[1] |
骆永明. 中国污染场地修复的研究进展、问题与展望[J]. 环境监测管理与技术, 2011, 23(3): 1-6. doi: 10.3969/j.issn.1006-2009.2011.03.002
|
[2] |
姜林, 梁竞, 钟茂生, 等. 复杂污染场地的风险管理挑战及应对[J]. 环境科学研究, 2021, 34(2): 458-467. doi: 10.13198/j.issn.1001-6929.2020.07.14
|
[3] |
ZHAO C, DONG Y, FENG Y P, et al. Thermal desorption for remediation of contaminated soil: a review[J]. Chemosphere, 2019, 221: 841-855. doi: 10.1016/j.chemosphere.2019.01.079
|
[4] |
GAVRILESCU M. Fate of pesticides in the environment and its bioremediation[J]. Engineering in Life Sciences, 2005, 5(6): 497-526. doi: 10.1002/elsc.200520098
|
[5] |
LI H, HAN Z T, QIAN Y, et al. In situ persulfate oxidation of 1, 2, 3-trichloropropane in groundwater of north China plain[J]. International Journal of Environmental Research and Public Health, 2019, 16(15): 2752. doi: 10.3390/ijerph16152752
|
[6] |
李倩, 杨璐, 姜越, 等. 农药生产场地污染土壤的化学氧化修复技术研究进展[J]. 生态与农村环境学报, 2021, 37(1): 19-29. doi: 10.19741/j.issn.1673-4831.2020.0063
|
[7] |
LI G Q, LIU Y B, HUANG W, et al. Simultaneous remediation of arsenic and organic chemicals contaminated soil and groundwater using chemical oxidation and precipitation/stabilization: a case study[J]. Journal of Environmental Management, 2023, 30(36): 86478-86483.
|
[8] |
李影辉. 美国有机污染场地化学氧化修复案例分析[J]. 环境工程, 2016, 34(S1): 965-969.
|
[9] |
邢绍文, 李云, 吴劲松. 上海市某污染场地土壤异位化学氧化修复方案设计[J]. 环境污染与防治, 2022, 44(3): 381-385. doi: 10.15985/j.cnki.1001-3865.2022.03.017
|
[10] |
US Environmental Protection Agency. Superfund remedy report (16th edition) fact sheet[R]. Washington DC: Office of Health and Environmental Assessment, 2020.
|
[11] |
郑苇, 高波, 闵海华, 等. 我国污染场地修复技术应用现状与发展研究[J]. 环境卫生工程, 2019, 27(3): 6-8. doi: 10.3969/j.issn.1005-8206.2019.03.002
|
[12] |
严康, 楼骏, 汪海珍, 等. 污染场地研究现状与发展趋势: 基于知识图谱的分析[J]. 土壤学报, 2021, 58(5): 1234-1245.
|
[13] |
USMAN M, HO Y S. A bibliometric study of the Fenton oxidation for soil and water remediation[J]. Journal of Environmental Management, 2020, 270: 110886. doi: 10.1016/j.jenvman.2020.110886
|
[14] |
ZHOU Z, LIU X T, SUN K, et al. Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: a review[J]. Chemical Engineering Journal, 2019, 372: 836-851. doi: 10.1016/j.cej.2019.04.213
|
[15] |
CHENG M, ZENG G M, HUANG D L, et al. Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review[J]. Chemical Engineering Journal, 2016, 284: 582-598. doi: 10.1016/j.cej.2015.09.001
|
[16] |
ZHOU L, ZHENG W, JI Y F, et al. Ferrous-activated persulfate oxidation of arsenic (III) and diuron in aquatic system[J]. Journal of Hazardous Materials, 2013, 263: 422-430. doi: 10.1016/j.jhazmat.2013.09.056
|
[17] |
吴志远, 张丽娜, 夏天翔, 等. 基于土壤重金属及PAHs来源的人体健康风险定量评价: 以北京某工业污染场地为例[J]. 环境科学, 2020, 41(9): 4180-4196. doi: 10.13227/j.hjkx.201910152
|
[18] |
GAN S, LAU E V, NG H K. Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs) [J]. Journal of Hazardous Materials, 2009, 172(2/3): 532-549.
|
[19] |
梁增强, 杨菁, 毛安琪. 典型行业污染场地重点关注污染物浅析[J]. 广东化工, 2018, 45(14): 201-202. doi: 10.3969/j.issn.1007-1865.2018.14.091
|
[20] |
FANG Y, QIAN B Y, YANG Y, et al. Purification of high-arsenic groundwater by magnetic bimetallic MOFs coupled with PMS: balance of catalysis and adsorption and promotion mechanism of PMS[J]. Chemical Engineering Journal, 2022, 432: 134417. doi: 10.1016/j.cej.2021.134417
|
[21] |
赵丹, 廖晓勇, 阎秀兰, 等. 不同化学氧化剂对焦化污染场地多环芳烃的修复效果[J]. 环境科学, 2011, 32(3): 857-863. doi: 10.13227/j.hjkx.2011.03.033
|
[22] |
VICENTE F, ROSAS J M, SANTOS A, et al. Improvement soil remediation by using stabilizers and chelating agents in a Fenton-like process[J]. Chemical Engineering Journal, 2011, 172(2/3): 689-697.
|
[23] |
XUE X F, HANNA K, DESPAS C, et al. Effect of chelating agent on the oxidation rate of PCP in the magnetite/H2O2 system at neutral pH[J]. Journal of Molecular Catalysis A: Chemical, 2009, 311(1/2): 29-35.
|
[24] |
HE J, YANG X F, MEN B, et al. EDTA enhanced heterogeneous Fenton oxidation of dimethyl phthalate catalyzed by Fe3O4: kinetics and interface mechanism[J]. Journal of Molecular Catalysis A: Chemical, 2015, 408: 179-188. doi: 10.1016/j.molcata.2015.07.030
|
[25] |
BRILLAS E. Fenton, photo-Fenton, electro-Fenton, and their combined treatments for the removal of insecticides from waters and soils. a review[J]. Separation and Purification Technology, 2022, 284: 120290. doi: 10.1016/j.seppur.2021.120290
|
[26] |
GHARAEE A, KHOSRAVI-NIKOU M R, ANVARIPOUR B. Hydrocarbon contaminated soil remediation: a comparison between Fenton, sono-Fenton, photo-Fenton and sono-photo-Fenton processes[J]. Journal of Industrial and Engineering Chemistry, 2019, 79: 181-193. doi: 10.1016/j.jiec.2019.06.033
|
[27] |
WU Y Q, SONG K. Effect of thermal activated peroxydisulfate pretreatment on short-chain fatty acids production from waste activated sludge anaerobic fermentation[J]. Bioresource Technology, 2019, 292: 121977. doi: 10.1016/j.biortech.2019.121977
|
[28] |
SANTOS A, FERNANDEZ J, RODRIGUEZ S, et al. Abatement of chlorinated compounds in groundwater contaminated by HCH wastes using ISCO with alkali activated persulfate[J]. Science of the Total Environment, 2018, 615: 1070-1077. doi: 10.1016/j.scitotenv.2017.09.224
|
[29] |
LUO T, WAN J, MA Y, et al. Sulfamethoxazole degradation by an Fe (Ⅱ) -activated persulfate process: insight into the reactive sites, product identification and degradation pathways[J]. Environmental Science: Processes and Impacts, 2019, 21(9): 1560-1569. doi: 10.1039/C9EM00254E
|
[30] |
LIU J, ZHONG S, SONG Y, et al. Degradation of tetracycline hydrochloride by electro-activated persulfate oxidation[J]. Journal of Electroanalytical Chemistry, 2018, 809: 74-79. doi: 10.1016/j.jelechem.2017.12.033
|
[31] |
CHEN T S, MA J S, ZHANG Q X, et al. Degradation of propranolol by UV-activated persulfate oxidation: reaction kinetics, mechanisms, reactive sites, transformation pathways and gaussian calculation[J]. Science of the Total Environment, 2019, 690: 878-890. doi: 10.1016/j.scitotenv.2019.07.034
|
[32] |
SRA K S, THOMSON N R, BARKER J F. Persistence of persulfate in uncontaminated aquifer materials[J]. Environmental Science & Technology, 2010, 44(8): 3098-3104.
|
[33] |
O'MAHONY M M, DOSBON A D W, BARNES J D, et al. The use of ozone in the remediation of polycyclic aromatic hydrocarbon contaminated soil[J]. Chemosphere, 2006, 63(2): 307-314. doi: 10.1016/j.chemosphere.2005.07.018
|
[34] |
Zhang H, JI L, WU F, et al. In situ ozonation of anthracene in unsaturated porous media[J]. Journal of Hazardous Materials, 2005, 120(1/2/3): 143-148.
|
[35] |
GOI A, VIISIMAA M, TRAPIDO M, et al. Polychlorinated biphenyls-containing electrical insulating oil contaminated soil treatment with calcium and magnesium peroxides[J]. Chemosphere, 2011, 82(8): 1196-1201. doi: 10.1016/j.chemosphere.2010.11.053
|
[36] |
ZHANG T, LIU Y Y, ZHONG S, et al. AOPs-based remediation of petroleum hydrocarbons-contaminated soils: efficiency, influencing factors and environmental impacts[J]. Chemosphere, 2020, 246: 125726. doi: 10.1016/j.chemosphere.2019.125726
|
[37] |
WEI K H, MA J, XI B D, et al. Recent progress on in-situ chemical oxidation for the remediation of petroleum contaminated soil and groundwater[J]. Journal of Hazardous Materials, 2022, 432: 128738. doi: 10.1016/j.jhazmat.2022.128738
|
[38] |
CAO Y X, YUAN X Z, ZHAO Y L, et al. In-situ soil remediation via heterogeneous iron-based catalysts activated persulfate process: a review[J]. Chemical Engineering Journal, 2022, 431: 133833. doi: 10.1016/j.cej.2021.133833
|
[39] |
可欣, 周燕, 张飞杰, 等. 污染场地修复药剂安全利用问题及对策[J]. 环境科学研究, 2021, 34(6): 1473-1481. doi: 10.13198/j.issn.1001-6929.2020.12.02
|
[40] |
WANG Z X, SONG J H, YUAN W Y, et al. Quantitative monitoring and potential mechanism of the secondary corrosion risk of PAH-contaminated soil remediated by persulfate oxidation[J]. Journal of Environmental Management, 2023, 325: 116407. doi: 10.1016/j.jenvman.2022.116407
|
[41] |
ZHAO D, LIAO X Y, YAN X L, et al. Effect and mechanism of persulfate activated by different methods for PAHs removal in soil[J]. Journal of Hazardous Materials, 2013, 254/255: 228-235. doi: 10.1016/j.jhazmat.2013.03.056
|
[42] |
WANG B, DENG C X, MA W, et al. Modified nanoscale zero-valent iron in persulfate activation for organic pollution remediation: a review[J]. Environmental Science and Pollution Research, 2021, 28(26): 34229-34247. doi: 10.1007/s11356-021-13972-w
|
[43] |
Wang J L, Wang S Z. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. doi: 10.1016/j.cej.2017.11.059
|
[44] |
SUTTON N B, GROTENHUIS T, RIJNAARTS H H M. Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil[J]. Chemosphere, 2014, 97: 64-70. doi: 10.1016/j.chemosphere.2013.11.005
|
[45] |
SUTTON N B, LANGENHOFF A A M, LASSO D H, et al. Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils[J]. Applied Microbiology and Biotechnology, 2014, 98(6): 2751-2764. doi: 10.1007/s00253-013-5256-4
|
[46] |
CAJAL-MARINOSA P, REICH O, MOBES A, et al. Treatment of composted soils contaminated with petroleum hydrocarbons using chemical oxidation followed by enhanced aerobic bioremediation[J]. Journal of Advanced Oxidation Technologies, 2012, 15(1): 217-223.
|
[47] |
LI Z H. Surfactant-enhanced oxidation of trichloroethylene by permanganate-proof concept[J]. Chemosphere, 2004, 54(3): 419-423. doi: 10.1016/S0045-6535(03)00752-5
|
[48] |
DUGAN P J, SIEGRIST R L, CRIMI M L. Coupling surfactants/cosolvents with oxidants for enhanced DNAPL removal: a review[J]. Science of the Total Environment, 2010, 20(3): 27-49.
|
[49] |
JEFFERS P M, WARD L M, WOYTOWITCH L M, et al. Homogeneous hydrolysis rate constants for selected chlorinated methanes, ethanes, ethenes, and propanes[J]. Environmental Science & Technology, 1989, 23(8): 965-969.
|
[50] |
NG Y S, SEN GUPTA B, HASHIM M A. Stability and performance enhancements of electrokinetic-Fenton soil remediation[J]. Reviews in Environmental Science and Bio/Technology, 2014, 13(3): 251-263. doi: 10.1007/s11157-014-9335-5
|
[51] |
YUKSELEN-AKSOY Y, REDDY K R. Electrokinetic delivery and activation of persulfate for oxidation of PCBs in clayey soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(1): 175-184. doi: 10.1061/(ASCE)GT.1943-5606.0000744
|
[52] |
HEAD N A, GERHARD J I, INGLIS A M, et al. Field test of electrokinetically-delivered thermally activated persulfate for remediation of chlorinated solvents in clay[J]. Water Research, 2020, 183: 116061. doi: 10.1016/j.watres.2020.116061
|
[53] |
XU S, WANG W, ZHU L Z. Enhanced microbial degradation of benzo [a] pyrene by chemical oxidation[J]. Science of the Total Environment, 2019, 653: 1293-1300. doi: 10.1016/j.scitotenv.2018.10.444
|
[54] |
QIU Y H, XU M L, SUN Z Q, et al. Remediation of PAH contaminated soil by combining surfactant enhanced soil washing and iron-activated persulfate oxidation process[J]. International Journal of Environmental Research and Public Health, 2019, 16(3): 441. doi: 10.3390/ijerph16030441
|
[55] |
HAN Z Y, LI S H, YUE Y, et al. Enhancing remediation of PAH-contaminated soil through coupling electrical resistance heating using Na2S2O8[J]. Environmental Research, 2021, 198: 110457. doi: 10.1016/j.envres.2020.110457
|
[56] |
PAIXAO I C, LOPEX-VIZCAINO R, SOLANO A M S, et al. Electrokinetic-Fenton for the remediation low hydraulic conductivity soil contaminated with petroleum[J]. Chemosphere, 2020, 248: 126029. doi: 10.1016/j.chemosphere.2020.126029
|
[57] |
BOAL A K, RHODES C, GARCIA S. Pump-and-treat groundwater remediation using chlorine/ultraviolet advanced oxidation processes[J]. Ground Water Monitoring and Remediation, 2015, 35(2): 93-100. doi: 10.1111/gwmr.12095
|
[58] |
XIE T, DANG Z, ZHANG J, et al. Decontamination of dense nonaqueous-phase liquids in groundwater using pump-and-treat and in situ chemical oxidation processes: a field test[J]. RSC Advances, 2021, 11(7): 4237-4246. doi: 10.1039/D0RA10010B
|
[59] |
蒲生彦, 唐菁, 侯国庆, 等. 缓释型化学氧化剂在地下水DNAPLs污染修复中的应用研究进展[J]. 环境化学, 2020, 39(3): 791-799. doi: 10.7524/j.issn.0254-6108.2019103004
|
[60] |
Yuan B L, Chen Y M, Fu M L, et al. Degradation efficiencies and mechanisms of trichloroethylene (TCE) by controlled-release permanganate (CRP) oxidation[J]. Chemical Engineering Journal, 2012, 192(2): 276-283.
|
[61] |
李传维, 迟克宇, 杨乐巍, 等. 碱活化过硫酸盐在某氯代烃污染场地地下水修复中的应用[J]. 环境工程学报, 2021, 15(6): 1916-1926. doi: 10.12030/j.cjee.202101012
|
[62] |
DESALEGN B, MEGHARAJ M, CHEN Z L, et al. Green mango peel-nanozerovalent iron activated persulfate oxidation of petroleum hydrocarbons in oil sludge contaminated soil[J]. Environmental Science & Technology, 2018, 11: 142-152.
|
[63] |
HONG Y M, YUE X P, ZHNAG Y P, et al. Effect of activated persulfate on the properties of contaminated soil and degradation behavior of PAHs[J]. Environmental Engineering Research, 2023, 28(3): 220075.
|
[64] |
CHEN K F, CHANG Y C, CHIOU W T. Remediation of diesel-contaminated soil using in situ chemical oxidation (ISCO) and the effects of common oxidants on the indigenous microbial community: a comparison study[J]. Journal of Chemical Technology and Biotechnology, 2016, 91(6): 1877-1888. doi: 10.1002/jctb.4781
|
[65] |
王珍霞, 宋久浩, 苑文仪, 等. 我国污染场地化学氧化修复技术应用特征及再利用潜在腐蚀风险分析[J]. 环境科学研究, 2022, 35(5): 1140-1149. doi: 10.13198/j.issn.1001-6929.2022.03.10
|
[66] |
YAP C L, GAN S Y, NG H K. Fenton based remediation of polycyclic aromatic hydrocarbons-contaminated soils[J]. Chemosphere, 2011, 83(11): 1414-1430. doi: 10.1016/j.chemosphere.2011.01.026
|