-
2021年,我国城市污水处理厂污水处理能力为2.1×109 m3·d−1,污水处理率达到97.89%。污水、污泥处理过程中产生并逸散的恶臭气体、挥发性有机物等气态污染物,影响环境空气质量以及污水处理厂内员工、周边居民的身体健康。2002年我国制定了《城镇污水处理厂污染物排放标准》(GB 18918-2002),严格限制硫化氢、氨、甲烷等气态污染物的排放。有研究[1-2]表明,城市污水处理厂的进水区(进水泵站、格栅间)和污泥处理区(污泥浓缩池、污泥脱水机房)是恶臭气体和挥发性有机物的主要逸散源。硫化氢和氨是常见的恶臭物质[3-4],。排放的VOCs包括烷烃、烯烃、芳香烃、卤代烃、含氧有机物、含氮有机物和含硫有机物等80余种[5-6]。以往的研究主要关注恶臭物质中的硫化氢和氨,较少涉及二硫化碳等有机硫化物以及磷化氢。随着我国污水的排放标准的逐步提高,以及人们对环境质量的要求也显著提高,使得城市污水处理厂排放的空气污染物受到越来越多的关注。A2O是一种典型的污水处理工艺,可常用于二级污水处理或三级污水处理以及中水回用,具有良好的脱氮除磷效果,在我国应用广泛。本研究在北方某座采用A2O工艺的城市污水处理厂设置采样点,监测主要处理单元空气中的硫化氢、氨、二硫化碳、磷化氢等恶臭物质,研究了恶臭随季节的变化特征,明确了其排放源及产生原因,评估了恶臭物质的嗅味影响和健康风险,以期为城市污水处理厂恶臭物质的有效削减和控制提供科学依据。
A2O工艺城市污水处理厂恶臭物质逸散特征及风险评估
Characteristics and risk assessment of odors released from a wastewater treatment plant with A2O treatment process
-
摘要: 污水处理过程释放的大量恶臭气体对人体感官和健康产生不利影响。本研究在城市污水处理厂设置采样点,研究主要污水处理单元恶臭物质的逸散特征。结果表明,恶臭物质的排放主要集中在进水区,硫化氢、氨、二硫化碳、磷化氢的平均浓度分别为1.07、0.19、44.32和0.58 mg·m−3。污泥脱水间也是恶臭物质氨的主要释放源。硫化氢是主要的致臭物质,其在各工艺段的异味贡献率超过75%。二硫化碳和磷化氢的慢性致病风险较高,有必要采取相应的措施削减和控制其在污水处理厂内的影响。在厂界外300 m处,二硫化碳和磷化氢的慢性致病风险值可忽略,同时,硫化氢、氨、以及二硫化碳的厂界浓度均远远低于《恶臭污染物排放标准》(GB 14554-93)规定的相关限值。Abstract: The large amount of malodorous gases released by the sewage treatment process adversely affects the human senses and health. In this study, sampling points were set up in urban sewage treatment plants to study the fugitive characteristics of odorous substances in major sewage treatment units. The results showed that the discharge of malodorous substances was mainly concentrated in the influent zone, and the average concentrations of hydrogen sulfide, ammonia, carbon disulfide and phosphine were 1.07, 0.19, 44.32 and 0.58 mg·m−3, respectively. The sludge dewatering room was also the main source of the release of the malodorous substance ammonia. Hydrogen sulfide was the main odor-causing substance, and its odor contribution rate in each process section exceeded 75%. The risk of chronic disease of carbon disulfide and phosphine was high, and measures are necessary to reduce and control their impact in wastewater treatment plants. At 300 meters outside the plant boundary, the chronic pathogenic risk values of carbon disulfide and phosphine were negligible, and the concentrations of hydrogen sulfide, ammonia and carbon disulfide in the plant boundary were far below the relevant limits stipulated in the Odorous Pollutant Emission Standard (GB14554-93).
-
Key words:
- wastewater treatment /
- odors /
- emission characteristics /
- olfactory effect /
- risk assessment
-
[1] 刘建伟, 李琳, 赵珊, 等. 恶臭气体生物处理新技术与应用实例[M]. 北京: 中国环境出版集团, 2020. [2] 孙德智, 刘俊新, 李若愚, 等. 城镇污水处理空气污染物排放特征与监管技术[M]. 北京: 科学出版社, 2022. [3] 黄力华,刘建伟,夏雪峰,等. 城市污水处理厂典型气体污染物产生特性研究[J]. 科学技术与工程, 2015, 15(3): 295-299. doi: 10.3969/j.issn.1671-1815.2015.03.059 [4] 林坚,李琳,刘俊新,等. 城市污水厂主要处理单元恶臭及挥发性有机物的逸散[J]. 环境工程学报, 2016, 10(5): 2329-2334. doi: 10.12030/j.cjee.201412148 [5] 刘舒乐,王伯光,何洁,等. 城市污水处理厂恶臭挥发性有机物的感官定量评价研究[J]. 环境科学, 2011, 32(12): 3582-3587. doi: 10.13227/j.hjkx.2011.12.023 [6] ASADI M,MCPHEDRAN K. Estimation of greenhouse gas and odour emissions from a cold region municipal biological nutrient removal wastewater treatment plant[J]. Journal of Environmental Management, 2021, 281: 111864. doi: 10.1016/j.jenvman.2020.111864 [7] WU C,LIU J,ZHAO P,et al. Evaluation of the chemical composition and correlation between the calculated and measured odour concentration of odorous gases from a landfill in Beijing,China[J]. Atmospheric Environment, 2017, 164(9): 337-347. [8] NAGATA Y. Measurement of odor threshold value of odor substances by triangle odor bag method[C]//Meeting of the Japan Society of Air Pollution. 1988. [9] DAI H,JING S,WANG H,et al. VOC characteristics and inhalation health risks in newly renovated residences in Shanghai,China[J]. Science of the Total Environment, 2016, 577: 73-83. [10] US EPA, Air Toxics Risk Assessment Reference Library:Technical Resource Manual[M]. Washington: United States Environmental Protection Agency, 2004. [11] 朱国营,刘俊新. 污水处理厂的生物滤池除臭技术[J]. 中国给水排水, 2003, 19(8): 23-25. doi: 10.3321/j.issn:1000-4602.2003.08.007 [12] 李慧丽,张建新,张荣兵,崔希龙,文洋,李琳. 污水厂生物除臭设施运行及影响因素的研究[J]. 环境工程学报, 2007, 1(5): 25-30. doi: 10.3969/j.issn.1673-9108.2007.05.006 [13] JIANG G,MELDER D,KELLER J,et al. Odor emissions from domestic wastewater:A review[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(17): 1581-1611. doi: 10.1080/10643389.2017.1386952 [14] LIANG Z,SUN J,CHAU H,et al. Experimental and modelling evaluations of sulfide formation in a mega-sized deep tunnel sewer system and implications for sewer management[J]. Environment International, 2019, 131: 105011. doi: 10.1016/j.envint.2019.105011 [15] 王智超,席劲瑛,欧阳云,等. 城市污水厂H2S排放浓度与水质和泥质指标的相关性[J]. 环境科学研究, 2013, 26(9): 989-994. [16] JOHAN W G,PAUL G M H. Biotechniques for air pollution control[J]. Biodegradation, 1993(4): 283-301.