-
溶解性有机物(dissloved organic matter, DOM)是粒径小于0.45 μm的异质混合物,是废水中的主要成分之一[1]。DOM难以通过常规污水处理手段去除[2],且DOM的存在会对污水中其他污染物的降解产生影响。WANG等[3]研究发现,DOM会对污水中扑米酮的高级氧化降解产生影响,进而显著影响高级氧化性能;LIN等[4]发现,小分子量的DOM会促进2,4,4′-三氯联苯的降解。相较于城镇生活污水和其他工业废水,制药污水呈现出高盐度、高毒性和可生物降解性差等特征,成分更为复杂[5]。处理过程中,制药污水中DOM更容易影响处理过程,对水中污染物的去除产生影响[6]。因此,深入了解制药污水各个阶段DOM组成及其变化情况对于污水处理厂稳定运行具有重要意义。
常规评价DOM的指标主要为溶解性有机碳(dissolved organic carbon, DOC)[7]。然而,仅用单一数值指标无法表征DOM种类及其变化情况。为了解决这个问题,研究人员使用超高分辨率质谱识别DOM组成和确定分子量[2]、尺寸排阻色谱明确DOM分子量分布情况[8]、树脂柱分离确定DOM腐殖化程度[9]等。这些方法虽然可以精确表征DOM自身特性,但存在着实验过程复杂、实验耗材昂贵、操作要求高、分析时间长等不足,无法满足工业现场即时监测表征的需要。近年来,越来越多的研究使用三维荧光光谱-平行因子分析及紫外-可见吸收光谱快速表征水体DOM[10-11]。三维荧光光谱-平行因子分析(3DEEMs-PARAFAC)可以全方位识别和解析污水中DOM组分及其组分变化情况,但对于DOM分子量变化情况、DOM芳香性表征较为困难[12]。紫外-可见吸收光谱(UV-Vis)是较为成熟的光谱分析方法,具有分析速度快、操作简单等优势。UV-Vis虽在DOM组分解析方面存在困难,但结合DOC指标可以快速表征水体DOM芳香化程度、分子量大小等3DEEMs-PARAFAC方法无法提供的指标[13]。2种方法的结合使用可以一定程度上替代复杂繁琐的传统检测方法,详细、准确、快速地表征制药污水处理过程中DOM变化情况,进而从污水分子层面监测污水处理厂运行情况。
本研究对某制药工业园区中集中污水处理厂全处理流程进行采样,运用3DEEMs-PARAFAC方法和UV-Vis吸收光谱对污水处理厂全处理流程和不同处理单元DOM种类、分子量、腐殖化程度等进行表征,明确DOM变化情况,为监测污水处理厂运行情况,保证运行稳定和日后改进污水处理工艺提供可借鉴的技术方法。
基于三维荧光光谱-平行因子分析及紫外-可见吸收光谱对制药污水不同处理工艺单元溶解性有机物特征分析
Characterization of dissolved organic matter in pharmaceutical wastewater treatment process units based on three-dimensional fluorescence spectroscopy-parallel factor analysis and ultraviolet-visible absorption spectroscopy
-
摘要: 利用三维荧光光谱-平行因子分析法和紫外-可见吸收光谱2种技术方法对某制药园区污水处理厂处理过程中污水溶解性有机物种类、分子量、腐殖化程度等进行表征,同时对解析出的溶解性有机物组分和水质指标进行相关性分析。三维荧光光谱-平行因子分析法解析出5类大分子溶解性有机物,组分C1是制药污水中特征污染物,组分C2和C3属于类腐殖质物质,组分C4和C5为类蛋白质物质。紫外-可见吸收光谱表明,处理过程中溶解性有机物分子量逐渐降低,腐殖化程度呈现先上升后下降的趋势。相关性分析表明,组分C4和SUVA254数值可以快速推断污水处理过程中氮含量变化情况,组分C2和C3可以推断污水溶解性有机碳变化情况。本研究技术方法和结果可以为监测污水处理厂运行情况和日后改进污水处理工艺提供支持。Abstract: The types, molecular weights, and humification degree of dissolved organic matter in wastewater treatment process of a pharmaceutical park were characterized by three-dimensional fluorescence spectroscopy-parallel factor analysis and ultraviolet-visible absorption spectroscopy. Meanwhile, the correlations between the dissolved organic matter fractions and water quality indicators were analyzed. Therefore, five types of macromolecular dissolved organic matter were tested by three-dimensional fluorescence spectroscopy-parallel factor analysis, which component C1 was the characteristic pollutant in pharmaceutical wastewater, and components C2 and C3 were humus-like substances, as well as components C4 and C5 were protein-like substances. Subsequently, ultraviolet-visible absorption spectra showed that the molecular weight of dissolved organic matter decreased gradually during the treatment, and the humification degree increased first and then decreased. Furthermore, the correlation analysis indicated that the values of components C4 and SUVA254 could quickly infer the change of nitrogen content in wastewater treatment process, and components C2 and C3 could predict the changes of dissolved organic carbon in sewage. Hence, the technical approach and results of this study could provide supports for monitoring the operation of wastewater treatment plants and improving the wastewater treatment process in the future.
-
-
[1] WANG J, LIU D, YU H, et al. Insight into suppression of dibutyl phthalate on DOM removal during municipal sewage treatment using fluorescence spectroscopy with PARAFAC and moving-window 2D-COS[J]. Science of the Total Environment, 2023, 878: 163210. doi: 10.1016/j.scitotenv.2023.163210 [2] GAN S, WU P, SONG Y, et al. Non-targeted characterization of dissolved organic matter from a wastewater treatment plant by FT-ICR-MS: A case study of hospital sewage[J]. Journal of Water Process Engineering, 2022, 48: 102834. doi: 10.1016/j.jwpe.2022.102834 [3] WANG Y, COUET M, GUTIERREZ L, et al. Impact of DOM source and character on the degradation of primidone by UV/chlorine: Reaction kinetics and disinfection by-product formation[J]. Water Research, 2020, 172: 115463. doi: 10.1016/j.watres.2019.115463 [4] LIN Z R, ZHAO L, DONG Y H. Effects of low molecular weight organic acids and fulvic acid on 2, 4, 4′-trichlorobiphenyl degradation and hydroxyl radical formation in a goethite-catalyzed Fenton-like reaction[J]. Chemical Engineering Journal, 2017, 326: 201-209. doi: 10.1016/j.cej.2017.05.112 [5] ZHANG J, DENG Y, SHI W, et al. Advanced treatment of pharmaceutical wastewater with foam fractionation coupled with heterogeneous Fenton[J]. Journal of Water Process Engineering, 2023, 54: 104052. doi: 10.1016/j.jwpe.2023.104052 [6] WEN L, YANG F, LI X, et al. Composition of dissolved organic matter (DOM) in wastewater treatment plants influent affects the efficiency of carbon and nitrogen removal[J]. Science of the Total Environment, 2023, 857: 159541. doi: 10.1016/j.scitotenv.2022.159541 [7] WU F C, KOTHAWALA D N, EVANS R D, et al. Relationships between DOC concentration, molecular size and fluorescence properties of DOM in a stream[J]. Applied Geochemistry, 2007, 22(8): 1659-1667. doi: 10.1016/j.apgeochem.2007.03.024 [8] OLGA E. TRUBETSKAYA, OLGA M. SELIVANOVA, VADIM V. Rogachevsky, et al. Transmission electron microscopy of electrophoretic humic acids fractions obtained by coupling size exclusion chromatography-polyacrylamide gel electrophoresis: The next step to understanding structural organization of soil humic matter[J]. Microchemical Journal, 2023, 193: 109177. doi: 10.1016/j.microc.2023.109177 [9] PATRICK BREZONIK, PAUL R. BLOOM, RACHEL L. SLEIGHTER, et al. Chemical differences of aquatic humic substances extracted by XAD-8 and DEAE-cellulose[J]. Journal of Environmental Chemical Engineering, 2015, 3(4): 2982-2990. doi: 10.1016/j.jece.2015.03.004 [10] QIAN F, HE M, WU J, et al. Insight into removal of dissolved organic matter in post pharmaceutical wastewater by coagulation-UV/H2O2[J]. Journal of Environmental Sciences, 2019, 76: 329-338. doi: 10.1016/j.jes.2018.05.025 [11] FENG X, SUN D. Degradation characteristics of refractory organic matter in naproxen pharmaceutical secondary effluent using vacuum ultraviolet-ozone treatment[J]. Journal of Hazardous Materials, 2023, 459: 132056. doi: 10.1016/j.jhazmat.2023.132056 [12] ZHANG J, SONG F, LI T, et al. Simulated photo-degradation of dissolved organic matter in lakes revealed by three-dimensional excitation-emission matrix with regional integration and parallel factor analysis[J]. Journal of Environmental Sciences, 2020, 90: 310-320. doi: 10.1016/j.jes.2019.11.019 [13] 张家胜, 孟凡生, 梁朱明, 等. 七虎林河流域上游溶解性有机质光谱特性分析[J]. 中国环境监测, 2023, 39(1): 137-145. doi: 10.19316/j.issn.1002-6002.2023.01.15 [14] 中华人民共和国国家环境保护总局, 国家环境保护总局科技标准司. 水质 化学需氧量的测定 快速消解分光光度法: HJ/T 399-2007[S]. 北京: 中国环境科学出版社, 2008. [15] 中华人民共和国环境保护部, 环境保护部科技标准司. 水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法: HJ 636-2012[S]. 北京: 中国环境科学出版社, 2012. [16] 中华人民共和国环境保护部, 环境保护部科技标准司. 水质 氨氮的测定 纳氏试剂分光光度法: HJ 535-2009[S]. 北京: 中国环境科学出版社, 2010. [17] HE Q, XIAO Q, FAN J, et al. Excitation-emission matrix fluorescence spectra of chromophoric dissolved organic matter reflected the composition and origination of dissolved organic carbon in Lijiang River, Southwest China[J]. Journal of Hydrology, 2021, 598: 126240. doi: 10.1016/j.jhydrol.2021.126240 [18] ZHOU Q, ZHANG Y, LI K, et al. Seasonal and spatial distributions of euphotic zone and long-term variations in water transparency in a clear oligotrophic Lake Fuxian, China[J]. Journal of Environmental Sciences, 2018, 72: 185-197. doi: 10.1016/j.jes.2018.01.005 [19] LI Y, ZHANG Y, LI Z, et al. Characterization of colored dissolved organic matter in the northeastern South China Sea using EEMs-PARAFAC and absorption spectroscopy[J]. Journal of Sea Research, 2022, 180: 102159. doi: 10.1016/j.seares.2021.102159 [20] XIE L, GUAN W, ZOU L, et al. Composition, variation and contribution of chromophoric dissolved organic matter in Laizhou Bay estuaries, North China[J]. Marine Environmental Research, 2023: 106102. [21] OHNO T. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter[J]. Environmental Science & Technology, 2002, 36(4): 742-746. [22] HANSEN A M, KRAUS T E C, PELLERIN B A, et al. Optical properties of dissolved organic matter (DOM) : Effects of biological and photolytic degradation[J]. Limnology and Oceanography, 2016, 61(3): 1015-1032. doi: 10.1002/lno.10270 [23] YANG L, CHEN W, ZHUANG W E, et al. Characterization and bioavailability of rainwater dissolved organic matter at the southeast coast of China using absorption spectroscopy and fluorescence EEM-PARAFAC[J]. Estuarine, Coastal and Shelf Science, 2019, 217: 45-55. doi: 10.1016/j.ecss.2018.11.002 [24] PELEATO N M, SIDHU B S, LEGGE R L, et al. Investigation of ozone and peroxone impacts on natural organic matter character and biofiltration performance using fluorescence spectroscopy[J]. Chemosphere, 2017, 172: 225-233. doi: 10.1016/j.chemosphere.2016.12.118 [25] VARDHARAJULA S, ZULFIKAR ALI S, GROVER M, et al. Drought-tolerant plant growth promoting Bacillus spp. : effect on growth, osmolytes, and antioxidant status of maize under drought stress[J]. Journal of Plant Interactions, 2011, 6(1): 1-14. doi: 10.1080/17429145.2010.535178 [26] GAMRANI M, EERT J, WILLIAMS W J, et al. A river of terrestrial dissolved organic matter in the upper waters of the central Arctic Ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2023, 196: 104016. doi: 10.1016/j.dsr.2023.104016 [27] WHEELER K I, LEVIA D F, HUDSON J E. Tracking senescence-induced patterns in leaf litter leachate using parallel factor analysis (PARAFAC) modeling and self-organizing maps[J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(9): 2233-2250. [28] OSBURN C L, HANDSEL L T, MIKAN M P, et al. Fluorescence tracking of dissolved and particulate organic matter quality in a river-dominated estuary[J]. Environmental Science & Technology, 2012, 46(16): 8628-8636. [29] 梁月清, 刘会来, 崔康平, 等. 基于三维荧光光谱-平行因子分析法的工业园区污水溶解性有机物溯源与归趋[J]. 环境工程学报, 2022, 16(4): 1238-1247. doi: 10.12030/j.cjee.202201093 [30] ZHANG R, XIAO R, WANG F, et al. Direct discharge of sewage to natural water through illicitly connected urban stormwater systems: An overlooked source of dissolved organic matter[J]. Science of the Total Environment, 2023, 890: 164248. doi: 10.1016/j.scitotenv.2023.164248 [31] HE H, LUO N, HUANG B, et al. Optical characteristics and cytotoxicity of dissolved organic matter in the effluent and sludge from typical sewage treatment processes[J]. Science of the Total Environment, 2020, 725: 138381. doi: 10.1016/j.scitotenv.2020.138381 [32] 李胜楠, 耿金菊, 李珏纯, 等. 制药废水二级出水中溶解性有机物混凝去除特性研究[J]. 环境科学学报, 2019, 39(10): 3364-3373. doi: 10.13671/j.hjkxxb.2019.0274 [33] 郝晓地, 周鹏, 曹亚莉. 污水处理中腐殖质的来源及其演变过程[J]. 环境工程学报, 2017, 11(1): 1-11. doi: 10.12030/j.cjee.201606072 [34] CHEN B, HUANG W, MA S, et al. Characterization of chromophoric dissolved organic matter in the littoral zones of Eutrophic Lakes Taihu and Hongze during the algal bloom season[J]. Water, 2018, 10(7): 861. doi: 10.3390/w10070861 [35] WEISHAAR J L, AIKEN G R, BERGAMASCHI B A, et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon[J]. Environmental Science & Technology, 2003, 37(20): 4702-4708. [36] KORSHIN G V, BENJAMIN M M, SLETTEN R S. Adsorption of natural organic matter (NOM) on iron oxide: effects on NOM composition and formation of organo-halide compounds during chlorination[J]. Water Research, 1997, 31(7): 1643-1650. doi: 10.1016/S0043-1354(97)00007-9 [37] GAO X X, WANG Y W, AN Y C, et al. Molecular insights into the dissolved organic matter of leather wastewater in leather industrial park wastewater treatment plant[J]. Science of the Total Environment, 2023, 882: 163174. doi: 10.1016/j.scitotenv.2023.163174 [38] KOU Y, JIANG J, YANG B, et al. Transformation of dissolved organic matter at a full-scale petrochemical wastewater treatment plant[J]. Journal of Environmental Management, 2023, 329: 117021. doi: 10.1016/j.jenvman.2022.117021 [39] YU J, HUO R, LIU W, et al. Chemodiversity transformation of organic matters in a full scale MBR-NF wastewater reclamation plant[J]. Science of the Total Environment, 2023, 903: 166246. doi: 10.1016/j.scitotenv.2023.166246 [40] QIU J, LI T, Lü F, et al. Molecular behavior and interactions with microbes during anaerobic degradation of bio-derived DOM in waste leachate[J]. Journal of Environmental Sciences, 2023, 126: 174-183. doi: 10.1016/j.jes.2022.04.015 [41] HU Q, WANG R, ZHANG Y, et al. Formation of halogenated macromolecular organics induced by Br- and I- during plasma oxidation/chlorination of DOM: Highlighting competitive mechanisms[J]. Water Research, 2023, 229: 119513. doi: 10.1016/j.watres.2022.119513 [42] 牛天浩, 周振, 胡大龙, 等. 污水处理厂污泥水溶解性有机物的光谱特性分析[J]. 环境科学, 2016, 37(4): 1460-1466. doi: 10.13227/j.hjkx.2016.04.034 [43] LI C, WU K, CHEN L, et al. Advanced treatment of low-pollution and poor biodegradability sewage by combined process[J]. Journal of Cleaner Production, 2023, 414: 137366. doi: 10.1016/j.jclepro.2023.137366