-
砷是一种剧毒的类金属,与镉、铬、铅、汞并称为土壤重金属污染的“五毒”,具有生物积累效应和“三致” (致癌、致畸、致突变) 作用,长期的砷暴露或通过饮用水、食物链过量摄入砷会严重损害人体健康[1-2]。砷在土壤中主要来源于含砷矿物风化、大气沉降、微生物分解以及工农业污染,其中采矿、冶炼和工农业生产排放是砷污染最主要的来源[3]。据2014年《全国土壤污染状况调查公报》显示,我国土壤砷污染的点位超标率高达2.7%,已对生态环境和人类健康构成严重威胁[4]。
砷在土壤中通常以亚砷酸盐 (三价) 和砷酸盐 (五价) 形式存在[5]。与五价砷相比,三价砷在土壤中不易被吸附或生成沉淀,因此迁移性更强,且其毒性约为五价砷的25~60倍[6]。铁盐作为经济实用的稳定化药剂,常被用于砷污染土稳定化修复中,铁盐或溶解后生成的铁氧化物会与砷发生吸附-沉淀反应,具有较高的砷结合能力[7-8],因为其对三价和五价砷都有较好的稳定化效果,所以目前用铁盐处理砷污染土时一般不区分砷的原始价态。BAGHERIFAM等[9]研究了添加量为5%的铁氧化物对砷的质量分数为50.0 mg·kg−1污染土的稳定化效果,发现铁氧化物可将生物有效性砷的质量分数从40.8 mg·L−1降至12.6 mg·L−1,并降低植物对砷的吸收;ZHAO等[10]向2 117 mg·kg−1的砷污染土中加入3倍铁砷比的FeCl3进行稳定化修复,使其浸出浓度降至17.9 mg·L−1;但发现过量的铁盐 (水解呈酸性) 引起土壤酸化。修复不彻底或修复后土壤酸化都不利于土地资源化利用,因此科学的修复方法应当区分砷的价态,将三价砷氧化为易被稳定化的五价砷进而提高修复效率,且在一定程度上减少铁盐用量。
常见的氧化剂有臭氧、高锰酸钾、过硫酸钠、过氧化钙和芬顿试剂等[11],其中芬顿试剂能够生成强氧化性的羟基自由基 (·OH) ,·OH拥有很高的氧化还原电位以及电负性,此外还有环境友好、反应速率快、可操作性强和可控等优点,目前已被广泛用于有机污染和砷污染废水治理[12]。KATSOYIANNIS等[13]研究发现,芬顿试剂可快速将废水中的三价砷氧化为五价砷,且处理后环境友好;JAAFARZADEH等[14]通过使用芬顿试剂预处理含三价砷的废水,发现芬顿试剂预处理能有效提高火山灰对砷的吸附;QIN等[15]通过研究天然雨水中微量的过氧化氢及其产生的芬顿效应对无机砷和有机砷的修复效果,发现芬顿效应一定程度上减少了水稻中的砷累积和毒害效应。类似于污水处理,在砷污染土的修复中,采用芬顿试剂将三价砷氧化为五价,将显著提高后续铁盐对于砷的固定效果[16],然而目前在砷污染土修复中却未见有使用芬顿试剂进行氧化的研究。
基于不同价态砷的迁移性和毒性差异,本研究提出先使用芬顿试剂将土壤中的三价砷氧化为毒性低、弱迁移性的五价砷,再施加氯化铁稳定化五价砷的协同修复方法。对总砷的质量分数为1 500 mg·kg−1 (其中三价砷为1 330 mg·kg−1) 的污染土进行芬顿-氯化铁协同修复试验,通过合成沉降淋滤试验 (SPLP) 、生物可利用性验证修复效果;同时,通过pH测试、连续萃取试验、光谱分析研究修复前后土壤的矿物成分、砷的赋存形态和价态,以期揭示其协同修复机理。
芬顿和氯化铁协同修复三价砷污染土的稳定化效果
Stabilizing effects of Fenton and FeCl3 in remediation of arsenite contaminated soil
-
摘要: 由于铁盐稳定化修复砷污染土通常不考虑砷价态对毒性和迁移性的影响,导致了修复效果欠佳。针对三价砷污染土提出了预氧化-稳定化协同修复方法,先使用芬顿将三价砷氧化为低迁移性的五价砷,再利用氯化铁将其稳定化。通过合成沉降淋滤试验、生物可利用性、pH测试、连续萃取试验和光谱分析研究了协同修复的稳定化效果和机理。结果表明,与未经处理的污染土相比,1%用量的芬顿和1倍铁砷比的氯化铁进行协同修复的稳定化处理可使浸出浓度降低99.6%,生物可利用性砷的质量分数降低99.4%,修复效率得到提高;芬顿氧化和氯化铁稳定化都使土壤pH降低,但1倍铁砷比下协同修复后的pH为5.82,高于6倍铁砷比下只用氯化铁修复的pH (3.78) ,由此可一定程度上避免过量使用铁盐造成的土壤酸化;连续萃取试验表明协同修复后更多不稳定态的砷转变为稳定形态;光谱分析发现协同修复可以将土壤中三价砷全部氧化为五价,并通过铁氧化物/氢氧化物吸附和砷酸铁沉淀的形式固定砷。本研究结果可为三价砷污染土修复提供理论和技术支持。Abstract: The effect of different arsenic valences on toxicity and mobility was usually not considered in stabilization using ferric salt for remediation of arsenic contaminated soil, resulting in an inefficient treatment. A combined treatment of oxidization-stabilization was proposed aiming at arsenite contaminated soil, which included oxidizing arsenite to low mobile arsenate by Fenton, and subsequently stabilizing arsenate by FeCl3. Synthetic precipitation leaching procedure (SPLP), bioavailability, pH measurement, sequential extraction procedure, and spectral analysis were carried out to investigate the effect and mechanism of the proposed treatment method. The results showed that compared with the untreated contaminated soil, the leaching concentration was reduced by 99.6% with 1% dosage of Fenton and FeCl3 at an iron/arsenic ratio of 1, and the bioavailability As mass fraction was decreased by 99.4%. Soil pH was reduced by both Fenton oxidation and FeCl3 stabilization. However, the pH (5.82) after 1% dosage of Fenton and 1-molar-ratio of FeCl3 was obviously higher than that treated by 6-molar-ratio of FeCl3 (3.78), indicating that soil acidification caused by the excessive use of FeCl3 could be alleviated by the proposed treatment. The sequential extraction procedure results showed that a lot of unstable-state arsenic was converted to stable states by the combined treatment. The spectral analysis revealed that arsenite was converted to arsenate after the combined treatment and was subsequently adsorbed by iron oxide/hydroxide or precipitates as ferric arsenate. This study provides theory and technical support for effective remediation of arsenite contaminated soil.
-
[1] LI J S, WANG L, TSANG D C W, et al. Dynamic leaching behavior of geogenic As in soils after cement-based stabilization/solidification[J]. Environmental Science and Pollution Research, 2017, 24(36): 27822-27832. doi: 10.1007/s11356-017-0266-x [2] PHUNG D, CONNELL D, RUTHERFORD S, et al. Cardiovascular risk from water arsenic exposure in Vietnam: Application of systematic review and meta-regression analysis in chemical health risk assessment[J]. Chemosphere, 2017, 177: 167-175. doi: 10.1016/j.chemosphere.2017.03.012 [3] BEIYUAN J Z, LI J S, TSANG D C W, et al. Fate of arsenic before and after chemical-enhanced washing of an arsenic-containing soil in Hong Kong[J]. Science of the Total Environment, 2017, 599: 679-688. [4] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[J]. 中国环保产业, 2014, 36(5): 10-11. [5] BALOCH M Y J, TALPUR S A, TALPUR H A, et al. Effects of arsenic toxicity on the environment and its remediation techniques: a review[J]. Journal of Water and Environment Technology, 2020, 18(5): 275-289. doi: 10.2965/jwet.19-130 [6] OSUNA-MARTÍNEZ C C, ARMIENTA M A, BERGÉS-TIZNADO M E, et al. Arsenic in waters, soils, sediments, and biota from Mexico: An environmental review[J]. Science of the Total Environment, 2021, 752: 142062. doi: 10.1016/j.scitotenv.2020.142062 [7] 赵述华, 张太平, 陈志良, 等. 金矿区高浓度砷污染土壤的稳定化处理[J]. 环境工程学报, 2016, 10(10): 5987-5994. doi: 10.12030/j.cjee.201505193 [8] 余志元, 李二平, 杨厅, 等. 基于单纯形重心设计法的含砷废渣稳定剂设计与开发[J]. 环境工程, 2023, 41(5): 84-91. doi: 10.13205/j.hjgc.202305012 [9] BAGHERIFAM S, LAKZIAN A, FOTOVAT A, et al. In situ stabilization of As and Sb with naturally occurring Mn, Al and Fe oxides in a calcareous soil: Bioaccessibility, bioavailability and speciation studies[J]. Journal of Hazardous Materials, 2014, 273: 247-252. doi: 10.1016/j.jhazmat.2014.03.054 [10] ZHAO H M, ZHANG H Z, TANG M, et al. In situ chemical stabilization of arsenic-contaminated soils using ferrous sulfate[C]//2010 4th International Conference on Bioinformatics and Biomedical Engineering. IEEE, 2010: 1-5. [11] 张易旻, 陈铮铮, 陈昆柏, 等. 氯代有机物污染土壤高级化学氧化修复技术研究进展[J]. 环境化学, 2019, 38(3): 480-493. doi: 10.7524/j.issn.0254-6108.2018050203 [12] CHEN M, CHEN Z, WU P, et al. Simultaneous oxidation and removal of arsenite by Fe (III) /CaO2 Fenton-like technology[J]. Water Research, 2021, 201: 117312. doi: 10.1016/j.watres.2021.117312 [13] KATSOYIANNIS I A, RUETTIMANN T, HUG S J. pH dependence of Fenton reagent generation and As (III) oxidation and removal by corrosion of zero valent iron in aerated water[J]. Environmental Science & Technology, 2008, 42(19): 7424-7430. [14] JAAFARZADEH N, AMIRI H, AHMADI M. Factorial experimental design application in modification of volcanic ash as a natural adsorbent with Fenton process for arsenic removal[J]. Environmental Technology, 2012, 33(2): 159-165. doi: 10.1080/09593330.2011.554887 [15] QIN J H, LI Y, FENG M, et al. Fenton reagent reduces the level of arsenic in paddy rice grain[J]. Geoderma, 2017, 307: 73-80. doi: 10.1016/j.geoderma.2017.07.039 [16] WANG L, LUO Y, PANG J, et al. Fe-biochar for simultaneous stabilization of chromium and arsenic in soil: Rational design and long-term performance[J]. Science of the Total Environment, 2023, 862: 160843. doi: 10.1016/j.scitotenv.2022.160843 [17] HAN Y, PARK J, AHN J. Aging effects on fractionation and speciation of redox-sensitive metals in artificially contaminated soil[J]. Chemosphere, 2021, 263: 127931. doi: 10.1016/j.chemosphere.2020.127931 [18] 张钦喜, 张雪冬, 张志红. SP-MOC固化砷污染土的浸出试验研究[J]. 岩土工程技术, 2020, 34: 238-242. [19] BURBANO A A, DIONYSIOU D D, SUIDAN M T, et al. Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent[J]. Water Research. 2005, 39 (1) : 107-118. [20] TOWNSEND T, DUBEY B, TOLAYMAT T. Interpretation of synthetic precipitation leaching procedure (SPLP) results for assessing risk to groundwater from land-applied granular waste[J]. Environmental engineering science 2006, 23 (1) : 239-251. [21] YAN X L, ZHANG M, LIAO X Y, et al. Influence of amendments on soil arsenic fractionation and phytoavailability by Pteris vittata L[J]. Chemosphere, 2012, 88(2): 240-244. doi: 10.1016/j.chemosphere.2012.03.015 [22] WENZEL W W, KIRCHBAUMER N, PROHASKA T, et al. Arsenic fractionation in soils using an improved sequential extraction procedure[J]. Analytica Chimica Acta, 2001, 436(2): 309-323. doi: 10.1016/S0003-2670(01)00924-2 [23] YU B W, DU Y J, LIU R, et al. Reuse of stabilized contaminated soils with heavy metals as greening soils: leaching, physicochemical, and phytotoxicity characterization[M]//Geo-Chicago 2016. 2016: 557-571. [24] MIRANDA L S, AYOKO G A, EGODAWATTA P, et al. Physico-chemical properties of sediments governing the bioavailability of heavy metals in urban waterways[J]. Science of the Total Environment, 2021, 763: 142984. doi: 10.1016/j.scitotenv.2020.142984 [25] 林龙勇, 阎秀兰, 杨硕. 铁铈氧化物对土壤As (Ⅴ) 和P的稳定化效果[J]. 环境科学, 2019, 40(8): 3785-3791. [26] YANG K, KIM B C, NAM K, et al. The effect of arsenic chemical form and mixing regime on arsenic mass transfer from soil to magnetite[J]. Environmental Science and Pollution Research, 2017, 24(9): 8479-8488. doi: 10.1007/s11356-017-8510-y [27] LIN Y, WU B, NING P, et al. Stabilization of arsenic in waste slag using FeCl2 or FeCl3 stabilizer[J]. RSC Advances, 2017, 7(87): 54956-54963. doi: 10.1039/C7RA10169D [28] LI Y, WANG J, PENG X, et al. Evaluation of arsenic immobilization in red mud by CO2 or waste acid acidification combined ferrous (Fe2+) treatment[J]. Journal of Hazardous Materials, 2012, 199: 43-50. [29] CHEN Z H, JIN J Y, SONG X J, et al. Redox conversion of arsenite and nitrate in the UV/quinone systems[J]. Environmental Science & Technology, 2018, 52(17): 10011-10018. [30] KOPPENOL W H, STANBURY D M, BOUNDS P L. Electrode potentials of partially reduced oxygen species, from dioxygen to water[J]. Free Radical Biology and Medicine, 2010, 49(3): 317-322. doi: 10.1016/j.freeradbiomed.2010.04.011 [31] WANG L, CHEN L, GUO B, et al. Red mud-enhanced magnesium phosphate cement for remediation of Pb and As contaminated soil[J]. Journal of Hazardous Materials 2020, 400: 123317.