
韩歆宇, 刘志, 王琪, 等. 共价三嗪多孔聚合材料对水中四环素的吸附行为及其机理[J]. 环境化学, 2022, 41(9): 2995-3002. doi: 10.7524/j.issn.0254-6108.202110303
HAN X Y, LIU Z, WANG Q, et al. Adsorption behavior and mechanism of the porous covalent triazine-based framework for tetracycline in water[J]. Environmental Chemistry, 2022, 41(9): 2995-3002 (in Chinese). doi: 10.7524/j.issn.0254-6108.202110303
|
[14] |
GRAJEK H, ŚWIĄTKOWSKI A, WITKIEWICZ Z, et al. Changes in the surface chemistry and adsorptive properties of active carbon previously oxidised and heat-treated at various temperatures. I. physicochemical properties of the modified carbon surface[J]. Adsorption Science & Technology, 2001, 19(7): 565-576.
|
[15] |
JIN J H, YANG Z H, XIONG W P, et al. Cu and Co nanoparticles co-doped MIL-101 as a novel adsorbent for efficient removal of tetracycline from aqueous solutions[J]. Science of the Total Environment, 2019, 650: 408-418. doi: 10.1016/j.scitotenv.2018.08.434
|
[16] |
LIU T Y, SERRANO J, ELLIOTT J, et al. Exceptional capacitive deionization rate and capacity by block copolymer-based porous carbon fibers[J]. Science Advances, 2020, 6(16): eaaz0906. doi: 10.1126/sciadv.aaz0906
|
[17] |
GABRIELLI C, MAURIN G, FRANCY-CHAUSSON H, et al. Electrochemical water softening: Principle and application[J]. Desalination, 2006, 201(1/2/3): 150-163.
|
[18] |
WERNER J J, ARNOLD W A, McNEILL K. Water hardness as a photochemical parameter: Tetracycline photolysis as a function of calcium concentration, magnesium concentration, and pH[J]. Environmental Science & Technology, 2006, 40(23): 7236-7241.
|
[19] |
刘子龙, 侯晓楠, 郭丰志, 等. 金属盐对阴离子表面活性剂紫外吸收特性的影响[J]. 应用化工, 2022, 51(5): 1330-1334.
LIU Z L, HOU X N, GUO F Z, et al. Effect of metal salts on ultraviolet absorption properties of anionic surfactants[J]. Applied Chemical Industry, 2022, 51(5): 1330-1334 (in Chinese).
|
[20] |
刘总堂, 邵江, 李艳, 等. 碱改性小麦秸秆生物炭对水中四环素的吸附性能[J]. 中国环境科学, 2022, 42(8): 3736-3743.
LIU Z T, SHAO J, LI Y, et al. Adsorption performance of tetracycline in water by alkali-modified wheat straw biochars[J]. China Environmental Science, 2022, 42(8): 3736-3743 (in Chinese).
|
[21] |
JIN J, SUN K, WANG Z Y, et al. Effects of chemical oxidation on phenanthrene sorption by grass- and manure-derived biochars[J]. Science of the Total Environment, 2017, 598: 789-796. doi: 10.1016/j.scitotenv.2017.04.160
|
[22] |
LI Y H, XIAO K, HUANG C, et al. Enhanced potassium-ion storage of the 3D carbon superstructure by manipulating the nitrogen-doped species and morphology[J]. Nano-Micro Letters, 2021, 13(1): 1. doi: 10.1007/s40820-020-00525-y
|
[23] |
CUI X C, XU G X, GAO Z H, et al. Hierarchically porous and nitrogen-rich carbon materials derived from polyimide waste for high-performance supercapacitor applications[J]. Energy & Fuels, 2023, 37(5): 4038-4047.
|
[24] |
ANIA C , KHOMENKO V, RAYMUNDO-PIÑERO E, et al. The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template[J]. Advanced Functional Materials, 2007, 17(11): 1828-1836. doi: 10.1002/adfm.200600961
|
[25] |
余良. 氮氧共掺杂多级孔碳材料制备及其超级电容器性能研究[D]. 深圳: 深圳大学, 2018.
YU L. Studies on preparation and performances of nitrogen and oxygen co-doped carbon materials for the application of supercapacitor[D]. Shenzhen: Shenzhen University, 2018 (in Chinese).
|
[26] |
YANG M, ZHOU Z. Recent breakthroughs in supercapacitors boosted by nitrogen-rich porous carbon materials[J]. Advanced Science, 2017, 4(8): 1600408. doi: 10.1002/advs.201600408
|
[27] |
ZHONG S, ZHAN C X, CAO D P. Zeolitic imidazolate framework-derived nitrogen-doped porous carbons as high performance supercapacitor electrode materials[J]. Carbon, 2015, 85: 51-59. doi: 10.1016/j.carbon.2014.12.064
|
[28] |
WIGGINS-CAMACHO J D, STEVENSON K J. Effect of nitrogen concentration on capacitance, density of states, electronic conductivity, and morphology of N-doped carbon nanotube electrodes[J]. The Journal of Physical Chemistry C, 2009, 113(44): 19082-19090. doi: 10.1021/jp907160v
|
[29] |
YANG M, ZHONG Y R, BAO J, et al. Achieving battery-level energy density by constructing aqueous carbonaceous supercapacitors with hierarchical porous N-rich carbon materials[J]. Journal of Materials Chemistry A, 2015, 3(21): 11387-11394. doi: 10.1039/C5TA02584B
|
[30] |
HAO P, ZHAO Z H, TIAN J, et al. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode[J]. Nanoscale, 2014, 6(20): 12120-12129. doi: 10.1039/C4NR03574G
|
[31] |
LV Y K, GAN L H, LIU M X, et al. A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes[J]. Journal of Power Sources, 2012, 209: 152-157. doi: 10.1016/j.jpowsour.2012.02.089
|
[32] |
MARTINS A C, PEZOTI O, CAZETTA A L, et al. Removal of tetracycline by NaOH-activated carbon produced from Macadamia nut shells: Kinetic and equilibrium studies[J]. Chemical Engineering Journal, 2015, 260: 291-299. doi: 10.1016/j.cej.2014.09.017
|
[33] |
ZHANG Z X, ZHANG Y X, MU X M, et al. The carbonization temperature effect on the electrochemical performance of nitrogen-doped carbon monoliths[J]. Electrochimica Acta, 2017, 242: 100-106. doi: 10.1016/j.electacta.2017.05.016
|
[34] |
ZHANG R, JING X X, CHU Y T, et al. Nitrogen/oxygen co-doped monolithic carbon electrodes derived from melamine foam for high-performance supercapacitors[J]. Journal of Materials Chemistry A, 2018, 6(36): 17730-17739. doi: 10.1039/C8TA06471G
|
[35] |
ZHANG X Z, ZHEN D W, LIU F M, et al. An achieved strategy for magnetic biochar for removal of tetracyclines and fluoroquinolones: Adsorption and mechanism studies[J]. Bioresource Technology, 2023, 369: 128440. doi: 10.1016/j.biortech.2022.128440
|
[36] |
魏红, 史刘敏, 钮金芬, 等. 荞麦皮生物炭对奥硝唑的吸附研究[J]. 环境科学学报, 2022, 42(11): 12-24.
WEI H, SHI L M, NIU J F, et al. Adsorption of ornidazole on the buckwheat husk biochar[J]. Acta Scientiae Circumstantiae, 2022, 42(11): 12-24 (in Chinese).
|
[37] |
ALTUN T, ECEVIT H, KAR Y, et al. Adsorption of Cr(VI) onto cross-linked chitosan-almond shell biochars: Equilibrium, kinetic, and thermodynamic studies[J]. Journal of Analytical Science and Technology, 2021, 12(1): 38. doi: 10.1186/s40543-021-00288-0
|
[38] |
WANG T, XUE L, LIU Y H, et al. N self-doped hierarchically porous carbon derived from biomass as an efficient adsorbent for the removal of tetracycline antibiotics[J]. Science of the Total Environment, 2022, 822: 153567. doi: 10.1016/j.scitotenv.2022.153567
|
[39] |
智丹, 王建兵, 周云惠, 等. 钛基锡锑阳极电化学氧化去除水中的四环素[J]. 环境工程学报, 2018, 12(1): 57-64.
ZHI D, WANG J B, ZHOU Y H, et al. Electrochemical oxidation of tetracycline in aquatic environment by Ti/SnO2-Sb anode[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 57-64 (in Chinese).
|
[40] |
占鹏, 胡锋平, 朱建华, 等. Fe-Cu/N共掺杂的ZIFs衍生材料活化过硫酸盐降解四环素[J]. 环境科学学报, 2022, 42(3): 187-196.
ZHAN P, HU F P, ZHU J H, et al. ZIFs derived carbon-based materials activate persulfate to degrade organic pollutants[J]. Acta Scientiae Circumstantiae, 2022, 42(3): 187-196 (in Chinese).
|