-
随着我国产业结构优化调整,工业企业搬迁或关停转型后在城市及周边遗留大量污染场地亟需治理[1]。粗略统计,目前我国现存污染场地约50~100×104块[2]。污染场地常用的修复技术包括物理、化学和生物修复技术。一般而言,物理修复技术操作相对简单,修复效率较高,但大部分物理修复技术只能将污染物暂时转移,后续还需进一步处理,增加修复成本[3];生物修复技术具有成本低、二次污染较小等优点,但通常需要较长的修复周期,且对高浓度污染物修复效果不佳[4]。与之相比,化学氧化修复技术兼具修复效率高、修复周期短和修复成本低等优势,是近年来发展迅速的污染场地修复技术之一。
化学氧化修复技术主要通过氧化剂及其分解产生的氧化性物质将污染物 (有机物和砷等) 转化为稳定、低毒性或无毒性的物质,目前该技术已广泛应用于场地污染土壤和地下水修复[5-7]。李影辉[8]总结了USG公司遗留场地地下水原位修复案例,通过注射高锰酸钾,短期内三氯乙烯和1,1-二氯乙烯去除率可达86%~100%。邢绍文等[9]报道了上海某工业污染场地土壤异位化学氧化修复案例,过硫酸盐和生石灰的组合可实现苯并[a]芘和石油烃去除率均大于90%。2020年美国环保署 (US EPA) 资料显示,1982—2017年720个污染地下水原位修复技术案例中,化学氧化技术占比23%,且呈现逐年升高的趋势[10]。郑苇等[11]统计了自2010年以来国内场地修复的108个案例,化学氧化修复技术应用从2010年不足10%快速增长到2018年约30%。
目前,仅有少量污染场地修复技术应用情况统计和化学氧化修复技术研究进展计量学文献发表[12-13]。因此,本文基于Web of Science数据库,利用VOSviewer和CiteSpace对1990—2022年场地化学氧化修复领域发表的文献进行可视化分析,探究该领域的研究热点及发展趋势,以期为后续研究及工程实践提供参考和借鉴。
基于文献计量分析的场地化学氧化修复技术研究热点和趋势
Research focus and future trends of chemical oxidation technology for site remediation based on bibliometric analysis
-
摘要: 化学氧化修复技术具有污染物去除效率高、修复周期短和成本低等优势,在污染场地修复领域具有广阔的应用前景。基于Web of Science数据库,通过文献计量可视化软件VOSviewer和CiteSpace,分析了1990—2022年场地污染土壤和地下水化学氧化修复领域的研究热点及趋势。结果表明,1990—2022年年度发文量呈增长趋势,中国和美国是发文量排名前二的国家,2010年后中国年发文量快速增加并位居第一,中国科学院在发文量及被引频次方面均高居榜首。基于关键词分析,总结归纳了化学氧化修复技术适用污染物类型、氧化剂种类和催化/活化方法以及化学氧化联合修复技术。当前研究热点集中在催化/活化方法研发、污染物降解机理探究以及在土壤和地下水中修复应用等方面;未来研究重点将聚焦于研发新型氧化剂和靶向催化/活化材料,探究材料迁移扩散机制和活性氧化物质产生机理,发展协同化学氧化修复技术体系并推进工程化应用,以及建立化学氧化修复全过程风险监测和评价体系。Abstract: Chemical oxidation is a green and low-carbon remediation technology that has wide application prospects in the field of contaminated site remediation, mainly due to its high efficiency, short remediation time and low cost. In order to systematically sort out the knowledge structure and research thread of chemical oxidation, and to explore the hotspots and trends of the research, the bibliometric method was used to visualize and analyze the number of published articles, institutions and keywords in the core database of Web of Science from 1990 to 2022 by using VOSviewer and CiteSpace knowledge map analysis tool. The results showed that the number of annual publications was increasing worldwide. The country with the highest total number of publications was China, followed by USA. The number of annual publications of China ranked the first since 2010. The Chinese Academy of Sciences topped the list in terms of the number of publications and the frequency of citations. Based on keyword analysis, pollutants suitable for chemical oxidation remediation technology, oxidants species, catalytic/activation methods and combined chemical oxidation remediation technology were summarized. The research hotspots focused on development of catalytic/activation method, investigation of pollutant degradation mechanism, and application in soil and groundwater remediation. Meanwhile, future research is expected to concentrate on the development of novel oxidant species and targeted activation/catalytic methods, the investigation of mechanism of materials migration and diffusion and reactive oxidizing substances generation, construction of synergistic chemical oxidation remediation technology system and promotion of engineering application. In addition, establishment of risk monitoring and evaluation system for the entire chemical oxidation remediation process also deserves attention.
-
Key words:
- contaminated sites /
- soil and groundwater /
- chemical oxidation /
- remediation /
- bibliometric analysis
-
表 1 1990—2022年场地化学氧化修复技术领域发文量前10的机构
Table 1. Top 10 institutions in the field of chemical oxidation technology for site remediation in 1990—2022
排名 机构 发文
数量/篇总被引
次数篇均被
引次数总联系
强度1 中国科学院 206 9 212 44.72 264 2 华东理工大学 98 1 820 18.57 154 3 中国科学院大学 87 2 834 32.57 138 4 中国地质大学 74 1 898 25.65 48 5 同济大学 63 2 735 43.41 89 6 清华大学 63 2 343 37.19 62 7 哈尔滨工业大学 54 2 069 38.31 54 8 南京农业大学 54 2 404 44.52 34 9 西安建筑科技大学 53 2 771 52.28 43 10 亚利桑那大学 46 1 225 26.63 57 表 2 1990—2022年场地化学氧化修复技术领域发文量前10的作者
Table 2. Top 10 authors in the field of chemical oxidation technology for site remediation in 1990—2022
排名 作者 所属机构 发文数量/篇 总被引次数 篇均被引次数 1 LYU S G 华东理工大学 107 2 716 25.38 2 SUI Q 华东理工大学 64 2 031 31.73 3 QIU Z F 华东理工大学 58 1 984 34.21 4 GU X G 上海市城市建设设计研究总院
(原华东理工大学)50 1 744 34.88 5 SANTOS A 马德里康普顿斯大学 36 692 19.22 6 DANISH M 马丹工程与技术大学 32 677 21.16 7 ZHOU D M 南京大学 (原中国科学院) 31 1 969 63.52 8 FANG G D 中国科学院 30 1 931 64.37 9 ROMERO A 马德里康普顿斯大学 30 674 22.47 10 XU J L 西安建筑科技大学 29 309 10.66 表 3 1990—2022年场地化学氧化修复技术领域载文量前10的期刊
Table 3. Top 10 journals in the field of chemical oxidation technology for site remediation in 1990—2022
排名 期刊 国家 文献数量/篇 引用次数 影响因子 (2022年) 1 Chemosphere 英国 405 17 870 8.8 2 Journal of Hazardous Materials 荷兰 329 17 989 13.6 3 Chemical Engineering Journal 瑞士 293 15 299 15.1 4 Environmental Science & Technology 美国 204 19 204 11.4 5 Water Research 英国 199 14 952 12.8 6 Science of the Total Environment 荷兰 157 9 275 9.8 7 Environmental Science and Pollution Research 德国 154 2 359 5.8 8 Journal of Environmental Management 英国 82 2 801 8.7 9 Separation and Purification Technology 荷兰 81 1 934 8.6 10 Water Science and Technology 英国 79 1 426 2.7 表 4 化学氧化联合其他修复技术降解污染物应用情况
Table 4. Application of chemical oxidation coupled with other remediation techniques for pollutants degradation
联用技术 污染物及浓度 降解条件 去除效果 来源 化学氧化+
生物修复苯并[a]芘,
[BaP]=0.7 mg·kg−1500 g土壤,含水率20%,10~40 mmol·L−1 Na2S2O8或KMnO4,25 ℃,60 d 20 mmol·L−1 Na2S2O8:98%;
10 mmol·L−1 KMnO4:84%;
显著促进微生物群落的活力文献[53] 化学氧化+
淋洗菲、荧蒽、芘,
浓度均为100 mg·kg−1①十二烷基硫酸钠淋洗20 g土壤48 h;
②含nZVI或SiO2/nZVI的50 mmol·L−1过硫酸盐溶液处理淋洗废液,25 ℃,30 minnZVI:84%、89%、91%;
SiO2/nZVI:75%、85%、87%文献[54] 化学氧化+
热修复多环芳烃,
[PAHs]=101.6 mg·kg−1125 g土壤,0~2.5 mmol·g−1Na2S2O8,电强8 v·cm−1,6 g 0.1% NaCl电解质溶液,90±10 ℃,240 min 电阻加热 (ERH) :36%;
ERH+2.5 mmol·g−1Na2S2O8:79%文献[55] 化学氧化+
电动修复石油烃,
[TPH]=10 000 mg·kg−13 kg土壤,Fe3O4 (阳极) 和石墨 (阴极) ,电压1.0 V·cm−1,15 d,阳极电解液为10% H2O2+0.1 mol·L−1柠檬酸,阴极电解液为0.1 mol·L−1柠檬酸 89% 文献[56] 化学氧化+
抽提挥发性有机污染物,包括N-亚硝基二甲胺、三氯乙烯和二氯乙烷 氯气/紫外光 (Cl2/UV) 化学氧化工艺
过氧化氢/紫外光 (H2O2/UV) 化学氧化工艺两种污染物的去除率均接近100%,且Cl2/UV工艺成本更低 文献[57] 重质非水相液体,包括氯乙烯、二氯乙烷、三氯乙烷和三氯乙烯 ①抽提,1~180 d
②抽提+化学氧化 (1.5% Na2S2O8和0.03% NaOH) ,180~228 d
③监测污染物及SO42-浓度,连续监测90 d经抽提+化学氧化处理后,地下水中氯代烃浓度均降低至目标浓度以下 文献[58] -
[1] 骆永明. 中国污染场地修复的研究进展、问题与展望[J]. 环境监测管理与技术, 2011, 23(3): 1-6. doi: 10.3969/j.issn.1006-2009.2011.03.002 [2] 姜林, 梁竞, 钟茂生, 等. 复杂污染场地的风险管理挑战及应对[J]. 环境科学研究, 2021, 34(2): 458-467. doi: 10.13198/j.issn.1001-6929.2020.07.14 [3] ZHAO C, DONG Y, FENG Y P, et al. Thermal desorption for remediation of contaminated soil: a review[J]. Chemosphere, 2019, 221: 841-855. doi: 10.1016/j.chemosphere.2019.01.079 [4] GAVRILESCU M. Fate of pesticides in the environment and its bioremediation[J]. Engineering in Life Sciences, 2005, 5(6): 497-526. doi: 10.1002/elsc.200520098 [5] LI H, HAN Z T, QIAN Y, et al. In situ persulfate oxidation of 1, 2, 3-trichloropropane in groundwater of north China plain[J]. International Journal of Environmental Research and Public Health, 2019, 16(15): 2752. doi: 10.3390/ijerph16152752 [6] 李倩, 杨璐, 姜越, 等. 农药生产场地污染土壤的化学氧化修复技术研究进展[J]. 生态与农村环境学报, 2021, 37(1): 19-29. doi: 10.19741/j.issn.1673-4831.2020.0063 [7] LI G Q, LIU Y B, HUANG W, et al. Simultaneous remediation of arsenic and organic chemicals contaminated soil and groundwater using chemical oxidation and precipitation/stabilization: a case study[J]. Journal of Environmental Management, 2023, 30(36): 86478-86483. [8] 李影辉. 美国有机污染场地化学氧化修复案例分析[J]. 环境工程, 2016, 34(S1): 965-969. [9] 邢绍文, 李云, 吴劲松. 上海市某污染场地土壤异位化学氧化修复方案设计[J]. 环境污染与防治, 2022, 44(3): 381-385. doi: 10.15985/j.cnki.1001-3865.2022.03.017 [10] US Environmental Protection Agency. Superfund remedy report (16th edition) fact sheet[R]. Washington DC: Office of Health and Environmental Assessment, 2020. [11] 郑苇, 高波, 闵海华, 等. 我国污染场地修复技术应用现状与发展研究[J]. 环境卫生工程, 2019, 27(3): 6-8. doi: 10.3969/j.issn.1005-8206.2019.03.002 [12] 严康, 楼骏, 汪海珍, 等. 污染场地研究现状与发展趋势: 基于知识图谱的分析[J]. 土壤学报, 2021, 58(5): 1234-1245. [13] USMAN M, HO Y S. A bibliometric study of the Fenton oxidation for soil and water remediation[J]. Journal of Environmental Management, 2020, 270: 110886. doi: 10.1016/j.jenvman.2020.110886 [14] ZHOU Z, LIU X T, SUN K, et al. Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: a review[J]. Chemical Engineering Journal, 2019, 372: 836-851. doi: 10.1016/j.cej.2019.04.213 [15] CHENG M, ZENG G M, HUANG D L, et al. Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review[J]. Chemical Engineering Journal, 2016, 284: 582-598. doi: 10.1016/j.cej.2015.09.001 [16] ZHOU L, ZHENG W, JI Y F, et al. Ferrous-activated persulfate oxidation of arsenic (III) and diuron in aquatic system[J]. Journal of Hazardous Materials, 2013, 263: 422-430. doi: 10.1016/j.jhazmat.2013.09.056 [17] 吴志远, 张丽娜, 夏天翔, 等. 基于土壤重金属及PAHs来源的人体健康风险定量评价: 以北京某工业污染场地为例[J]. 环境科学, 2020, 41(9): 4180-4196. doi: 10.13227/j.hjkx.201910152 [18] GAN S, LAU E V, NG H K. Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs) [J]. Journal of Hazardous Materials, 2009, 172(2/3): 532-549. [19] 梁增强, 杨菁, 毛安琪. 典型行业污染场地重点关注污染物浅析[J]. 广东化工, 2018, 45(14): 201-202. doi: 10.3969/j.issn.1007-1865.2018.14.091 [20] FANG Y, QIAN B Y, YANG Y, et al. Purification of high-arsenic groundwater by magnetic bimetallic MOFs coupled with PMS: balance of catalysis and adsorption and promotion mechanism of PMS[J]. Chemical Engineering Journal, 2022, 432: 134417. doi: 10.1016/j.cej.2021.134417 [21] 赵丹, 廖晓勇, 阎秀兰, 等. 不同化学氧化剂对焦化污染场地多环芳烃的修复效果[J]. 环境科学, 2011, 32(3): 857-863. doi: 10.13227/j.hjkx.2011.03.033 [22] VICENTE F, ROSAS J M, SANTOS A, et al. Improvement soil remediation by using stabilizers and chelating agents in a Fenton-like process[J]. Chemical Engineering Journal, 2011, 172(2/3): 689-697. [23] XUE X F, HANNA K, DESPAS C, et al. Effect of chelating agent on the oxidation rate of PCP in the magnetite/H2O2 system at neutral pH[J]. Journal of Molecular Catalysis A: Chemical, 2009, 311(1/2): 29-35. [24] HE J, YANG X F, MEN B, et al. EDTA enhanced heterogeneous Fenton oxidation of dimethyl phthalate catalyzed by Fe3O4: kinetics and interface mechanism[J]. Journal of Molecular Catalysis A: Chemical, 2015, 408: 179-188. doi: 10.1016/j.molcata.2015.07.030 [25] BRILLAS E. Fenton, photo-Fenton, electro-Fenton, and their combined treatments for the removal of insecticides from waters and soils. a review[J]. Separation and Purification Technology, 2022, 284: 120290. doi: 10.1016/j.seppur.2021.120290 [26] GHARAEE A, KHOSRAVI-NIKOU M R, ANVARIPOUR B. Hydrocarbon contaminated soil remediation: a comparison between Fenton, sono-Fenton, photo-Fenton and sono-photo-Fenton processes[J]. Journal of Industrial and Engineering Chemistry, 2019, 79: 181-193. doi: 10.1016/j.jiec.2019.06.033 [27] WU Y Q, SONG K. Effect of thermal activated peroxydisulfate pretreatment on short-chain fatty acids production from waste activated sludge anaerobic fermentation[J]. Bioresource Technology, 2019, 292: 121977. doi: 10.1016/j.biortech.2019.121977 [28] SANTOS A, FERNANDEZ J, RODRIGUEZ S, et al. Abatement of chlorinated compounds in groundwater contaminated by HCH wastes using ISCO with alkali activated persulfate[J]. Science of the Total Environment, 2018, 615: 1070-1077. doi: 10.1016/j.scitotenv.2017.09.224 [29] LUO T, WAN J, MA Y, et al. Sulfamethoxazole degradation by an Fe (Ⅱ) -activated persulfate process: insight into the reactive sites, product identification and degradation pathways[J]. Environmental Science: Processes and Impacts, 2019, 21(9): 1560-1569. doi: 10.1039/C9EM00254E [30] LIU J, ZHONG S, SONG Y, et al. Degradation of tetracycline hydrochloride by electro-activated persulfate oxidation[J]. Journal of Electroanalytical Chemistry, 2018, 809: 74-79. doi: 10.1016/j.jelechem.2017.12.033 [31] CHEN T S, MA J S, ZHANG Q X, et al. Degradation of propranolol by UV-activated persulfate oxidation: reaction kinetics, mechanisms, reactive sites, transformation pathways and gaussian calculation[J]. Science of the Total Environment, 2019, 690: 878-890. doi: 10.1016/j.scitotenv.2019.07.034 [32] SRA K S, THOMSON N R, BARKER J F. Persistence of persulfate in uncontaminated aquifer materials[J]. Environmental Science & Technology, 2010, 44(8): 3098-3104. [33] O'MAHONY M M, DOSBON A D W, BARNES J D, et al. The use of ozone in the remediation of polycyclic aromatic hydrocarbon contaminated soil[J]. Chemosphere, 2006, 63(2): 307-314. doi: 10.1016/j.chemosphere.2005.07.018 [34] Zhang H, JI L, WU F, et al. In situ ozonation of anthracene in unsaturated porous media[J]. Journal of Hazardous Materials, 2005, 120(1/2/3): 143-148. [35] GOI A, VIISIMAA M, TRAPIDO M, et al. Polychlorinated biphenyls-containing electrical insulating oil contaminated soil treatment with calcium and magnesium peroxides[J]. Chemosphere, 2011, 82(8): 1196-1201. doi: 10.1016/j.chemosphere.2010.11.053 [36] ZHANG T, LIU Y Y, ZHONG S, et al. AOPs-based remediation of petroleum hydrocarbons-contaminated soils: efficiency, influencing factors and environmental impacts[J]. Chemosphere, 2020, 246: 125726. doi: 10.1016/j.chemosphere.2019.125726 [37] WEI K H, MA J, XI B D, et al. Recent progress on in-situ chemical oxidation for the remediation of petroleum contaminated soil and groundwater[J]. Journal of Hazardous Materials, 2022, 432: 128738. doi: 10.1016/j.jhazmat.2022.128738 [38] CAO Y X, YUAN X Z, ZHAO Y L, et al. In-situ soil remediation via heterogeneous iron-based catalysts activated persulfate process: a review[J]. Chemical Engineering Journal, 2022, 431: 133833. doi: 10.1016/j.cej.2021.133833 [39] 可欣, 周燕, 张飞杰, 等. 污染场地修复药剂安全利用问题及对策[J]. 环境科学研究, 2021, 34(6): 1473-1481. doi: 10.13198/j.issn.1001-6929.2020.12.02 [40] WANG Z X, SONG J H, YUAN W Y, et al. Quantitative monitoring and potential mechanism of the secondary corrosion risk of PAH-contaminated soil remediated by persulfate oxidation[J]. Journal of Environmental Management, 2023, 325: 116407. doi: 10.1016/j.jenvman.2022.116407 [41] ZHAO D, LIAO X Y, YAN X L, et al. Effect and mechanism of persulfate activated by different methods for PAHs removal in soil[J]. Journal of Hazardous Materials, 2013, 254/255: 228-235. doi: 10.1016/j.jhazmat.2013.03.056 [42] WANG B, DENG C X, MA W, et al. Modified nanoscale zero-valent iron in persulfate activation for organic pollution remediation: a review[J]. Environmental Science and Pollution Research, 2021, 28(26): 34229-34247. doi: 10.1007/s11356-021-13972-w [43] Wang J L, Wang S Z. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. doi: 10.1016/j.cej.2017.11.059 [44] SUTTON N B, GROTENHUIS T, RIJNAARTS H H M. Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil[J]. Chemosphere, 2014, 97: 64-70. doi: 10.1016/j.chemosphere.2013.11.005 [45] SUTTON N B, LANGENHOFF A A M, LASSO D H, et al. Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils[J]. Applied Microbiology and Biotechnology, 2014, 98(6): 2751-2764. doi: 10.1007/s00253-013-5256-4 [46] CAJAL-MARINOSA P, REICH O, MOBES A, et al. Treatment of composted soils contaminated with petroleum hydrocarbons using chemical oxidation followed by enhanced aerobic bioremediation[J]. Journal of Advanced Oxidation Technologies, 2012, 15(1): 217-223. [47] LI Z H. Surfactant-enhanced oxidation of trichloroethylene by permanganate-proof concept[J]. Chemosphere, 2004, 54(3): 419-423. doi: 10.1016/S0045-6535(03)00752-5 [48] DUGAN P J, SIEGRIST R L, CRIMI M L. Coupling surfactants/cosolvents with oxidants for enhanced DNAPL removal: a review[J]. Science of the Total Environment, 2010, 20(3): 27-49. [49] JEFFERS P M, WARD L M, WOYTOWITCH L M, et al. Homogeneous hydrolysis rate constants for selected chlorinated methanes, ethanes, ethenes, and propanes[J]. Environmental Science & Technology, 1989, 23(8): 965-969. [50] NG Y S, SEN GUPTA B, HASHIM M A. Stability and performance enhancements of electrokinetic-Fenton soil remediation[J]. Reviews in Environmental Science and Bio/Technology, 2014, 13(3): 251-263. doi: 10.1007/s11157-014-9335-5 [51] YUKSELEN-AKSOY Y, REDDY K R. Electrokinetic delivery and activation of persulfate for oxidation of PCBs in clayey soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(1): 175-184. doi: 10.1061/(ASCE)GT.1943-5606.0000744 [52] HEAD N A, GERHARD J I, INGLIS A M, et al. Field test of electrokinetically-delivered thermally activated persulfate for remediation of chlorinated solvents in clay[J]. Water Research, 2020, 183: 116061. doi: 10.1016/j.watres.2020.116061 [53] XU S, WANG W, ZHU L Z. Enhanced microbial degradation of benzo [a] pyrene by chemical oxidation[J]. Science of the Total Environment, 2019, 653: 1293-1300. doi: 10.1016/j.scitotenv.2018.10.444 [54] QIU Y H, XU M L, SUN Z Q, et al. Remediation of PAH contaminated soil by combining surfactant enhanced soil washing and iron-activated persulfate oxidation process[J]. International Journal of Environmental Research and Public Health, 2019, 16(3): 441. doi: 10.3390/ijerph16030441 [55] HAN Z Y, LI S H, YUE Y, et al. Enhancing remediation of PAH-contaminated soil through coupling electrical resistance heating using Na2S2O8[J]. Environmental Research, 2021, 198: 110457. doi: 10.1016/j.envres.2020.110457 [56] PAIXAO I C, LOPEX-VIZCAINO R, SOLANO A M S, et al. Electrokinetic-Fenton for the remediation low hydraulic conductivity soil contaminated with petroleum[J]. Chemosphere, 2020, 248: 126029. doi: 10.1016/j.chemosphere.2020.126029 [57] BOAL A K, RHODES C, GARCIA S. Pump-and-treat groundwater remediation using chlorine/ultraviolet advanced oxidation processes[J]. Ground Water Monitoring and Remediation, 2015, 35(2): 93-100. doi: 10.1111/gwmr.12095 [58] XIE T, DANG Z, ZHANG J, et al. Decontamination of dense nonaqueous-phase liquids in groundwater using pump-and-treat and in situ chemical oxidation processes: a field test[J]. RSC Advances, 2021, 11(7): 4237-4246. doi: 10.1039/D0RA10010B [59] 蒲生彦, 唐菁, 侯国庆, 等. 缓释型化学氧化剂在地下水DNAPLs污染修复中的应用研究进展[J]. 环境化学, 2020, 39(3): 791-799. doi: 10.7524/j.issn.0254-6108.2019103004 [60] Yuan B L, Chen Y M, Fu M L, et al. Degradation efficiencies and mechanisms of trichloroethylene (TCE) by controlled-release permanganate (CRP) oxidation[J]. Chemical Engineering Journal, 2012, 192(2): 276-283. [61] 李传维, 迟克宇, 杨乐巍, 等. 碱活化过硫酸盐在某氯代烃污染场地地下水修复中的应用[J]. 环境工程学报, 2021, 15(6): 1916-1926. doi: 10.12030/j.cjee.202101012 [62] DESALEGN B, MEGHARAJ M, CHEN Z L, et al. Green mango peel-nanozerovalent iron activated persulfate oxidation of petroleum hydrocarbons in oil sludge contaminated soil[J]. Environmental Science & Technology, 2018, 11: 142-152. [63] HONG Y M, YUE X P, ZHNAG Y P, et al. Effect of activated persulfate on the properties of contaminated soil and degradation behavior of PAHs[J]. Environmental Engineering Research, 2023, 28(3): 220075. [64] CHEN K F, CHANG Y C, CHIOU W T. Remediation of diesel-contaminated soil using in situ chemical oxidation (ISCO) and the effects of common oxidants on the indigenous microbial community: a comparison study[J]. Journal of Chemical Technology and Biotechnology, 2016, 91(6): 1877-1888. doi: 10.1002/jctb.4781 [65] 王珍霞, 宋久浩, 苑文仪, 等. 我国污染场地化学氧化修复技术应用特征及再利用潜在腐蚀风险分析[J]. 环境科学研究, 2022, 35(5): 1140-1149. doi: 10.13198/j.issn.1001-6929.2022.03.10 [66] YAP C L, GAN S Y, NG H K. Fenton based remediation of polycyclic aromatic hydrocarbons-contaminated soils[J]. Chemosphere, 2011, 83(11): 1414-1430. doi: 10.1016/j.chemosphere.2011.01.026