废旧锂电池正极材料浸出液中锰、钴的萃取分离

冯天意, 崔鹏媛, 林艳, 俞小花, 沈庆峰. 废旧锂电池正极材料浸出液中锰、钴的萃取分离[J]. 环境工程学报, 2023, 17(10): 3367-3373. doi: 10.12030/j.cjee.202307055
引用本文: 冯天意, 崔鹏媛, 林艳, 俞小花, 沈庆峰. 废旧锂电池正极材料浸出液中锰、钴的萃取分离[J]. 环境工程学报, 2023, 17(10): 3367-3373. doi: 10.12030/j.cjee.202307055
FENG Tianyi, CUI Pengyuan, LIN Yan, YU Xiaohua, SHEN Qingfeng. Extraction and separation of manganese and cobalt from the leaching solution of cathode materials of waste lithium batteries[J]. Chinese Journal of Environmental Engineering, 2023, 17(10): 3367-3373. doi: 10.12030/j.cjee.202307055
Citation: FENG Tianyi, CUI Pengyuan, LIN Yan, YU Xiaohua, SHEN Qingfeng. Extraction and separation of manganese and cobalt from the leaching solution of cathode materials of waste lithium batteries[J]. Chinese Journal of Environmental Engineering, 2023, 17(10): 3367-3373. doi: 10.12030/j.cjee.202307055

废旧锂电池正极材料浸出液中锰、钴的萃取分离

    作者简介: 冯天意 (1999—),男,硕士研究生,875768647@qq.com
    通讯作者: 沈庆峰 (1976—),男,博士,讲师,48149079@qq.com
  • 基金项目:
    国家重点研发计划资助项目 (2019YFC1907900);云南省人才计划资助项目 (YNWR-QNBJ-2018-327)
  • 中图分类号: TF111

Extraction and separation of manganese and cobalt from the leaching solution of cathode materials of waste lithium batteries

    Corresponding author: SHEN Qingfeng, 48149079@qq.com
  • 摘要: 针对废旧锂电池中正极材料中有价金属未得到有效回收的情况,对废旧锂电池正极材料用苹果酸浸出后的浸出液进行分步萃取,以回收其中有价金属。研究了萃取时间、相比O/A、萃取剂体积分数等因素对各金属元素萃取率的影响。结果表明:在最佳萃取条件下,用P204 经过三级逆流萃取后,锰的萃取率达到99.99%,镍、钴、锂的共萃率分别为12.11%、9.20%、3.23%。负载锰的有机相用含1 g·L−1锰的苹果酸溶液洗脱共萃取的镍、钴、锂,然后用300 g·L−1的苹果酸三级逆流反萃锰,锰的反萃率达到了88.80%;用Cyanex272为萃取剂通过三级逆流萃取,钴的萃取率达到了94.01%,锂、镍的共萃率分别为11.21%和0.02%,负载钴的有机相用含1 g·L−1钴的苹果酸溶液洗脱共萃取的锂,随后用30 g·L−1的苹果酸对负载钴的有机相进行三级逆流反萃,钴的反萃率达到了99.98%;提出了先用P204从废旧锂电正极材料苹果酸浸出液中萃取分离Mn,而后再用 Cyanex272萃取分离Co的工艺流程,可实现苹果酸浸出液中Mn和Co的分离。本研究结果可为有机酸体系高效萃取锰、钴提供参考。
  • 20世纪50年代后,工业的发展和人类生活条件的改善得到不断推进,同时也制造了很多化学污染物,加剧了水资源的污染。开采业、农业、畜牧业、食品加工业、印染业 、医疗产业和城市生活垃圾渗透液等都产生了大量、复杂、有毒、持久性的和难去除的污染物,这些污染物通过废水、污水进入了地表水源或者地下水,破坏了生态环境[1-4]。治理水污染,使废水、污水能够再利用,提高水资源利用效率是解决水资源匮乏、保护生态环境的重要途径。电化学技术是通过在特定的电化学反应器中外加电场调控电子定向转移,使水中污染物在反应器中发生特定的物理、化学反应,从而被去除的过程。包括电氧化、电还原、电渗析、电絮凝、电吸附、电气浮、内电解和电芬顿等常用技术。相对传统处理方法,用电化学处理水污染有着可避免二次污染、可深度并有选择性的去除污染物、处理条件温和易实现自动化和规模化、且可与其他处理方法相结合,形成降解能力强的复合处理工艺等优点。还可以有效地回收污水、废水中的金属离子、营养物质、硫、氢和化合物,使废水资源化。电化学技术已经成为目前处理污水、废水的优选技术[5-6]

    本研究对电化学水处理相关的SCI期刊论文进行检索和分析,总结电化学水处理领域的国际论文的发文特点和趋势,揭示该领域的研究前沿发展方向,以期为科研人员的研究规划和国际合作提供科学支撑。

    数据来源于科睿唯安(Clarivate Analytics)的Web of Science核心合集的SCI数据库(SCI-Expanded,http://apps.webofknowledge.com)。检索时间为2021年5月,检索年限为2011~2020年。经查重后获得4 177条数据,检索结果见表1。 以主题做为检索字段,以电化学技术和污水、废水处理为检索式进行检索,得到结果最多、最为全面,为3 767条。通过进一步限制检索范围,分别检索电化学处理技术在工业废水、农业废水、城市废水和医疗废水中的应用频率[7] ,结果显示,用电化学技术处理工业废水的应用更为频繁和广泛,检索出1 479条。电化学水处理技术在农业、畜牧业污水的处理中应用面不大,只检索到90条数据。该技术在处理城市生活污水和医疗废水中也有一定的应用,分别检索到349和196条数据。

    表 1  SCI收录电化学水处理文献检索结果
    检索内容和检索式检索结果
    电化学技术在水处理中的应用TS=("electro* chemi* technolog*" or "electro* redox*" or "electro* oxida*" or "electro*......) and TS=(“*water* *treatment*” or “*water* purif*” or “*water* cleans*”......)2 034
    电化学技术处理污水、废水TS=("electro* chemi* technolog*" or "electro* redox*" or "electro* oxida*" or .......) and TS=(wastewater* or “waste water*” or “water contaminat*” or “contaminat* water*” or.......) and TS=(*treatment or purif* or cleans* or remov* or disinfect* or steriliz* or remediat*......)3 767
    电化学技术处理工业废水TS=("electro* chemi* technolog*" or"electro* oxida*" or "electro* flocculat*" or.......) and TS=(wastewater* or “waste water*” or “water contaminat*” or “water pollut*” or ......) and TS=(Industr* or metallurg* or produc* petrochemical or petroleum or “natural gas” or desalinat* or ......)1 479
    电化学技术处理农业、畜牧业废水TS=("electro* chemi* technolog*" or "electro* redox*" or "electro* oxida*" or "electro* coagulat*"or ......) and TS=(wastewater* or “waste water*” or “water contaminat*” or “water pollut*” or......)and TS= (agricultur* or farmland or rural or pesticide* slaughterhouse*or ......)90
    电化学技术处理医疗废水TS=("electro* chemi* technolog*" or"electro* oxida*" or "electro* coagulat*"or.......) and TS=(wastewater* or “waste water*” or “water contaminat*” or “water pollut*”or......) and TS=(municipal* or domestic* or sanitary)196
    电化学技术处理生活污水TS=("electro* chemi* technolog*" or "electro* redox*" or "electro* coagulat*" ...... and TS=(wastewater* or “waste water*” or “water contaminat*” or “water pollut*”or......) and TS=(hospital or medic* or pharmac*or......)349
    合计8 232
    查重4 177
     | Show Table
    DownLoad: CSV

    根据Web of Science的检索结果,2011~2020这10年间,在电化学处理水污染的方面,全球共发文4 177篇,见图1。总发文量由2011年的204篇增长到2020年768篇,呈逐年递增的趋势。

    图 1  电化学水处理领域全球发文量及趋势

    发文量最多的前10的国家分别是中国、印度、西班牙、美国、巴西、伊朗、墨西哥、韩国、加拿大和土耳其,共3 111篇,占总发文量的74.45%。其中,中国1 626篇,明显领先于其他国家,占全球总发文量的38.93%,尤其2019和2020年发文量占到全球的近1/2。其他9国发文量也呈逐年上升的趋势,特别是近5年发文量逐年增加,见表2

    表 2  10年内电化学处理水污染相关文章全球及Top10国发文量分析
    t/a中国印度西班牙美国巴西伊朗墨西哥韩国加拿大土耳其合计中国所占比例/%
    2011621211171072123121519030
    2012671221151091115121018229
    20138316179118192113920633
    2014923314231351311131122831
    20151302329162111191112627834
    201616625212420121277329740
    2017189282325201511119934038
    20182172938312416887538340
    201926935332830216511544346
    20203516538323423456656446
    合计1 626278245220193127124117102793 111
     | Show Table
    DownLoad: CSV

    用知识图谱可视化软件VOSviewer分析全球发文国家的合作关系,见图2。与People r China合作关系较为紧密的有Japan、Singapore、Danmark、SSweden等国家。与USA存在合作关系的国家较多,除了与Australia合作较多,还有很多亚洲国家,如India、South Korea、Vietnam、Thailand等国家及Taiwan Province of China。Sapain与Brazil、Mexcio、Colombia、Chile的合作更为紧密。另外,Canada、France、Mocrocco等也存在广泛的合作关系。而Iran、Turkey、Germany、Portugal、Greece等国家也组成了一个合作小组。

    图 2  电化学水处理领域全球发文国家合作关系

    基于Web of Science的学科分类,电化学水处理方面的研究主要涉及环境科学和生态学、工程和化学等领域,见表3。其中,环境科学和生态学领域以及工程领域的发文量超过总发文量的10%,分别为15.3%和13.3%。环境科学和生态学、工程、电化学、化学、工程-环境科学和生态这5个领域的发文总和占有全部发文量的一半以上。另外,电化学水污染的研究在工程-水资源、工程-环境科学和生态-水资源、化学-工程、农业-生物技术和微生物应用-能源和燃料、化学-电化学这些领域的发文量也占有一定的份额,大约占总发文量的20.2%。

    表 3  电化学水处理在不同研究领域发文数量及所占比例
    研究领域发文数量所占比例/%
    环境科学和生态学 640 15.3
    工程学 555 13.3
    电化学 382 9.1
    化学 365 8.7
    工程;环境科学与生态学 307 7.3
    工程;水资源 246 5.9
    工程;环境科学与生态学;水资源 234 5.6
    化学;工程学 151 3.6
    农业;生物技术与应用微生物学;能源与燃料 114 2.7
    化学;电化学 99 2.4
    其他 1 084 26.0
     | Show Table
    DownLoad: CSV

    为了揭示研究现状和前沿,本文对2019和2020年的发文提取关键词,并用VOSviewer对关键词进行聚类分析,见图3。小球越大表示此关键词出现的次数越多,小球之间的连线表示两关键词间存在一定相关性。2019~2020年,根据发文关键词的数量多少及相关性,可将全球的研究区分为4个群组。研究热点分别为红色群组的“吸附”“氧化”“水溶液”等;绿色群组的“性能”“微生物电解槽”“除磷”等;蓝色群组的“降解”“电化学氧化”“掺硼金刚石(电极)”等;黄色群组的“去除”“电絮凝”“酸性”等。

    图 3  2019~2020年电化学水处理领域关键词聚类分析

    进一步对关键词群组进行分析,总结每个群组研究主要内容、使用的技术和去除的主要污染物,以及所关注的技术要点和参数,见表4

    表 4  2019~2020年电化学处理水污染相关文章研究方向及技术要点
    群组研究方向使用技术去除污染物技术要点和参数
    红色海水淡化,饮用水,地下水电氧化,吸附,电还原,电沉积重金属,六价铬,亚甲蓝,纳米颗粒,硝酸盐,亚硝酸盐,氮动力学,电极,活性炭,催化剂,石墨烯,碳纳米管,能量,电容去离子,传感器
    绿色污水污泥,活性污泥降解,电解,零价铁,微电解,生物降解氨,有机质,磷酸盐性能,微生物电解槽,反应器,酸碱度,温度,膜生物反应器,微生物群落,发电
    蓝色个人护理产品,药品,抗生素降解,电化学氧化,阳极氧化,光催化降解,臭氧氧化,电芬顿抗生素,偶氮染料,双酚A,有机污染物,磺胺甲恶唑,过硫酸盐掺硼金刚石,矿化作用,毒性,双氧水,羟基自由基,降解途径,BDD阳极
    黄色垃圾渗滤液电絮凝,电化学降解染料,苯酚,污染物,合成有机染料酸性,活性氯,阳极,表征,COD,能源消耗,二氧化铅电极,响应面法
     | Show Table
    DownLoad: CSV

    为了更近一步预测研究趋势和应用范围,对2019和2020年被引频次>20次的发文,剔除广泛性和普遍性使用的关键词后再次进行聚类分析,见图4。红色小球表示个人护理产品和药品,绿色小球表示污水污泥,黄色小球表示海水淡化和地下水,紫色小球表示垃圾渗滤液和饮用水,这几方面仍然是近年的主要研究方向。而主要污染物的去除将会集中在抗生素(包括四环素)、微生物污染物、苯酚、金属铬及六价铬、双酚A和残留农药等方面。在微生物燃料电池制备和绿色合成技术上的应用将会受到更多的关注。

    图 4  2019~2020年电化学水处理领域被引频次﹥20次关键词聚类分析

    2011~2020年,全球电化学水处理方面的4 177篇文章共发表在492个期刊上。超过半数的文章发表于Top20期刊,见表5。Top20期刊中发文量﹥100的有10个刊,发文量占全部发文量的35.8%。其中发文量最多的是Chemical Engineering Journal,发文222篇,该刊2020年影响因子为13.273,5年影响因子为11.629。Top20影响因子最高的刊是Applied Catalysis B-Environmental,2020年影响因子为19.503,5年影响因子为17.995。

    表 5  电化学处理水污染相关文章全球Top20期刊发文量
    期刊发文量/篇2020 IF5年IF
    Chemical Engineering Journal22213.27311.629
    Chemosphere1907.0866.451
    Electrochimica Acta1746.9016.385
    Desalination And Water Treatment1571.2541.027
    Journal Of Hazardous Materials14810.5889.608
    Separation And Purification Technology1407.3126.437
    Water Research12711.23610.177
    Environmental Science And Pollution Research1164.2233.509
    Bioresource Technology1129.6427.820
    International Journal Of Electrochemical Science1091.7651.366
    Journal Of Electroanalytical Chemistry834.4644.105
    Water Science And Technology791.9151.796
    Science Of The Total Environment777.9636.938
    International Journal Of Hydrogen Energy735.8164.063
    Environmental Science & Technology729.0288.079
    Rsc Advances713.3613.206
    Environmental Technology643.2472.880
    Applied Catalysis B-Environmental5819.50317.995
    Journal Of Environmental Management516.7896.393
    Journal Of Environmental Chemical Engineering485.9095.361
     | Show Table
    DownLoad: CSV

    对比了发文量Top10国家的发文期刊平均影响因子,见图5,发文期刊平均影响因子超过5.0的国家有5个。其中最高的是美国,平均IF为6.82。其次是西班牙,也达到了6.23。另外IF>5的国家分别为韩国5.71、中国5.36和加拿大5.21。说明这些国家的整体发文质量较高。通过对比发文量Top10国家文章被引次数H指数,H指数最高的国家为中国,为65,其次为美国49,西班牙45。另外,印度和巴西的H指数也超过了30,分别为38和30。总体来说,中国的发文量和H指数为全球第一,表明全球科研影响力最大。但美国和西班牙发文质量较高,对科研的贡献较大。

    图 5  电化学水处理领域Top10国家发文量和影响力分析

    (1)2011~2020年,电化学水处理领域的全球发文量明显呈逐年上升的趋势,说明全世界越来越多的国家和地区都在关注并应用这项目前处理水污染的优选技术。发文量最多的前十的国家分别是中国、印度、西班牙、美国、巴西、伊朗、墨西哥、韩国、加拿大和土耳其。涵盖亚洲(尤其是东亚和南亚一代)、欧洲、北美洲、南美洲4个大洲,并且这些国家间也有很多直接、间接的合作。说明这项技术在这些地域应用领域更为广泛,技术也更为成熟。

    (2)2011~2020年,电化学水处理领域全球发文量最多的国家是中国,占全球发文量的近40%。这与我国多年来一直坚持以环境保护为基本国策,各级政府都重视环境保护、逐渐加大环境保护方面的技术研发和生产投入力度有关。特别是2018年《中共中央 国务院关于全面加强生态环境保护坚决打好污染防治攻坚战的意见》的提出,更是进一步促进了水污染领域研究成果的产出,2019和2020年,中国的发文量占全球发文量的1/2。

    (3)2011~2020年,电化学水处理领域的发文超过一半集中在环境科学和生态学、工程、电化学、化学、工程-环境科学和生态这5个领域。主要研究涉及海水淡化、饮用水、地下水、污水污泥、活性污泥、个人护理产品、药品和垃圾渗滤液等方面;技术手段较常用的有电氧化、电还原、电絮凝、电吸附和微电解等;去除的污染物有重金属、硝酸盐、磷酸盐、有机污染物、染料和抗生素等。今后的研究中,微生物燃料电池制备和绿色合成技术上的应用将会受到更多的关注。

    (4)2011~2020年,全球电化学水处理方面的4 177篇文章共发表在492个期刊上。其中发文量最多的是Chemical Engineering Journal,发文222篇,该刊2019年影响因子为10.652,5年影响因子为9.42。对比了发文量Top10国家的发文期刊平均影响因子和H指数来评估各个国家的科研实力和影响力,结果显示中国的发文量和H指数为全球第一,全球科研影响力最大。但美国和西班牙发文期刊影响因子总体较高,说明这两国的科学技术更为先进,对学术的贡献较大。

  • 图 1  萃取条件对P204萃取Mn2+的影响

    Figure 1.  Effect of extraction conditions on extraction of Mn2+ by P204

    图 2  其他金属离子对P204萃取Mn2+的影响

    Figure 2.  Effect of impurity ions on extraction of Mn2+ by P204

    图 3  苹果酸质量浓度对锰反萃率的影响

    Figure 3.  Effect of mass concentration of malate on Mn back extraction

    图 4  P204有机相红外光谱(从上依次为新鲜有机相、萃取后有机相、反萃后有机相)

    Figure 4.  P204 organic phase infrared spectrum.(From above, it was followed by fresh organic phase, post extraction organic phase, post reverse extraction organic phase)

    图 5  萃取条件对Cyanex272萃取Co2+的影响

    Figure 5.  Effect of extraction conditions on extraction of Co2+by Cyanex272

    图 6  其他金属离子对Cyanex272萃取Co2+的影响

    Figure 6.  Effect of impurity ions on extraction of Co2+ by Cyanex272

    图 7  苹果酸质量浓度对Co反萃率的影响

    Figure 7.  Effect of malate mass concentration on cobalt back extraction

    图 8  Cyanex272有机相红外光谱(从上依次为新鲜有机相、萃取后有机相、反萃后有机相)

    Figure 8.  Cyanex272 organic phase infrared spectrum (From above, it was followed by fresh organic phase, post extraction organic phase, post reverse extraction organic phase)

  • [1] TIRATH R, KUPPAM C, NARESH A K, et al. Recycling of cathode material from spent lithium-ion batteries: Challenges and future perspectives[J]. Journal of Hazardous Materials, 2022, 429: 128312. doi: 10.1016/j.jhazmat.2022.128312
    [2] JIN S, MU D Y, LU Z A, et al. A comprehensive review on the recycling of spent lithium-ion batteries: Urgent status and technology advances[J]. Journal of Cleaner Production, 2022, 340: 130535. doi: 10.1016/j.jclepro.2022.130535
    [3] 荆俊杰, 谢吉民. 微量元素锰污染对人体的危害[J]. 广东微量元素科学, 2008, 15(2): 6-9. doi: 10.3969/j.issn.1006-446X.2008.02.002
    [4] MESHRAM P, PANDEY B D, MANKHAND T R. Hydrometallurgical processing of spent lithium ion batteries (LIBs)in the presence of a reducing agent with emphasis on kinetics of leaching[J]. Chemical Engineering Journal, 2015, 281: 418-427. doi: 10.1016/j.cej.2015.06.071
    [5] MESHRAM P, PANDEY B D, MANKHAND T R. Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects[J]. Waste Management, 2015, 45(11): 306-313.
    [6] 范丹丹. 抗坏血酸浸出报废镍钴锰三元电池中有价金属的研究[D]. 上海: 上海第二工业大学, 2019: 4-8.
    [7] 代梦雅, 张亚茹, 张可, 等. 用溶剂萃取—沉淀法从废锂离子电池正极材料中回收钴镍锂[J]. 湿法冶金, 2019, 38(4): 276-282. doi: 10.13355/j.cnki.sfyj.2019.04.005
    [8] 鲁桃, 程洁红. 溶剂萃取分离废锂离子电池中的钴[J]. 江苏理工学院学报, 2019, 25(6): 22-28. doi: 10.3969/j.issn.1674-8522.2019.06.004
    [9] 徐平, 陈钦, 张西华, 等. 废锂离子电池中锂提取技术研究进展[J]. 过程工程学报, 2019, 19(5): 853-864. doi: 10.12034/j.issn.1009-606X.219221
    [10] 孟飞. 废弃三元锂离子电池金属元素选择性浸出及分离特性研究[D]. 重庆: 重庆大学, 2020: 87-100.
    [11] 高桂兰. 有机酸还原性体系浸出回收废弃锂离子电池正极材料的研究[D]. 上海: 上海大学, 2019: 81-82.
    [12] 吴诗婷. P204-添加剂改性萃取体系萃取钕、钆的研究[D]. 南昌: 南昌航空大学, 2018: 47-52.
    [13] 李剑虹, 张兴. P204-HCl-HAc体系萃取La的机理分析与萃取平衡常数[J]. 稀有金属与硬质金, 2010, 38(2): 11-13.
    [14] 徐志高, 王力军, 吴延科, 等. DIBK-P204体系萃取分离锆和铪的机理[J]. 中国有色金属学报, 2013, 23(7): 2061-2068. doi: 10.19476/j.ysxb.1004.0609.2013.07.039
  • 加载中
图( 8)
计量
  • 文章访问数:  3589
  • HTML全文浏览数:  3589
  • PDF下载数:  121
  • 施引文献:  0
出版历程
  • 收稿日期:  2023-07-16
  • 录用日期:  2023-10-10
  • 刊出日期:  2023-10-26
冯天意, 崔鹏媛, 林艳, 俞小花, 沈庆峰. 废旧锂电池正极材料浸出液中锰、钴的萃取分离[J]. 环境工程学报, 2023, 17(10): 3367-3373. doi: 10.12030/j.cjee.202307055
引用本文: 冯天意, 崔鹏媛, 林艳, 俞小花, 沈庆峰. 废旧锂电池正极材料浸出液中锰、钴的萃取分离[J]. 环境工程学报, 2023, 17(10): 3367-3373. doi: 10.12030/j.cjee.202307055
FENG Tianyi, CUI Pengyuan, LIN Yan, YU Xiaohua, SHEN Qingfeng. Extraction and separation of manganese and cobalt from the leaching solution of cathode materials of waste lithium batteries[J]. Chinese Journal of Environmental Engineering, 2023, 17(10): 3367-3373. doi: 10.12030/j.cjee.202307055
Citation: FENG Tianyi, CUI Pengyuan, LIN Yan, YU Xiaohua, SHEN Qingfeng. Extraction and separation of manganese and cobalt from the leaching solution of cathode materials of waste lithium batteries[J]. Chinese Journal of Environmental Engineering, 2023, 17(10): 3367-3373. doi: 10.12030/j.cjee.202307055

废旧锂电池正极材料浸出液中锰、钴的萃取分离

    通讯作者: 沈庆峰 (1976—),男,博士,讲师,48149079@qq.com
    作者简介: 冯天意 (1999—),男,硕士研究生,875768647@qq.com
  • 昆明理工大学冶金与能源工程学院,昆明 650093
基金项目:
国家重点研发计划资助项目 (2019YFC1907900);云南省人才计划资助项目 (YNWR-QNBJ-2018-327)

摘要: 针对废旧锂电池中正极材料中有价金属未得到有效回收的情况,对废旧锂电池正极材料用苹果酸浸出后的浸出液进行分步萃取,以回收其中有价金属。研究了萃取时间、相比O/A、萃取剂体积分数等因素对各金属元素萃取率的影响。结果表明:在最佳萃取条件下,用P204 经过三级逆流萃取后,锰的萃取率达到99.99%,镍、钴、锂的共萃率分别为12.11%、9.20%、3.23%。负载锰的有机相用含1 g·L−1锰的苹果酸溶液洗脱共萃取的镍、钴、锂,然后用300 g·L−1的苹果酸三级逆流反萃锰,锰的反萃率达到了88.80%;用Cyanex272为萃取剂通过三级逆流萃取,钴的萃取率达到了94.01%,锂、镍的共萃率分别为11.21%和0.02%,负载钴的有机相用含1 g·L−1钴的苹果酸溶液洗脱共萃取的锂,随后用30 g·L−1的苹果酸对负载钴的有机相进行三级逆流反萃,钴的反萃率达到了99.98%;提出了先用P204从废旧锂电正极材料苹果酸浸出液中萃取分离Mn,而后再用 Cyanex272萃取分离Co的工艺流程,可实现苹果酸浸出液中Mn和Co的分离。本研究结果可为有机酸体系高效萃取锰、钴提供参考。

English Abstract

  • 由于锂离子电池具有安全环保,电池容量大,输出功率大,自放电小等诸多优点,被广泛用于便携式电子产品,航空航天,医疗器械等领域[1~2]。据报道,2022年中国锂电池正极材料和负极材料产量分别有1.85×106 t和1.4×106 t,而2022年锂电池回收量仅有4.15×105 t,只有15%不到的锂电池得到有效回收,因锂电池使用寿命只有1~3年,如果回收率不变,到2025年可能会有2.835×106 t废电池不能得到有效回收。这些废旧锂电池中含有钴、镍等有毒重金属,直接丢弃会对土壤、河流等造成严重污染,而锂离子电池中锂、镍、钴、锰等金属的含量远高于一般矿物,具有极高的资源性和价值,随着科技不断发展和资源的不断开发,对资源的可循环利用和环境保护的要求被日益重视[3],因此废旧锂离子电池的回收显得尤为重要并已经迫在眉睫[4-5]

    溶剂萃取法[6]因其具有高提取率、选择分离性高、流程简单和操作连续化等优点,已经成为处理废旧锂电池中金属离子分离回收的主要方法。目前废旧三元锂电池中有价金属提取主要是在无机酸 (硫酸、盐酸等)体系中进行,因此,萃取分离的研究重点主要在硫酸、盐酸等无机酸体系中开展。如:代梦雅等[7]对电极材料使用硫酸浸出,浸出液经过P204除锰,在pH=5.2条件下,分别以0.5 mol·L−1 P507和0.6 mol·L−1 Cyanex272为萃取剂,经过两级错流萃取,钴萃取率分别为98.21%和99.44%, 镍共萃取率分别为24.42%和4.26%, 锂共萃取率分别为15.84%和5.11%;鲁桃等[8]在硫酸体系中使用Cyanex272,初始pH为4,萃取剂体积分数为50%,皂化率75%左右,O/A=1∶1,振荡时间为2 min,钴的一级萃取率为98.38%,而镍的损失率为2.28%。但在无机酸体系提取过程中易产生Cl2、SO2等有害气体、设备易腐蚀、铜、铝等杂质浸出率高等缺点,近年来,更多研究选用酸性较为温和、更为环保、杂质浸出率低的有机酸对正极材料中有价金属进行浸出被越来越多的研究者所关注[9]。如孟飞[10]使用柠檬酸对废旧三元电池浸出,镍钴锂锰的浸出率均大于90%,而铜、铝的浸出率均小于30%;高桂兰[11]对正极材料在柠檬酸浓度1.2 mol·L−1、硫代硫酸钠浓度0.3 mol·L−1、固液比20 g·L−1、浸出温度70 ℃、浸出时间30 min,钴的浸出率可达96%左右,锂的浸出率可达99%左右;但目前,关于在有机酸体系萃取分离废旧三元锂电池中的有价金属的文献较少。

    本研究选用的是有机酸中较为便宜的D, L-苹果酸浸出废旧锂电池正极材料,经过前期一定的探索实验探究有机酸体系各种萃取剂对有价金属元素的萃取率;对浸出液选用一种或几种萃取剂来对其中的锰和钴进行分步萃取,研究不同影响因素下萃取剂对苹果酸浸出液中金属元素的萃取效果,为有机酸体系高效萃取锰、钴提供一定的参考。

    • 本实验采用模拟的废旧三元电池正极材料LiNi0.6Co0.2Mn0.2O2的苹果酸浸出液。浸出液Ⅰ的成分为:Mn 2.26 g·L−1、Ni 5.7 g·L−1、Co 2.5 g·L−1、Li 1.24 g·L−1,苹果酸质量浓度为100 g·L−1。浸出液Ⅱ的成分为:Mn 4.51 g·L−1,苹果酸质量浓度为100 g·L−1。浸出液Ⅲ的成分为:Co 5.31 g·L−1,苹果酸质量浓度为100 g·L−1。浸出液IV的成分为:Co 2.50 g·L−1、Ni 4.94 g·L−1、Li 1.28 g·L−1,苹果酸质量浓度为100 g·L−1。萃取剂P204和萃取剂Cyanex272由重庆康普化学工业股份有限公司生产、萃取剂溶剂为煤油 (航空煤油)、NaOH为天津市风船化学试剂科技有限公司生产,苹果酸为湖县利乐生物科技实业有限公司生产。

    • 实验时,首先使用30%NaOH溶液对浸出液pH值进行调节,然后按设定相比将浸出液与有机相混于分液漏斗中,在震荡器上震荡一段时间,取出分液漏斗静置分相,随后对负载有机相使用极低质量浓度的被萃金属苹果酸溶液进行洗涤,静置分相并分离,随后用一定质量浓度苹果酸溶液与洗涤后的负载有机相进行反萃处理,静置分相并分离得到反萃液。方程式如式(1)~式(3)所示,其中Men+代表被萃金属离子,Mn+代表其它金属离子,HR表示萃取剂。

      式(1)是萃取剂将浸出液中的金属元素萃取到有机相中,式(2)是通过低质量浓度的苹果酸溶液将其它金属离子洗涤到溶液中,式(3)是使用低质量浓度苹果酸溶液将负载有机相中的金属离子反萃到苹果酸溶液中。

    • 1)萃取条件对P204萃取Mn2+的影响。取浸出液Ⅱ20 mL,进行温度为25 ℃,萃取时间为1~9 min,相比O/A为1∶2至5∶2,萃取剂体积分数为10%~50%,浸出液pH为2.40~3.70系列条件下的萃取实验,实验结果如图1所示。如图1(a)所示,随着时间的增加,萃取率有轻微变化,但起伏不大,说明反应进行较快。当萃取时间为1 min时,反应已达到平衡,萃取率在60.00%左右;如图1(b)所示,随着相比O/A增加,锰的萃取率先迅速增加后趋于稳定,这是因为在溶液中其他离子质量浓度确定的情况下,锰的萃取率取决于萃取剂P204量的多少,增大相比O/A就等于增加萃取剂的量,当相比O/A较小时,萃取剂P204基本与锰完全反应,因溶液中锰的含量是一定的,所以最终锰的萃取率是趋于稳定的。考虑到原料利用率,相比过大导致体系粘度增加,影响分相效率及分相速率等问题,选择最佳相比O/A为1∶1,其萃取率为63.15%。由图1(c)可知,当萃取剂体积分数分别为10%、20%、30%时,萃取率分别为35.87%、65.25%、78.70%,随着萃取剂体积分数的增加,锰的萃取率也迅速增加,最后趋于平衡,这是因为随着P204含量的增加,萃取剂与锰的接触几率增加,形成萃合物的几率增加,从而萃取率增加,因锰的含量是固定的,所以最后萃取率趋于平衡。考虑到成本及萃取率增加速率,选择最佳萃取剂体积分数为20%。由图1(d)可知,随着初始pH的增加,萃取率迅速增加,然后趋于平缓,这是因为在萃取反应过程中金属离子会与萃取剂反应产生H+离子,pH值的增加有利于反应向生成萃合物的方向进行,当pH=2.96时,萃取率为89.75%,再继续增加pH,萃取率增加相对较小,因此选择最佳pH为2.96。取浸出液Ⅰ在最佳实验条件下进行三级逆流萃取实验,锰的萃取率可达到99.99%,镍、钴、锂的共萃率分别为12.11%、9.20%、3.23%。

      2)其他金属离子对P204萃取Mn2+的影响。取浸出液Ⅱ20 ml,分别加入一定量碳酸钴、碳酸镍、碳酸锂,进行温度为 25 ℃,萃取时间为1 min,相比O/A=1∶1,萃取剂体积分数为20%的萃取实验,实验结果如图2所示。随着钴离子质量浓度的增加,锰离子萃取率在缓慢增加。由于添加碳酸钴导致初始pH发生变化,初始pH变为2.44~2.65,在无钴离子存在的情况下,P204对锰的萃取率从63%左右升至73%左右,而添加钴离子后,锰的萃取率从60.30%增加到70.40%,说明锰离子萃取率的增加主要是由于添加碳酸钴导致的初始pH值变化引起的。由于钴的萃取率在在逐渐增加,从而使锰、钴的分离系数在不断降低。由图2(b)可知,随着镍离子质量浓度的增加,锰离子的萃取率不断增加。由于加入了碳酸镍,导致初始pH值变为2.48~2.78,在无镍离子存在的情况下,锰的萃取率从64.00%左右升至78.00%左右,而添加镍离子后,锰的萃取率从54.93%升到70.40%,说明锰离子萃取率的增加主要是由于添加碳酸镍导致的pH值变化引起的。而镍离子的萃取率先增加后降低,这是因为P204对镍的萃取容量达到了最大值,继续增加镍离子质量浓度,萃取率降低。由图2(c)可知,随着锂离子质量浓度的增加,锰离子的萃取率不断增加,由于加入了碳酸锂,初始pH值变为2.70~3.28,在无锂离子存在的情况下,P204对锰的萃取率从75.00%左右上升到95.00%左右,添加锂离子后,萃取率由69.28%上升至82.06%,说明锰离子萃取率的增加主要是由于添加碳酸锂导致的pH值变化引起的。由图2的(a)、(b)、(c)可知,3种离子与锰的分离系数均较差,为了保证纯度,需要在后续对负载有机相进行水洗以除去其中大部分的其他金属离子。

      3) P204负载有机相反萃锰的研究。为了抑制有机相中锰被洗出,使用含1 g·L−1锰的100 g·L−1苹果酸溶液以相比O/A=1∶1对浸出液Ⅰ使用P204进行三级逆流萃取后的负载锰有机相洗涤,洗涤前有机相中Mn为2.255 g·L−1,Ni为0.69 g·L−1,Co为0.23g·L−1,洗涤后有机相中Mn为2.51 g·L−1,Ni为0.04 g·L−1,Co仅含0.03 g·L−1,锂离子质量浓度太低未检测到,表明洗涤效果较良好。对洗涤后的负载有机相进行反萃,固定条件为:反萃介质为苹果酸,相比O/A=1∶1、反萃时间20 min、温度25 ℃,实验结果如图3。由图3可知,在此反萃条件下,Mn的单级反萃率可达55.00%左右。在同样反萃条件下对Mn负载有机相进行三级逆流反萃,反萃率可达88.80%,由此可见,苹果酸溶液能将大部分的锰反萃。

      4)红外光谱测试分析P204萃取锰对P204有机相萃取前后及反萃后进行了红外光谱分析,如图由图4可知,在3 448.396 cm−1出现二聚体分子间氢键伸缩振动峰,在1 649.731 cm−1出现二聚体的O-H面内弯曲振动峰。在萃取后,3 448.396 cm−1振动峰强度降低但是仍能观察到二聚体峰,说明分子间形成的-OH键中的H被锰取代,但是P204过量,未能完全消除二聚体的影响。而1 649.731 cm−1的峰向低波数1 638.274移动,且峰强度有所降低,这是因为P-O→Mn的生成的同时使氢键电子云降低。在反萃后,振动峰强度有一定恢复且向高波数偏移至1 641.238 cm−1,这是因为反萃后锰被氢离子置换出去,但是仍未置换完全。在1 231.570 cm−1处出现P=O的伸缩振动峰,在萃取后,由高波数的1 231.570 cm−1位移到1 222.978 cm−1说明P=O键与Mn离子发生配位,波数变化是由于P=O键与Mn形成P=O→Mn配位键,使P=O双键的电子云密度降低,键的强度减弱,从而导致其震动频率下降。同时因为Mn与P=O的配位,使P204的对称性发生变化,P=O键的偶极矩发生变化,导致峰强度减弱[12-14]。即P204萃取锰的反应的实质是Mn与P-O-H中的氢发生置换反应,且与P=O形成配位键进而被萃取。

    • 1)萃取条件对Cyanex272萃取Co2+的影响。取浸出液Ⅲ 20ml,进行温度为25 ℃,萃取时间为1~9 min,相比O/A为1∶4至5∶2,萃取剂体积分数为10%~50%,平衡pH为4~6的萃取实验,实验结果如图5所示。如图5(a)所示,整个反应进行较快,萃取率整体变化不大。当萃取时间为3min时,萃取率为87.56%,达到最大值,因此,3 min为最佳萃取时间。由图5(b)可知,随着相比O/A的不断增加,萃取率也在不断增加。因溶液中钴离子的含量是一定的,相比O/A的不断增加,最终钴的萃取率时趋于稳定的。考虑到成本,原料利用率,以及相比过大时导致影响分相效率及分相速率低,选择最佳相比O/A为1∶1,钴的最佳萃取率为81.97%。由图5(c)可知,随着萃取剂体积分数的不断增加,萃取率也是在不断增加的。这是因为Cyanex272的增加,萃取剂与钴的接触几率也在不断增加,形成萃合物的几率增加,最终萃取率增加。当萃取剂体积分数分别10%、20%、30%,萃取率分别为71.92%、91.65%、93.72%,因萃取剂体积分数为20%时,萃取率上升幅度较大,所以最佳萃取剂体积分数为20%。由图5(d)可知,随着pH的增加,萃取率不断增加,当pH为5~6时,萃取率有较大幅度增加。当平衡pH=6,钴的萃取率为91.75%。随着萃取反应的进行,溶液的pH在不断降低,增加水相的平衡pH有利于萃取反应发生,进而增大钴的萃取率,最终选择最佳平衡pH为6。取浸出液IV在最佳实验条件下进行三级逆流萃取钴实验,钴的萃取率为94.01%,锂、镍的共萃率分别为11.21%和0.02%。

      2)其他金属离子对Cyanex272萃取Co2+的影响。取浸出液Ⅲ20ml,分别加入一定量碳酸镍、碳酸锂,并重新定容,进行温度为25 ℃,萃取时间为3min,相比O/A=1∶1,萃取剂体积分数为20%,平衡pH=6的萃取实验,实验结果如图6所示。因Cyanex272对钴、镍均具有良好的萃取效果,所以测试在添加一定量镍离子后,在萃取剂体积分数为20%,相比O/A=1∶1,萃取时间3 min,镍离子质量浓度为10.4 g·L−1条件下,不同平衡pH下Cyanex272对镍、钴的萃取效果,结果如图6(a)所示,随着平衡pH的增加,钴离子的萃取率在不断增加,镍离子的萃取率基本保持不变。当pH=6时,钴的萃取率为89.62%,镍的萃取率未超过10%,说明不同pH下,镍离子对Cyanex272萃钴过程基本无影响。由图6(b)可知,随着镍离子质量浓度的增加,钴离子萃取率先增后趋于平衡,与未添加镍离子时相比,钴的的萃取率有一定的下降,即镍离子对Cyanex272萃钴有抑制作用,但是随着镍离子质量浓度的增加,这种抑制作用在不断降低。镍离子萃取率基本维持在20.00%左右,当镍离子质量浓度为3 g·L−1时,钴的萃取率为86.24%,此时镍钴的分离系数为20.2,两者较易进行分离。由图6(c)可知,随着锂离子质量浓度增加,钴离子萃取率整体呈下降趋势,说明锂离子对钴离子的萃取有一定抑制作用,且这种抑制作用在不断增强。

      3) Cyanex272负载有机相反萃钴的研究。为了抑制有机相中的钴被洗出,使用含1 g·L−1钴的10 g·L−1苹果酸溶液以相比O/A=1∶1对浸出液IV使用Cyanex272进行三级逆流萃取后的负载钴有机相洗涤,洗涤前有机相中Co 2.31 g·L−1,Ni 0.01 g·L−1,Li 0.14 g·L−1,洗涤后有机相中Co为2.81 g·L−1,镍未检测出,锂仅含5.47 mg·L−1,洗涤效果良好。对洗涤后的负载有机相进行反萃,固定条件为:反萃介质为苹果酸、相比O/A=1∶1、反萃时间10min、温度25 ℃。实验结果如图7。由图7可知,当反萃介质苹果酸质量浓度为30 g·L−1时,Co的单级反萃率可达76.61%。在同样条件下进行三级逆流反萃Co后,Co反萃率为99.98%。

      4)红外光谱测试分析Cyanex272萃取钴对Cyanex272有机相萃取前后及反萃后进行了红外光谱分析, 如图8所示。在3 448.396 cm−1附近和1 639.706 cm−1附近出现了二聚体分子间氢键伸缩振动峰, 和二聚体的O-H面内弯曲振动峰,在1 171.423 cm−1附近出现了P=O的伸缩振动峰。萃取后,位于3 448.396 cm−1的吸收峰的强度变低和位于1 639.706cm−1的峰向高波位1 649.731 cm−1移动,且峰强度有所降低,在反萃后有所恢复,说明-OH中的氢与锰发生了置换反应,而在萃取后,由高波位的1 171.423 cm−1的P=O的伸缩振动峰位移到低波位的1 147.078 cm−1,且峰强度变弱,这说明P=O键与钴离子发生配位反应,使P=O的电子云密度降低,减弱了P=O键的强度,使其振动频率减弱。因为P=O与Co的配位,使得Cyanex272的对称性改变,P=O键的偶极矩发生变化,导致峰强度减弱。即Cyanex272萃取钴的反应的实质是钴与P-O-H中的氢发生置换反应,且与P=O形成配位键进而被萃取。

    • 1)在苹果酸体系中, P204做萃取剂通过三级逆流萃取可使锰的萃取率达99.99%,其中除萃取时间外,相比O/A、萃取剂体积分数、pH这3个因素对P204萃锰的萃取率有显著影响;通过三级逆流反萃,锰的反萃率可达88.88%。

      2)在苹果酸体系中,Cyanex272做萃取剂通过三级逆流萃取可使钴的萃取率达94.01%,其中平衡pH对Cyanex272萃取钴的萃取率影响最为显著,其次分别是相比O/A和萃取剂体积分数。通过三级逆流萃取,钴的反萃率可达99.98%。

      3)根据红外光谱结果表明,P204萃锰、Cyanex272萃钴的原理为金属离子与P-O-H中的氢发生置换反应,且与P=O形成配位键进而被萃取。

    参考文献 (14)

返回顶部

目录

/

返回文章
返回