-
我国生活垃圾焚烧行业发展迅猛,环境风险不容忽视。根据文献[1]以及我国生态环境部的公开数据,截至2022年,全球生活垃圾焚烧发电厂 (以下简称焚烧厂) 的焚烧规模约为1.41×106 t·d−1。其中,我国 (不含港澳台地区) 的焚烧规模为9.30×105 t·d−1,占比66.1%,排名第1,大于第2~4名欧盟 (2.07×104 t·d−1、占比14.7%) 、美国 (8.87×104 t·d−1、6.3%) 、日本 (9.22×104 t·d−1、6.5%) 的合计规模,且仍在增长。为防控相关环境风险,我国生态环境部在“十三五”期间启动了生活垃圾焚烧发电行业专项整治,采用了自动监测等诸多创新的手段和方法,出台了《生活垃圾焚烧发电厂自动监测数据应用管理规定》 (生态环境部令第10号) 和《生活垃圾焚烧发电厂自动监测数据标记规则》 (生态环境部公告2019年第50号) 等环境监管新政[2],建立了“互联网+全天候监管+非现场执法”模式,引导和督促焚烧厂提高烟气达标水平,使得全行业率先实现基本达标排放,取得了显著的环境效益、社会效益和经济效益,实现了精准治污、科学治污和依法治污,得到了社会的广泛认可[3-5]。
与此同时,部分省市为降低污染物排放总量,已经出台或正在推动更加严格的垃圾焚烧地方标准限值[6];此外,国家层面上积极推动县级地区垃圾焚烧处理设施覆盖范围向建制镇和乡村延伸[7]。与之有关的报道和议论进一步引发人们对生活垃圾焚烧烟气排放与监管标准的思考。1) 我国标准处于何种水平?2) 焚烧厂达标能力是否满足?3) 欧盟、美国、日本等发达国家 (地区) 的标准能否借鉴?
现有文献中对国内外垃圾焚烧排放与监管标准的对比仅关注了排放限值的数值差异,尚未深入分析国内外标准在历史沿革、基准条件、适用对象、执行尺度等方面的差异和原因,从而难以深入回答前述问题。本研究基于2017年以来国内生活垃圾焚烧行业专项整治取得的成效,深入分析国内外标准的差异及原因,有利于识别我国生活垃圾焚烧行业环境监管政策和模式与发达国家 (地区) 的差异,可为进一步优化固定源环境监管政策和模式提供依据。
国内外生活垃圾焚烧烟气排放与监管标准比较分析
A comparison of emission and supervision standards on exhaust gas from municipal solid waste incineration in China and developed countries
-
摘要: 我国生活垃圾焚烧发电规模占全球的66.1%,环境风险不容忽视,需要制定适宜的烟气污染物排放限值与监管措施,可参考欧盟、美国、日本等较早应用生活垃圾焚烧处理的国家 (地区) 的有益经验。但是,现有的国内外对比研究仅关注了排放限值的差异,忽略了国内外标准在历史沿革、基准条件、适用对象、执行尺度等方面的差异及原因。本研究基于2017年以来国内生活垃圾焚烧行业专项整治取得的成效,深入分析国内外标准的差异及原因,得出以下结论:1) 烟气排放限值落地执行需要与之配套的监管措施,自动监测手段有利于实现对生活垃圾焚烧烟气常规污染物及炉温的全天候监管,在欧盟、美国已广泛应用,在我国的应用已取得良好成效;2) 与国外相比,我国生活垃圾焚烧烟气排放限值未考虑焚烧炉规模与技术差异化的影响,在排放与监管标准中未兼顾小型焚烧炉,但实际上有必要给予小型焚烧炉适度的、合理的差异化要求,以规范市场并增强环境监管的严肃性;3) 与国外相比,我国生活垃圾焚烧烟气排放限值总体上处于严格行列,监管刚性很强但柔性不足,部分省市制定的地方标准限值严于欧盟,但缺乏类似欧盟标准B类限值的达标评价方式,有必要在探索“正面清单”等更为灵活的监管方式的同时,基于自动监测手段表现出的精准监管能力,进一步优化和拓展更具弹性的排放限值与监管措施。本研究有利于识别我国生活垃圾焚烧行业环境监管政策和模式与发达国家 (地区) 的差异,可为进一步优化固定源环境监管政策和模式提供依据。Abstract: The scale of municipal solid waste (MSW) incineration of China accounts for 66.1% of the global total. The environmental risks cannot be neglected and appropriate emission limits and relevant supervision for exhaust gas pollutants should be established. Valuable experiences from countries (regions) that had earlier applications of waste incineration, such as European Union, the United States and Japan, can be considered. However, existing domestic and international comparative studies have only focused on the differences in emission limits stated by the standards, overlooking the differences and reasons for the historical evolution, baseline conditions, applicable targets, and severity of implementation. Based on the achievements of the rectification in waste incineration industry in China since 2017, this study thoroughly analyzed the differences and reasons for standards in China and foreign countries (regions), and drew the following conclusions. 1) The implementation of emission standards requires accompanying supervision measures. Automated monitoring methods were advantageous for achieving round-the-clock supervision of pollutants in exhaust gas. They have been widely adopted in Europe and the United States, and positive success was achieved in China as well. 2) Compared to foreign standards, the emission limit values for MSW incineration exhaust gas in China did not take into account the influences of scale differentiation. Small scale incinerators haven’t been adequately considered in standards for emissions and supervision. But it was necessary to provide moderate and rational differentiated requirements for them, in order to regulate the market and enhance the seriousness of environmental supervision. 3) Compared to foreign standards, the emission limit values for MSW incineration exhaust gas in China are relatively strict, with strong rigidity but insufficient flexibility. Some regional standards were more stringent than those in the European Union. However, there was a lack of benchmark assessment similar to the limits of Class B in EU standards. It was necessary to explore more flexible approaches such as "white lists" while further optimizing and expanding current emission standards and supervision methods based on the precision demonstrated by automated monitoring methods. This article is beneficial for clarifying the confidence in China’s supervision system in realms of waste incineration, and it provides a basis for further optimization in the policies and patterns for the environmental supervision of stationary sources.
-
Key words:
- waste incineration /
- supervision standards /
- emission limits /
- automated monitoring /
- dioxins
-
图 2 我国生活垃圾焚烧发电行业的自动监控系统 (引自文献[2])
Figure 2. Automated supervision system of solid waste incineration facilities in China
表 1 不同国家 (地区) 生活垃圾焚烧烟气污染物排放限值对比
Table 1. A comparison of flue gas emission limit from solid waste incineration facilities in different countries or regions
国家或
地区排放要求 颗粒物/
mg·Nm−3CO/
mg·Nm−3SO2/
mg·Nm−3HCl/
mg·Nm−3NOx/
mg·Nm−3HF/
mg·Nm−3TOC/
mg·Nm−3Cd+Tl/
mg·Nm−3Hg/
mg·Nm−3Pb等/
mg·Nm−3二噁英类/
ng I-TEQ·Nm−3中国 《生活垃圾焚烧污染控制标准》 (GB 18485—2014) 24 h均值 20 80 80 50 250 — — — — — — 1 h均值 30 100 100 60 300 — — — — — — 测定均值 — — — — — — — 0.1 0.05 1 0.1 上海市《生活垃圾焚烧大气污染物排放标准》 (DB31/ 768—2013) 24 h均值 10 50 50 10 200 — — — — — — 1 h均值 10 100 100 50 250 — — — — — — 测定均值 — — — — — — — 0.05 0.05 0.5 0.1 天津市《生活垃圾焚烧大气污染物排放标准》 (DB12/ 1101—2021) 24 h均值 8 50 20 10 80 — — — — — — 1 h均值 10 100 40 20 150 — — — — — — 测定均值 — — — — — — — 0.03 0.02 0.3 0.1 河北省《生活垃圾焚烧大气污染排放标准》 (DB13/ 5325—2021) 24 h均值 8 80 20 10 120 — — — — — — 1 h均值 10 100 40 20 150 — — — — — — 测定均值 — — — — — — — 0.03 0.02 0.3 0.1 福建省《生活垃圾焚烧氮氧化物排放标准》 (DB35/ 1976—2021) 新、改、扩建设施 24 h均值 — — — — 120 — — — — — — 1 h均值 — — — — 150 — — — — — — 海南省《生活垃圾焚烧污染控制标准》 (DB46/ 484—2019) 24 h均值 8 30 20 8 120 1 10 — — — — 1 h均值 10 50 30 10 150 2 20 — — — — 测定均值 — — — — — — — 0.03 0.02 0.3 0.05 深圳市《生活垃圾处理设施运营规范》 (SZDB/Z 233—2017) 新建设施 24 h均值 8 30 30 8 80 1 10 — — — — 1 h均值 10 50 30 8 80 2 10 — — — — 测定均值 — — — — — — — 0.04 0.02 0.3 0.05 欧盟 《工业排放指令》 (Directive 2010/75/EU) 日均值 10 50 50 10 200或400a 1 10 — — — — 0.5 h均值 (A类) 30 100 200 60 400 4 20 — — — — 0.5 h均值 (B类) 10 100 50 10 200 2 10 — — — — 测定均值 — — — — — — — 0.05 0.05 0.5 0.1 日本b 《废弃物处理设施管理指南:垃圾焚烧设施 (第2版) 》 4t·h−1以上 44.4 41.7 视情况而定 777.8 570.4 — — — — — 0.11 美国c 40 CFR part 60,Ea子部分 26.1 48~144 65.7 31.2 283.4 — — — — — 0.38 40 CFR part 60,Eb子部分 2005年以前 18.4 48~144 65.7 31.2 236.1 — — 0.02 0.06 0.15 0.17 2005年以后 15.3 48~144 65.7 31.2 236.1 — — 0.01 0.04 0.11 0.17 40 CFR part 60,AAAA子部分 18.4 48~144 65.7 31.2 236~866 — — 0.02 0.06 0.02 0.17 40 CFR part 60,BBBB子部分 I类 20.7 48~240 67.9 38.7 268~598 — — 0.03 0.06 0.38 0.38或0.76 II类 53.7 48~240 168.7 312.3 — — — 0.08 0.06 1.23 1.60 注:a) 对于≤6 t·h−1的焚烧炉采用更宽松的限值;b) 已按烟气基准含氧量11%进行了折算;c) 已按烟气基准含氧量11%、标准状态为0 ℃进行了折算,污染物浓度已从体积浓度换算为质量浓度,二噁英类毒性当量浓度参照文献[9]按质量浓度除以60换算,重金属指标不同于中国和欧盟。 -
[1] LU J W, ZHANG S, HAI J, et al. Status and perspectives of municipal solid waste incineration in China: A comparison with developed regions[J]. Waste Management, 2017, 69(C): 170-186. [2] 生态环境部生态环境执法局, 生态环境部华南环境科学研究所. 生活垃圾焚烧发电厂自动监测数据管理新政解读[M]. 北京: 中国环境出版集团, 2020. [3] 于天昊. 垃圾焚烧发电行业如何做到“华丽转身”?[N]. 中国环境报, 2021-03-15(1). [4] 陈郁. 我国垃圾焚烧发电行业专项整治取得显著成效, 自动监测数据立功[N]. 经济日报, 2021-01-04. [5] 王玮, 郭建兵. 垃圾焚烧发电行业专项整治行动成效系列报道(5)垃圾焚烧发电——可供世界借鉴的中国方案[J]. 环境经济, 2023(1): 52-55. [6] 沈华鑫, 程江, 谢颖诗, 等. 垃圾分类背景下厨余垃圾剔除比例对生活垃圾焚烧厂NOx排放的影响[J]. 环境工程学报, 2021, 15(12): 3957-3966. [7] 发展改革委, 住房城乡建设部, 生态环境部, 等. 国家发展改革委等部门关于加强县级地区生活垃圾焚烧处理设施建设的指导意见(发改环资〔2022〕1746号)[EB/OL]. 2022. https://www.gov.cn/zhengce/zhengceku/2022-11/content_5729354.htm [8] ISWA. Waste-to-energy state-of-the-art-report statistics, 6th edition with revision[M]. International Solid Waste Association, 2013. [9] LICATA A, HARTENSTEIN H U, TERRACCIANO L. Comparison of US EPA and European emission standards for combustion and incineration technologies: Proceedings of the 5th annual North American waste-to-energy conference and exhibition[C]. U. S. : Research Triangle Park, 1997. [10] EUROPEAN COMMUNITIES. Council Directive 89/369/EEC of 8 June 1989 on the prevention of air pollution from new municipal waste incineration plants[S]. 1989. [11] EUROPEAN COMMUNITIES. Proposal for a Council Directive on the incineration of hazardous waste (92/C130/01): Official Journal of the European Communities: [S]. 1992. [12] EUROPEAN UNION. COUNCIL DIRECTIVE 96/61/EC of 24 September 1996 concerning integrated pollution prevention and control: [S]. 1996. [13] EUROPEAN UNION. Directive 2000/76/EC of the European Parliament and of the Council of 4 December 2000 on the incineration of waste[S]. 2000. [14] EUROPEAN UNION. Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control)[S]. 2010. [15] 环境保护部. 污染物在线监控(监测)系统数据传输标准(HJ 212—2017)[S]. 2017. [16] BRINKMANN T, BOTH R, SCALET B M, et al. JRC Reference report on monitoring of emissions to air and water from IED installations[R]. European Commission’s Joint Research Centre, 2018. [17] GEERTINGER A, BLINKSBJERG P, SPOELSTRA H, et al. Quality assurance of automated measuring systems –background for a new european standard: Conference on Emission Monitoring – CEM 2001[C]. Arnhem, Netherlands. 2001. [18] 生态环境部办公厅. 关于加强生活垃圾焚烧电厂自动监控和监管执法工作的通知(环办执法〔2019〕64号) [Z]. 2019 [19] EUROPEAN COMMITTEE FOR STANDARDIZATION. Stationary source emissions - Determination of the mass concentration of PCDDs/PCDFs and dioxin-like PCBs - Part 5: Long-term sampling of PCDDs/PCDFs and PCBs[S]. 2015. [20] REINMANN J. Long-Term Sampling–A Method for Continuous Emission Monitoring of Dioxins/Furans and Mercury[R]. Environnement S. A. , 2012. [21] PSOMOPOULOS C, BOURKA A, THEMELIS N J. Waste-to-energy: A review of the status and benefits in USA[J]. Waste Management, 2009, 29(5): 1718-1724. doi: 10.1016/j.wasman.2008.11.020 [22] US EPA. Code of Federal Regulations: PART 60—Standards of performance for new stationary sources[S]. 2011. [23] 日本环境省. 一般廃棄物の排出及び処理状況等(令和3年度)について[R], 2023. [24] 日本环境省. 廃棄物処理施設の発注仕様書作成の手引き (標準発注仕様書及びその解説) エネルギー回収推進施設編: ごみ焼却施設(第2版)[M]. 2013. [25] 千葉県環境生活部大気保全課. 事業者のための大気汚染防止法のてびき(平成28年4月版)[S]. 2016. [26] EU TWG. Integrated pollution prevention and control reference document on the best available techniques for waste incineration[R]. European Commission Technical Working Group on Waste Incineration, 2006. [27] 住房和城乡建设部. 生活垃圾焚烧处理工程技术规范 (CJJ 90—2009)[S]. 北京: 中国建筑工业出版社, 2009. [28] NEUWAHL F, CUSANO G, BENAVIDES J G, et al. Best available techniques (BAT) reference document for waste incineration[R]: JRC Science Hub, 2019. [29] HUANG Y, LU J W, XIE Y, et al. Process tracing of PCDD/Fs from economizer to APCDs during solid waste incineration: Re-formation and transformation mechanisms[J]. Waste Management, 2021, 120: 839-847. doi: 10.1016/j.wasman.2020.11.007 [30] LU J W, XIE Y, XIE B, et al. Buffering effect of the economizer against PCDD/Fs in flue gas from solid waste incineration plants[J]. Waste Management, 2023, 167: 103-112. doi: 10.1016/j.wasman.2023.05.029 [31] 国家质量监督检验检疫总局, 国家标准化管理委员会. 生活垃圾焚烧炉及余热锅炉 (GB/T—2008)[S]. 北京: 中国标准出版社, 2008: [32] 雷鸣, 谢冰, 海景, 等. 小型简易生活垃圾焚烧炉二噁英类排放特征及呼吸暴露风险评估[J]. 环境污染与防治, 2019, 41(12): 1471-1476. [33] 雷鸣, 谢冰, 海景, 等. 生活垃圾焚烧炉湿法洗涤后烟气二噁英的排放特征[J]. 环境工程, 2019, 37(7): 153-158. [34] 雷鸣, 海景, 程江, 等. 小型生活垃圾热处理炉二恶英和重金属的排放特征[J]. 中国环境科学, 2017, 37(10): 3836-3844. [35] XIE Y, LU J W, XIE B, et al. Systematic evaluation of decentralized thermal treatment of rural solid waste: status, challenges, and perspectives[J]. Resources Conservation & Recycling Advances, 2022, 15(4): 200116. [36] LEI M, HAI J, CHENG J, et al. Variation of toxic pollutants emission during a feeding cycle from an updraft fixed bed gasifier for disposing rural solid waste[J]. Chinese Journal of Chemical Engineering, 2018, 26: 608-613. doi: 10.1016/j.cjche.2017.07.019 [37] 雷鸣, 海景, 卢加伟, 等. 上吸式固定床气化炉处理生活垃圾时二噁英的形成与迁移[J]. 华南理工大学学报(自然科学版), 2017, 45(11): 139-146. [38] 生态环境部办公厅. 关于加强生态环境监督执法正面清单管理推动差异化执法监管的指导意见(环办执法〔2021〕10号)[EB/OL]. 2021.https://www.mee.gov.cn/xxgk2018/xxgk/xxgk05/202104/t20210423_830095.html [39] 江苏省生态环境厅, 江苏省市场监督管理局. 固定式燃气轮机大气污染物排放标准 (DB32/ 3967—2021)[S]. 2021.