-
高级氧化工艺(advanced oxidation processes, AOPs)是一种先进的污水处理技术,相比于传统的生物技术,AOPs可将难降解、毒性有机污染物进行有效去除,在环境保护、水处理、废弃物处理等领域收到了广泛的关注[1]. AOPs是基于通过各种化学、光化学、声化学或电化学反应生成以羟基自由基(·OH)为主的活性氧物种来攻击有机污染物[2 − 4]使其氧化分解,并进一步完全矿化生成水、二氧化碳和无机盐,从而达到净化水体的目的[3, 5]. 近年来,AOPs领域的研究方向主要集中在以下几个方面[6]:1) AOPs新技术的研发;2) AOPs机理的探索;3) AOPs与生物、吸附和膜技术等的联用;4) AOPs的实际应用;5) AOPs效率和能耗等方面综合调控.
由于AOPs技术复杂度较高,存在能源消耗、副产物产生等问题,因此降低能耗提升效率成为了AOPs研究的重点,而AOPs水体净化效率受到多种因素包括反应条件、废水性质、处理时间和工艺本身等的限制[7 − 8]. 研究人员通过改进反应器设计、使用新型催化剂和调节反应条件等手段,降低AOPs的能耗,提高处理效率和工程经济性[9]. 改进AOPs的反应条件对提高其处理效率有着重要的帮助. 前人主要研究了反应温度、反应时间、酸碱值 (pH)、催化剂用量和氧化剂用量等对体系的影响[10]. 随着AOPs机理研究的不断深入,人们注意到初始溶解氧条件与AOPs处理效率的关联机制,并推动领域朝着高选择性、可持续性和高效率性的方向发展[11 − 12]. 溶解氧在体系中的影响机制是通过利用电子顺磁共振技术和化学竞争手段定性定量研究体系主要活性物种,并根据曝气实验、溶解氧梯度浓度实验掌握溶解氧对体系的宏观影响,再通过反应方程式、产物分析、氧化机制分析,以及对活性自由基浓度的监测综合得出. 近年来在不同种类的AOPs中有关溶解氧的研究主要集中在以下3个方面:1) 不同溶解氧浓度条件下污染物的降解及矿化效果;2) 溶解氧在氧化过程中导致的自由基浓度变化;3) 氧化过程中涉及溶解氧的反应机制.
由此可见,溶解氧是AOPs体系中的一个重要参数,本文通过综述了溶解氧在光催化氧化、芬顿氧化、过硫酸盐氧化、臭氧氧化、声化学氧化和电化学氧化体系中对有机污染物降解速率、反应产物,以及自由基反应路径的动力学分析以及体系反应能耗的热力学影响(图1),相关研究有助于深刻认知AOPs应用过程溶解氧的影响机制,进一步推进AOPs应用于高效处理水中有机污染物.
溶解氧对高级氧化工艺影响机制研究进展
Review: Mechanism of dissolved oxygen influence on advanced oxidation processes
-
摘要: 水溶液中的有机污染物引起了一系列生态环境问题. 现阶段,高级氧化工艺(AOPs)广泛应用于水环境中有机污染物的高效处理,其处理过程的初始溶解氧浓度是影响高级氧化反应的重要参数条件. 通过调节溶解氧浓度,以及协同控制pH和其他技术条件可以有效降低AOPs的能耗,提高处理效率和经济效益. 本文针对6种代表性AOPs,开展初始溶解氧浓度对氧化体系的影响机制分析,并分别对溶解氧参与的活性物种生成、污染物分解、催化体系影响过程进行了梳理. 最后总结了溶解氧在AOPs中的重要性及工程应用中的调控思路,为今后利用参数调控对AOPs降低能耗提升效率的优化研究提供参考.Abstract: Organic pollutants in aqueous solutions cause a series of ecological and environmental issues. At present, advanced oxidation processes (AOPs) are widely used for efficient wastewater treatment of organic pollutants. Initial dissolved oxygen concentration of the treatment is an important parameter that affects advanced oxidation reactions. By regulating the concentration of dissolved oxygen as well as synergistically controlling pH and other reaction conditions, the energy consumption of AOPs can be reduced, the treatment efficiency and economic feasibility can be further improved. This paper analyzes the impact of initial dissolved oxygen concentration on oxidation systems for six representative AOPs, and summarizes the involvement of dissolved oxygen in the generation of active species, pollutant decomposition, and catalytic processes. The importance of dissolved oxygen in AOPs and its regulatory ideas in engineering applications are discussed, providing references for future optimization research on parameter regulation to reduce AOPs energy consumption and improve efficiency.
-
Key words:
- dissolved oxygen /
- AOPs /
- mechanisms.
-
-
[1] 向伟铭, 杨绍贵, 孙敦宇, 等. 高级氧化技术去除水中碘代X射线造影剂研究进展[J]. 环境化学, 2022, 41(1): 260-275. doi: 10.7524/j.issn.0254-6108.2020101602 XIANG W M, YANG S G, SUN D Y, et al. Research progress of advanced oxidation technology to remove iodine X-ray contrast media in water[J]. Environmental Chemistry, 2022, 41(1): 260-275(in Chinese). doi: 10.7524/j.issn.0254-6108.2020101602
[2] USHANI U, LU X Q, WANG J H, et al. Sulfate radicals-based advanced oxidation technology in various environmental remediation: A state-of-the–art review[J]. Chemical Engineering Journal, 2020, 402: 126232. doi: 10.1016/j.cej.2020.126232 [3] VIDAL-DORSCH D E, BAY S M, MARUYA K, et al. Contaminants of emerging concern in municipal wastewater effluents and marine receiving water[J]. Environmental Toxicology and Chemistry, 2012, 31(12): 2674-2682. doi: 10.1002/etc.2004 [4] GARRIDO-CARDENAS J A, ESTEBAN-GARCÍA B, AGÜERA A, et al. Wastewater treatment by advanced oxidation process and their worldwide research trends[J]. International Journal of Environmental Research and Public Health, 2019, 17(1): 170. doi: 10.3390/ijerph17010170 [5] TRAN N H, REINHARD M, GIN K Y H. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review[J]. Water Research, 2018, 133: 182-207. doi: 10.1016/j.watres.2017.12.029 [6] CRINI G, LICHTFOUSE E. Advantages and disadvantages of techniques used for wastewater treatment[J]. Environmental Chemistry Letters, 2019, 17(1): 145-155. doi: 10.1007/s10311-018-0785-9 [7] National Research Council. Drinking water distribution systems: Assessing and reducing risks[M]. Washington, DC: The National Academies Press, 2006. doi. org/10.17226/11728 [8] McDONALD R I, GREEN P, BALK D, et al. Urban growth, climate change, and freshwater availability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(15): 6312-6317. [9] HODGES B C, CATES E L, KIM J H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials[J]. Nature Nanotechnology, 2018, 13(8): 642-650. doi: 10.1038/s41565-018-0216-x [10] CHEN P, BLANEY L, CAGNETTA G, et al. Degradation of ofloxacin by perylene diimide supramolecular nanofiber sunlight-driven photocatalysis[J]. Environmental Science & Technology, 2019, 53(3): 1564-1575. [11] CHEN N, SHANG H, TAO S Y, et al. Visible light driven organic pollutants degradation with hydrothermally carbonized sewage sludge and oxalate via molecular oxygen activation[J]. Environmental Science & Technology, 2018, 52(21): 12656-12666. [12] GUO F, ZHANG H, LI H, et al. Modulating the oxidative active species by regulating the valence of palladium cocatalyst in photocatalytic degradation of ciprofloxacin[J]. Applied Catalysis B: Environmental, 2022, 306: 121092. doi: 10.1016/j.apcatb.2022.121092 [13] SUSLICK K S. Mechanochemistry and sonochemistry: Concluding remarks[J]. Faraday Discussions, 2014, 170((10): ): 411-422. [14] MO Y M, XU W, ZHANG X P, et al. Enhanced degradation of rhodamine B through peroxymonosulfate activated by a metal oxide/carbon nitride composite[J]. Water, 2022, 14(13): 2054. doi: 10.3390/w14132054 [15] BRILLAS E. Recent development of electrochemical advanced oxidation of herbicides. A review on its application to wastewater treatment and soil remediation[J]. Journal of Cleaner Production, 2021, 290: 125841. doi: 10.1016/j.jclepro.2021.125841 [16] TAN X J, DING W H, JIANG Z Y, et al. Reinventing MoS2 Co-catalytic Fenton reaction: Oxygen-incorporation mediating surface superoxide radical generation[J]. Nano Research, 2022, 15(3): 1973-1982. doi: 10.1007/s12274-021-3848-3 [17] ZHANG C Y, YU Z S, WANG X Y. A review of electrochemical oxidation technology for advanced treatment of medical wastewater[J]. Frontiers in Chemistry, 2022, 10: 1002038. doi: 10.3389/fchem.2022.1002038 [18] KOE W S, LEE J W, CHONG W C, et al. An overview of photocatalytic degradation: Photocatalysts, mechanisms, and development of photocatalytic membrane[J]. Environmental Science and Pollution Research, 2020, 27(3): 2522-2565. doi: 10.1007/s11356-019-07193-5 [19] BENITEZ F J, ACERO J L, REAL F J, et al. Comparison of different chemical oxidation treatments for the removal of selected pharmaceuticals in water matrices[J]. Chemical Engineering Journal, 2011, 168(3): 1149-1156. doi: 10.1016/j.cej.2011.02.001 [20] ZU M, ZHOU X S, ZHANG S S, et al. Sustainable engineering of TiO2-based advanced oxidation technologies: From photocatalyst to application devices[J]. Journal of Materials Science & Technology, 2021, 78: 202-222. [21] WANG H, WU Y, FENG M B, et al. Visible-light-driven removal of tetracycline antibiotics and reclamation of hydrogen energy from natural water matrices and wastewater by polymeric carbon nitride foam[J]. Water Research, 2018, 144: 215-225. doi: 10.1016/j.watres.2018.07.025 [22] SI Q S, GUO W Q, WANG H Z, et al. Difunctional carbon quantum dots/g-C3N4 with in-plane electron buffer for intense tetracycline degradation under visible light: Tight adsorption and smooth electron transfer[J]. Applied Catalysis B: Environmental, 2021, 299: 120694. doi: 10.1016/j.apcatb.2021.120694 [23] LU Z, ZENG L, SONG W L, et al. in situ synthesis of C-TiO2/g-C3N4 heterojunction nanocomposite as highly visible light active photocatalyst originated from effective interfacial charge transfer[J]. Applied Catalysis B: Environmental, 2017, 202: 489-499. doi: 10.1016/j.apcatb.2016.09.052 [24] LI L P, DAI K, LI J Y, et al. A Boron-10 nitride nanosheet for combinational boron neutron capture therapy and chemotherapy of tumor[J]. Biomaterials, 2021, 268: 120587. doi: 10.1016/j.biomaterials.2020.120587 [25] WANG Q, ZHU F, CHENG H, et al. Efficient activation of persulfate by Ti3C2 MXene QDs modified ZnFe2O4 for the rapid degradation of tetracycline[J]. Chemosphere, 2023, 328: 138546. doi: 10.1016/j.chemosphere.2023.138546 [26] DIESEN V, JONSSON M. Formation of H2O2 in TiO2 photocatalysis of oxygenated and deoxygenated aqueous systems: A probe for photocatalytically produced hydroxyl radicals[J]. The Journal of Physical Chemistry C, 2014, 118(19): 10083-10087. doi: 10.1021/jp500315u [27] KONDRAKOV A O, IGNATEV A N, LUNIN V V, et al. Roles of water and dissolved oxygen in photocatalytic generation of free OH radicals in aqueous TiO2 suspensions: An isotope labeling study[J]. Applied Catalysis B: Environmental, 2016, 182: 424-430. doi: 10.1016/j.apcatb.2015.09.038 [28] CHEN X Y, YAO J J, XIA B, et al. Influence of pH and DO on the ofloxacin degradation in water by UVA-LED/TiO2 nanotube arrays photocatalytic fuel cell: Mechanism, ROSs contribution and power generation[J]. Journal of Hazardous Materials, 2020, 383: 121220. doi: 10.1016/j.jhazmat.2019.121220 [29] ILISZ I, LÁSZLÓ Z, DOMBI A. Investigation of the photodecomposition of phenol in near-UV-irradiated aqueous TiO2 suspensions. I: Effect of charge-trapping species on the degradation kinetics[J]. Applied Catalysis A: General, 1999, 180(1/2): 25-33. [30] XEKOUKOULOTAKIS N P, DROSOU C, BREBOU C, et al. Kinetics of UV-A/TiO2 photocatalytic degradation and mineralization of the antibiotic sulfamethoxazole in aqueous matrices[J]. Catalysis Today, 2011, 161(1): 163-168. doi: 10.1016/j.cattod.2010.09.027 [31] KU Y, JUNG I L. Decomposition of monocrotophos in aqueous solution by UV irradiation in the presence of titanium dioxide[J]. Chemosphere, 1998, 37(13): 2589-2597. doi: 10.1016/S0045-6535(98)00158-1 [32] YOUN N K, HEO J E, JOO O S, et al. The effect of dissolved oxygen on the 1, 4-dioxane degradation with TiO2 and Au–TiO2 photocatalysts[J]. Journal of Hazardous Materials, 2010, 177(1/2/3): 216-221. [33] FAN W, LI Y H, WANG C L, et al. Enhanced photocatalytic water decontamination by micro-nano bubbles: Measurements and mechanisms[J]. Environmental Science & Technology, 2021, 55(10): 7025-7033. [34] YU C L, WU Z, LIU R Y, et al. Novel fluorinated Bi2MoO6 nanocrystals for efficient photocatalytic removal of water organic pollutants under different light source illumination[J]. Applied Catalysis B: Environmental, 2017, 209: 1-11. doi: 10.1016/j.apcatb.2017.02.057 [35] KIM J, DOHNÁLEK Z, KAY B D. Cryogenic CO2 formation on oxidized gold clusters synthesized via reactive layer assisted deposition[J]. Journal of the American Chemical Society, 2005, 127(42): 14592-14593. doi: 10.1021/ja055764z [36] LEE H, PARK S H, CHEONG C J, et al. Contribution of dissolved oxygen to methyl orange decomposition by liquid phase plasma processes system[J]. Ozone: Science & Engineering, 2014, 36(3): 244-248. [37] ZHONG J B, MA D, ZHAO H, et al. RETRACTED: Kinetic study on photocatalytic degradation of reactive orange 5 solution with phosphotungstic acid[J]. Journal of Molecular Catalysis A: Chemical, 2008, 283(1/2): 93-98. [38] WANG X N, BRIGANTE M, MAILHOT G, et al. Bismuth catalyst mediated degradation of p-hydroxyphenylacetic acid: Photoactivation, interfacial mechanism, and influence of some critical parameters[J]. Chemical Engineering Journal, 2018, 349: 822-828. doi: 10.1016/j.cej.2018.05.097 [39] PARK Y K, HA H H, YU Y H, et al. The photocatalytic destruction of cimetidine using microwave-assisted TiO2 photocatalysts hybrid system[J]. Journal of Hazardous Materials, 2020, 391: 122568. doi: 10.1016/j.jhazmat.2020.122568 [40] CHEN F, LIU L L, ZHANG Y J, et al. Enhanced full solar spectrum photocatalysis by nitrogen-doped graphene quantum dots decorated BiO2- x nanosheets: Ultrafast charge transfer and molecular oxygen activation[J]. Applied Catalysis B: Environmental, 2020, 277: 119218. doi: 10.1016/j.apcatb.2020.119218 [41] NAKAMURA I, NEGISHI N, KUTSUNA S, et al. Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal[J]. Journal of Molecular Catalysis A: Chemical, 2000, 161(1/2): 205-212. [42] SUN X S, LUO X, ZHANG X D, et al. Enhanced superoxide generation on defective surfaces for selective photooxidation[J]. Journal of the American Chemical Society, 2019, 141(9): 3797-3801. doi: 10.1021/jacs.8b13051 [43] TRUONG H B, HUY B T, RAY S K, et al. Visible light-activated NGQD/nsC3N4/Bi2WO6 microsphere composite for effluent organic matter treatment[J]. Chemical Engineering Journal, 2021, 415: 129024. doi: 10.1016/j.cej.2021.129024 [44] MOONSIRI M, RANGSUNVIGIT P, CHAVADEJ S, et al. Effects of Pt and Ag on the photocatalytic degradation of 4-chlorophenol and its by-products[J]. Chemical Engineering Journal, 2004, 97(2/3): 241-248. [45] WEI D D, WU J Q, WANG Y F, et al. Dual defect sites of nitrogen vacancy and cyano group synergistically boost the activation of oxygen molecules for efficient photocatalytic decontamination[J]. Chemical Engineering Journal, 2023, 462: 142291. doi: 10.1016/j.cej.2023.142291 [46] ZHANG N, LIU G G, LIU H J, et al. Diclofenac photodegradation under simulated sunlight: Effect of different forms of nitrogen and Kinetics[J]. Journal of Hazardous Materials, 2011, 192(1): 411-418. [47] MA D J, LIU G G, LV W Y, et al. Photodegradation of naproxen in water under simulated solar radiation: Mechanism, kinetics, and toxicity variation[J]. Environmental Science and Pollution Research, 2014, 21(13): 7797-7804. doi: 10.1007/s11356-014-2721-2 [48] ALBINI A, MONTI S. Photophysics and photochemistry of fluoroquinolones[J]. Chemical Society Reviews, 2003, 32(4): 238-250. doi: 10.1039/b209220b [49] CHEN Q, LÜ F, ZHANG H, et al. Where should Fenton go for the degradation of refractory organic contaminants in wastewater?[J]. Water Research, 2023, 229: 119479. doi: 10.1016/j.watres.2022.119479 [50] SUN H W, XIE G H, HE D, et al. Ascorbic acid promoted magnetite Fenton degradation of alachlor: Mechanistic insights and kinetic modeling[J]. Applied Catalysis B: Environmental, 2020, 267: 118383. doi: 10.1016/j.apcatb.2019.118383 [51] HE P J, LIU W Y, QIU J J, et al. Improvement criteria for different advanced technologies towards bio-stabilized leachate based on molecular subcategories of DOM[J]. Journal of Hazardous Materials, 2021, 414: 125463. doi: 10.1016/j.jhazmat.2021.125463 [52] MYLON S E, SUN Q, WAITE T D. Process optimization in use of zero valent iron nanoparticles for oxidative transformations[J]. Chemosphere, 2010, 81(1): 127-131. doi: 10.1016/j.chemosphere.2010.06.045 [53] LI X Q, ELLIOTT D W, ZHANG W X. Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects[J]. Critical Reviews in Solid State and Materials Sciences, 2006, 31(4): 111-122. doi: 10.1080/10408430601057611 [54] SHIMIZU A, TOKUMURA M, NAKAJIMA K, et al. Phenol removal using zero-valent iron powder in the presence of dissolved oxygen: Roles of decomposition by the Fenton reaction and adsorption/precipitation[J]. Journal of Hazardous Materials, 2012, 201/202: 60-67. doi: 10.1016/j.jhazmat.2011.11.009 [55] WANG K S, LIN C L, WEI M C, et al. Effects of dissolved oxygen on dye removal by zero-valent iron[J]. Journal of Hazardous Materials, 2010, 182(1/2/3): 886-895. [56] BRILLAS E. A review on the photoelectro-Fenton process as efficient electrochemical advanced oxidation for wastewater remediation. Treatment with UV light, sunlight, and coupling with conventional and other photo-assisted advanced technologies[J]. Chemosphere, 2020, 250: 126198. doi: 10.1016/j.chemosphere.2020.126198 [57] MÁRQUEZ A A, SIRÉS I, BRILLAS E, et al. Mineralization of Methyl Orange azo dye by processes based on H2O2 electrogeneration at a 3D-like air-diffusion cathode[J]. Chemosphere, 2020, 259: 127466. doi: 10.1016/j.chemosphere.2020.127466 [58] DU Z L, ZHU C Q, JING S C, et al. Boosting dissolved oxygen utilization by oriented electron transfer on dual-site S-scheme heterojunction for low-H2O2-consumption photo-Fenton reaction[J]. Chemical Engineering Journal, 2023, 462: 142146. doi: 10.1016/j.cej.2023.142146 [59] WANG Y F, ZHANG M T. Proton-coupled electron-transfer reduction of dioxygen: The importance of precursor complex formation between electron donor and proton donor[J]. Journal of the American Chemical Society, 2022, 144(27): 12459-12468. doi: 10.1021/jacs.2c04467 [60] YIN Y, LV R L, ZHANG W M, et al. Exploring mechanisms of different active species formation in heterogeneous Fenton systems by regulating iron chemical environment[J]. Applied Catalysis B: Environmental, 2021, 295: 120282. doi: 10.1016/j.apcatb.2021.120282 [61] HONG P D, WU Z J, YANG D D, et al. Efficient generation of singlet oxygen (1O2) by hollow amorphous Co/C composites for selective degradation of oxytetracycline via Fenton-like process[J]. Chemical Engineering Journal, 2021, 421: 129594. doi: 10.1016/j.cej.2021.129594 [62] WANG Z Y, HE J G, YU D H, et al. N-doped coralline Co9S8− xN x for inducing Amitriptyline decontamination in Electro-Fenton Process: Degradation scheme Elucidation, nitrogen activating catalyst delocalized electron and enhancing 2-Electron oxygen reduction reaction mechanism investigation[J]. Chemical Engineering Journal, 2023, 457: 141171. doi: 10.1016/j.cej.2022.141171 [63] YANG Y J, SHEN H Y, XU L J. Three-dimensional graphene anchored nZVI hybrid MnO2 as a dissolved oxygen activated Fenton-like catalyst for efficient mineralization of oxytetracycline[J]. Chemical Engineering Journal, 2023, 464: 142781. doi: 10.1016/j.cej.2023.142781 [64] YAO B, LUO Z R, ZHI D, et al. Current progress in degradation and removal methods of polybrominated diphenyl ethers from water and soil: A review[J]. Journal of Hazardous Materials, 2021, 403: 123674. doi: 10.1016/j.jhazmat.2020.123674 [65] LIU Y M, CHEN S, QUAN X, et al. Efficient mineralization of perfluorooctanoate by electro-Fenton with H2O2 electro-generated on hierarchically porous carbon[J]. Environmental Science & Technology, 2015, 49(22): 13528-13533. [66] YU F K, ZHANG Y F, ZHANG Y, et al. Promotion of the degradation perfluorooctanoic acid by electro-Fenton under the bifunctional electrodes: Focusing active reaction region by Fe/N co-doped graphene modified cathode[J]. Chemical Engineering Journal, 2023, 457: 141320. doi: 10.1016/j.cej.2023.141320 [67] ZHU Y S, DENG F X, QIU S, et al. A self-sufficient electro-Fenton system with enhanced oxygen transfer for decontamination of pharmaceutical wastewater[J]. Chemical Engineering Journal, 2022, 429: 132176. doi: 10.1016/j.cej.2021.132176 [68] YU D H, HE J G, WANG Z Y, et al. Mineralization of norfloxacin in a CoFe–LDH/CF cathode-based heterogeneous electro-Fenton system: Preparation parameter optimization of the cathode and conversion mechanisms of H2O2 to ·OH[J]. Chemical Engineering Journal, 2021, 417: 129240. doi: 10.1016/j.cej.2021.129240 [69] GUO D L, JIANG S T, JIN L M, et al. CNT encapsulated MnOx for an enhanced flow-through electro-Fenton process: The involvement of Mn(iv)[J]. Journal of Materials Chemistry A, 2022, 10(30): 15981-15989. doi: 10.1039/D2TA03445J [70] ARIS A, SHARRATT P N. Influence of initial dissolved oxygen concentration on Fenton’s reagent degradation[J]. Environmental Technology, 2006, 27(10): 1153-1161. doi: 10.1080/09593332708618729 [71] KOHANTORABI M, MOUSSAVI G, GIANNAKIS S. A review of the innovations in metal- and carbon-based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation, with focus on radical vs. non-radical degradation pathways of organic contaminants[J]. Chemical Engineering Journal, 2021, 411: 127957. doi: 10.1016/j.cej.2020.127957 [72] GAO Y, WANG Q, JI G Z, et al. Degradation of antibiotic pollutants by persulfate activated with various carbon materials[J]. Chemical Engineering Journal, 2022, 429: 132387. doi: 10.1016/j.cej.2021.132387 [73] LEE J, von GUNTEN U, KIM J H. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks[J]. Environmental Science & Technology, 2020, 54(6): 3064-3081. [74] XU X Y, PLIEGO G, ALONSO C, et al. Reaction pathways of heat-activated persulfate oxidation of naphthenic acids in the presence and absence of dissolved oxygen in water[J]. Chemical Engineering Journal, 2019, 370: 695-705. doi: 10.1016/j.cej.2019.03.213 [75] ZHU C Y, ZHU F X, LIU C, et al. Reductive hexachloroethane degradation by S2O8•– with thermal activation of persulfate under anaerobic conditions[J]. Environmental Science & Technology, 2018, 52(15): 8548-8557. [76] LIU H Z, BRUTON T A, LI W, et al. Oxidation of benzene by persulfate in the presence of Fe(Ⅲ)- and Mn(Ⅳ)-containing oxides: Stoichiometric efficiency and transformation products[J]. Environmental Science & Technology, 2016, 50(2): 890-898. [77] XU X Y, PLIEGO G, ZAZO J A, et al. Mineralization of naphtenic acids with thermally-activated persulfate: The important role of oxygen[J]. Journal of Hazardous Materials, 2016, 318: 355-362. doi: 10.1016/j.jhazmat.2016.07.009 [78] ZHANG R, WANG X X, ZHOU L, et al. The impact of dissolved oxygen on sulfate radical-induced oxidation of organic micro-pollutants: A theoretical study[J]. Water Research, 2018, 135: 144-154. doi: 10.1016/j.watres.2018.02.028 [79] FANG G D, GAO J, DIONYSIOU D D, et al. Activation of persulfate by quinones: Free radical reactions and implication for the degradation of PCBs[J]. Environmental Science & Technology, 2013, 47(9): 4605-4611. [80] YANG X R, DING X, ZHOU L, et al. New insights into clopyralid degradation by sulfate radical: Pyridine ring cleavage pathways[J]. Water Research, 2020, 171: 115378. doi: 10.1016/j.watres.2019.115378 [81] WANG J Q, WANG C J, GUO H G, et al. Crucial roles of oxygen and superoxide radical in bisulfite-activated persulfate oxidation of bisphenol AF: Mechanisms, kinetics and DFT studies[J]. Journal of Hazardous Materials, 2020, 391: 122228. doi: 10.1016/j.jhazmat.2020.122228 [82] WEI Y, ZOU Q C, YE P, et al. Photocatalytic degradation of organic pollutants in wastewater with g-C3N4/sulfite system under visible light irradiation[J]. Chemosphere, 2018, 208: 358-365. doi: 10.1016/j.chemosphere.2018.06.006 [83] GUO W Q, YANG Z Z, DU J S, et al. Degradation of sulfadiazine in water by a UV/O3 process: Performance and degradation pathway[J]. RSC Advances, 2016, 6(62): 57138-57143. doi: 10.1039/C6RA09078H [84] MANSOURI L, TIZAOUI C, GEISSEN S U, et al. A comparative study on ozone, hydrogen peroxide and UV based advanced oxidation processes for efficient removal of diethyl phthalate in water[J]. Journal of Hazardous Materials, 2019, 363: 401-411. doi: 10.1016/j.jhazmat.2018.10.003 [85] WANG J, LIU H B, GAO Y, et al. Pilot-scale advanced treatment of actual high-salt textile wastewater by a UV/O3 pressurization process: Evaluation of removal kinetics and reverse osmosis desalination process[J]. Science of the Total Environment, 2023, 857: 159725. doi: 10.1016/j.scitotenv.2022.159725 [86] ALAPI T, BERECZ L, ARANY E, et al. Comparison of the UV-induced photolysis, ozonation, and their combination at the same energy input using a self-devised experimental apparatus[J]. Ozone: Science & Engineering, 2013, 35(5): 350-358. [87] WU Q Y, YANG Z W, DU Y, et al. The promotions on radical formation and micropollutant degradation by the synergies between ozone and chemical reagents (synergistic ozonation): A review[J]. Journal of Hazardous Materials, 2021, 418: 126327. doi: 10.1016/j.jhazmat.2021.126327 [88] HUA Z C, GUO K H, KONG X J, et al. PPCP degradation and DBP formation in the solar/free chlorine system: Effects of pH and dissolved oxygen[J]. Water Research, 2019, 150: 77-85. doi: 10.1016/j.watres.2018.11.041 [89] ILAN Y, RABANI J. On some fundamental reactions in radiation chemistry: Nanosecond pulse radiolysis[J]. International Journal for Radiation Physics and Chemistry, 1976, 8(5): 609-611. doi: 10.1016/0020-7055(76)90030-9 [90] GASMI I, HAMDAOUI O, FERKOUS H, et al. Sonochemical advanced oxidation process for the degradation of furosemide in water: Effects of sonication’s conditions and scavengers[J]. Ultrasonics Sonochemistry, 2023, 95: 106361. doi: 10.1016/j.ultsonch.2023.106361 [91] KERBOUA K, MEROUANI S, HAMDAOUI O, et al. How do dissolved gases affect the sonochemical process of hydrogen production? An overview of thermodynamic and mechanistic effects–On the “hot spot theory”[J]. Ultrasonics Sonochemistry, 2021, 72: 105422. doi: 10.1016/j.ultsonch.2020.105422 [92] GAO Y Q, GAO N Y, DENG Y, et al. Factors affecting sonolytic degradation of sulfamethazine in water[J]. Ultrasonics Sonochemistry, 2013, 20(6): 1401-1407. doi: 10.1016/j.ultsonch.2013.04.007 [93] MARGULIS M A. Fundamental aspects of sonochemistry[J]. Ultrasonics, 1992, 30(3): 152-155. doi: 10.1016/0041-624X(92)90065-T [94] MAKINO K, MOSSOBA M M, RIESZ P. Chemical effects of ultrasound on aqueous solutions. Formation of hydroxyl radicals and hydrogen atoms[J]. The Journal of Physical Chemistry, 1983, 87(8): 1369-1377. doi: 10.1021/j100231a020 [95] MORIWAKI H, TAKAGI Y, TANAKA M, et al. Sonochemical decomposition of perfluorooctane sulfonate and perfluorooctanoic acid[J]. Environmental Science & Technology, 2005, 39(9): 3388-3392. [96] RAYAROTH M P, ARAVIND U K, ARAVINDAKUMAR C T. Degradation of pharmaceuticals by ultrasound-based advanced oxidation process[J]. Environmental Chemistry Letters, 2016, 14(3): 259-290. doi: 10.1007/s10311-016-0568-0 [97] HU Y B, LO S L, LI Y F, et al. Autocatalytic degradation of perfluorooctanoic acid in a permanganate-ultrasonic system[J]. Water Research, 2018, 140: 148-157. doi: 10.1016/j.watres.2018.04.044 [98] XU D, MA H L. Degradation of rhodamine B in water by ultrasound-assisted TiO2 photocatalysis[J]. Journal of Cleaner Production, 2021, 313: 127758. doi: 10.1016/j.jclepro.2021.127758 [99] LU X H, QIU W, PENG J L, et al. A review on additives-assisted ultrasound for organic pollutants degradation[J]. Journal of Hazardous Materials, 2021, 403: 123915. doi: 10.1016/j.jhazmat.2020.123915 [100] LU X H, ZHAO J N, WANG Q, et al. Sonolytic degradation of bisphenol S: Effect of dissolved oxygen and peroxydisulfate, oxidation products and acute toxicity[J]. Water Research, 2019, 165: 114969. doi: 10.1016/j.watres.2019.114969 [101] ZHAO Z, WANG D D, GAO R, et al. Magnetic-field-stimulated efficient photocatalytic N2 fixation over defective BaTiO3 perovskites[J]. Angewandte Chemie International Edition, 2021, 60(21): 11910-11918. doi: 10.1002/anie.202100726 [102] MA W, YAO B H, ZHANG W, et al. Fabrication of PVDF-based piezocatalytic active membrane with enhanced oxytetracycline degradation efficiency through embedding few-layer E-MoS2 nanosheets[J]. Chemical Engineering Journal, 2021, 415: 129000. doi: 10.1016/j.cej.2021.129000 [103] HUANG J, WANG Y, LIU X Q, et al. Synergistically enhanced charge separation in BiFeO3/Sn: TiO2 nanorod photoanode via bulk and surface dual modifications[J]. Nano Energy, 2019, 59: 33-40. doi: 10.1016/j.nanoen.2019.02.025 [104] WU J M, CHANG W E, CHANG Y T, et al. Piezo-catalytic effect on the enhancement of the ultra-high degradation activity in the dark by single- and few-layers MoS2 nanoflowers[J]. Advanced Materials, 2016, 28(19): 3718-3725. doi: 10.1002/adma.201505785 [105] CHEN X Y, LIU L F, FENG Y W, et al. Fluid eddy induced piezo-promoted photodegradation of organic dye pollutants in wastewater on ZnO nanorod arrays/3D Ni foam[J]. Materials Today, 2017, 20(9): 501-506. doi: 10.1016/j.mattod.2017.08.027 [106] WAN L C, TIAN W R, LI N J, et al. Hydrophilic porous PVDF membrane embedded with BaTiO3 featuring controlled oxygen vacancies for piezocatalytic water cleaning[J]. Nano Energy, 2022, 94: 106930. doi: 10.1016/j.nanoen.2022.106930 [107] COMNINELLIS C. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment[J]. Electrochimica Acta, 1994, 39(11/12): 1857-1862. [108] BONFATTI F, FERRO S, LAVEZZO F, et al. Electrochemical incineration of glucose as a model organic substrate. I. role of the electrode material[J]. Journal of the Electrochemical Society, 1999, 146(6): 2175-2179. doi: 10.1149/1.1391909 [109] PANIZZA M, CERISOLA G. Direct and mediated anodic oxidation of organic pollutants[J]. Chemical Reviews, 2009, 109(12): 6541-6569. doi: 10.1021/cr9001319 [110] YU T T, LIU L F, LI L, et al. A self-biased fuel cell with TiO2/g-C3N4 anode catalyzed alkaline pollutant degradation with light and without light—What is the degradation mechanism?[J]. Electrochimica Acta, 2016, 210: 122-129. doi: 10.1016/j.electacta.2016.05.162 [111] XIA B, YAO J J, HAN C X, et al. Degradation of ofloxacin by UVA-LED/TiO2 nanotube arrays photocatalytic fuel cells[J]. Chemical Papers, 2018, 72(2): 359-368. doi: 10.1007/s11696-017-0285-6 [112] LIU X W, SUN X F, LI D B, et al. Anodic Fenton process assisted by a microbial fuel cell for enhanced degradation of organic pollutants[J]. Water Research, 2012, 46(14): 4371-4378. doi: 10.1016/j.watres.2012.05.044 [113] PENG Y, HE X, ZHENG N C, et al. Transferring waste of biomass and heavy metal into photocatalysts for hydrogen peroxide activation[J]. Chemical Engineering Journal, 2021, 420: 129867. doi: 10.1016/j.cej.2021.129867 [114] HE X, ZHENG N C, HU R T, et al. Hydrothermal and pyrolytic conversion of biomasses into catalysts for advanced oxidation treatments[J]. Advanced Functional Materials, 2021, 31(7): 2006505. doi: 10.1002/adfm.202006505 [115] KUANG C Z, ZENG G S, ZHOU Y J, et al. Integrating anodic sulfate activation with cathodic H2O2 production/activation to generate the sulfate and hydroxyl radicals for the degradation of emerging organic contaminants[J]. Water Research, 2023, 229: 119464. doi: 10.1016/j.watres.2022.119464 [116] XU C M, TIAN Y, SUN J R, et al. Novel preoxidation-assisted mechanism to preciously form and disperse Bi2O3 nanodots in carbon nanofibers for ultralong-life and high-rate sodium storage[J]. ACS Applied Materials & Interfaces, 2023, 15(1): 1891-1902. [117] AGMON N, BAKKER H J, CAMPEN R K, et al. Protons and hydroxide ions in aqueous systems[J]. Chemical Reviews, 2016, 116(13): 7642-7672. doi: 10.1021/acs.chemrev.5b00736