[1] |
向伟铭, 杨绍贵, 孙敦宇, 等. 高级氧化技术去除水中碘代X射线造影剂研究进展[J]. 环境化学, 2022, 41(1): 260-275. doi: 10.7524/j.issn.0254-6108.2020101602
XIANG W M, YANG S G, SUN D Y, et al. Research progress of advanced oxidation technology to remove iodine X-ray contrast media in water[J]. Environmental Chemistry, 2022, 41(1): 260-275(in Chinese). doi: 10.7524/j.issn.0254-6108.2020101602
|
[2] |
USHANI U, LU X Q, WANG J H, et al. Sulfate radicals-based advanced oxidation technology in various environmental remediation: A state-of-the–art review[J]. Chemical Engineering Journal, 2020, 402: 126232. doi: 10.1016/j.cej.2020.126232
|
[3] |
VIDAL-DORSCH D E, BAY S M, MARUYA K, et al. Contaminants of emerging concern in municipal wastewater effluents and marine receiving water[J]. Environmental Toxicology and Chemistry, 2012, 31(12): 2674-2682. doi: 10.1002/etc.2004
|
[4] |
GARRIDO-CARDENAS J A, ESTEBAN-GARCÍA B, AGÜERA A, et al. Wastewater treatment by advanced oxidation process and their worldwide research trends[J]. International Journal of Environmental Research and Public Health, 2019, 17(1): 170. doi: 10.3390/ijerph17010170
|
[5] |
TRAN N H, REINHARD M, GIN K Y H. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review[J]. Water Research, 2018, 133: 182-207. doi: 10.1016/j.watres.2017.12.029
|
[6] |
CRINI G, LICHTFOUSE E. Advantages and disadvantages of techniques used for wastewater treatment[J]. Environmental Chemistry Letters, 2019, 17(1): 145-155. doi: 10.1007/s10311-018-0785-9
|
[7] |
National Research Council. Drinking water distribution systems: Assessing and reducing risks[M]. Washington, DC: The National Academies Press, 2006. doi. org/10.17226/11728
|
[8] |
McDONALD R I, GREEN P, BALK D, et al. Urban growth, climate change, and freshwater availability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(15): 6312-6317.
|
[9] |
HODGES B C, CATES E L, KIM J H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials[J]. Nature Nanotechnology, 2018, 13(8): 642-650. doi: 10.1038/s41565-018-0216-x
|
[10] |
CHEN P, BLANEY L, CAGNETTA G, et al. Degradation of ofloxacin by perylene diimide supramolecular nanofiber sunlight-driven photocatalysis[J]. Environmental Science & Technology, 2019, 53(3): 1564-1575.
|
[11] |
CHEN N, SHANG H, TAO S Y, et al. Visible light driven organic pollutants degradation with hydrothermally carbonized sewage sludge and oxalate via molecular oxygen activation[J]. Environmental Science & Technology, 2018, 52(21): 12656-12666.
|
[12] |
GUO F, ZHANG H, LI H, et al. Modulating the oxidative active species by regulating the valence of palladium cocatalyst in photocatalytic degradation of ciprofloxacin[J]. Applied Catalysis B: Environmental, 2022, 306: 121092. doi: 10.1016/j.apcatb.2022.121092
|
[13] |
SUSLICK K S. Mechanochemistry and sonochemistry: Concluding remarks[J]. Faraday Discussions, 2014, 170((10): ): 411-422.
|
[14] |
MO Y M, XU W, ZHANG X P, et al. Enhanced degradation of rhodamine B through peroxymonosulfate activated by a metal oxide/carbon nitride composite[J]. Water, 2022, 14(13): 2054. doi: 10.3390/w14132054
|
[15] |
BRILLAS E. Recent development of electrochemical advanced oxidation of herbicides. A review on its application to wastewater treatment and soil remediation[J]. Journal of Cleaner Production, 2021, 290: 125841. doi: 10.1016/j.jclepro.2021.125841
|
[16] |
TAN X J, DING W H, JIANG Z Y, et al. Reinventing MoS2 Co-catalytic Fenton reaction: Oxygen-incorporation mediating surface superoxide radical generation[J]. Nano Research, 2022, 15(3): 1973-1982. doi: 10.1007/s12274-021-3848-3
|
[17] |
ZHANG C Y, YU Z S, WANG X Y. A review of electrochemical oxidation technology for advanced treatment of medical wastewater[J]. Frontiers in Chemistry, 2022, 10: 1002038. doi: 10.3389/fchem.2022.1002038
|
[18] |
KOE W S, LEE J W, CHONG W C, et al. An overview of photocatalytic degradation: Photocatalysts, mechanisms, and development of photocatalytic membrane[J]. Environmental Science and Pollution Research, 2020, 27(3): 2522-2565. doi: 10.1007/s11356-019-07193-5
|
[19] |
BENITEZ F J, ACERO J L, REAL F J, et al. Comparison of different chemical oxidation treatments for the removal of selected pharmaceuticals in water matrices[J]. Chemical Engineering Journal, 2011, 168(3): 1149-1156. doi: 10.1016/j.cej.2011.02.001
|
[20] |
ZU M, ZHOU X S, ZHANG S S, et al. Sustainable engineering of TiO2-based advanced oxidation technologies: From photocatalyst to application devices[J]. Journal of Materials Science & Technology, 2021, 78: 202-222.
|
[21] |
WANG H, WU Y, FENG M B, et al. Visible-light-driven removal of tetracycline antibiotics and reclamation of hydrogen energy from natural water matrices and wastewater by polymeric carbon nitride foam[J]. Water Research, 2018, 144: 215-225. doi: 10.1016/j.watres.2018.07.025
|
[22] |
SI Q S, GUO W Q, WANG H Z, et al. Difunctional carbon quantum dots/g-C3N4 with in-plane electron buffer for intense tetracycline degradation under visible light: Tight adsorption and smooth electron transfer[J]. Applied Catalysis B: Environmental, 2021, 299: 120694. doi: 10.1016/j.apcatb.2021.120694
|
[23] |
LU Z, ZENG L, SONG W L, et al. in situ synthesis of C-TiO2/g-C3N4 heterojunction nanocomposite as highly visible light active photocatalyst originated from effective interfacial charge transfer[J]. Applied Catalysis B: Environmental, 2017, 202: 489-499. doi: 10.1016/j.apcatb.2016.09.052
|
[24] |
LI L P, DAI K, LI J Y, et al. A Boron-10 nitride nanosheet for combinational boron neutron capture therapy and chemotherapy of tumor[J]. Biomaterials, 2021, 268: 120587. doi: 10.1016/j.biomaterials.2020.120587
|
[25] |
WANG Q, ZHU F, CHENG H, et al. Efficient activation of persulfate by Ti3C2 MXene QDs modified ZnFe2O4 for the rapid degradation of tetracycline[J]. Chemosphere, 2023, 328: 138546. doi: 10.1016/j.chemosphere.2023.138546
|
[26] |
DIESEN V, JONSSON M. Formation of H2O2 in TiO2 photocatalysis of oxygenated and deoxygenated aqueous systems: A probe for photocatalytically produced hydroxyl radicals[J]. The Journal of Physical Chemistry C, 2014, 118(19): 10083-10087. doi: 10.1021/jp500315u
|
[27] |
KONDRAKOV A O, IGNATEV A N, LUNIN V V, et al. Roles of water and dissolved oxygen in photocatalytic generation of free OH radicals in aqueous TiO2 suspensions: An isotope labeling study[J]. Applied Catalysis B: Environmental, 2016, 182: 424-430. doi: 10.1016/j.apcatb.2015.09.038
|
[28] |
CHEN X Y, YAO J J, XIA B, et al. Influence of pH and DO on the ofloxacin degradation in water by UVA-LED/TiO2 nanotube arrays photocatalytic fuel cell: Mechanism, ROSs contribution and power generation[J]. Journal of Hazardous Materials, 2020, 383: 121220. doi: 10.1016/j.jhazmat.2019.121220
|
[29] |
ILISZ I, LÁSZLÓ Z, DOMBI A. Investigation of the photodecomposition of phenol in near-UV-irradiated aqueous TiO2 suspensions. I: Effect of charge-trapping species on the degradation kinetics[J]. Applied Catalysis A: General, 1999, 180(1/2): 25-33.
|
[30] |
XEKOUKOULOTAKIS N P, DROSOU C, BREBOU C, et al. Kinetics of UV-A/TiO2 photocatalytic degradation and mineralization of the antibiotic sulfamethoxazole in aqueous matrices[J]. Catalysis Today, 2011, 161(1): 163-168. doi: 10.1016/j.cattod.2010.09.027
|
[31] |
KU Y, JUNG I L. Decomposition of monocrotophos in aqueous solution by UV irradiation in the presence of titanium dioxide[J]. Chemosphere, 1998, 37(13): 2589-2597. doi: 10.1016/S0045-6535(98)00158-1
|
[32] |
YOUN N K, HEO J E, JOO O S, et al. The effect of dissolved oxygen on the 1, 4-dioxane degradation with TiO2 and Au–TiO2 photocatalysts[J]. Journal of Hazardous Materials, 2010, 177(1/2/3): 216-221.
|
[33] |
FAN W, LI Y H, WANG C L, et al. Enhanced photocatalytic water decontamination by micro-nano bubbles: Measurements and mechanisms[J]. Environmental Science & Technology, 2021, 55(10): 7025-7033.
|
[34] |
YU C L, WU Z, LIU R Y, et al. Novel fluorinated Bi2MoO6 nanocrystals for efficient photocatalytic removal of water organic pollutants under different light source illumination[J]. Applied Catalysis B: Environmental, 2017, 209: 1-11. doi: 10.1016/j.apcatb.2017.02.057
|
[35] |
KIM J, DOHNÁLEK Z, KAY B D. Cryogenic CO2 formation on oxidized gold clusters synthesized via reactive layer assisted deposition[J]. Journal of the American Chemical Society, 2005, 127(42): 14592-14593. doi: 10.1021/ja055764z
|
[36] |
LEE H, PARK S H, CHEONG C J, et al. Contribution of dissolved oxygen to methyl orange decomposition by liquid phase plasma processes system[J]. Ozone: Science & Engineering, 2014, 36(3): 244-248.
|
[37] |
ZHONG J B, MA D, ZHAO H, et al. RETRACTED: Kinetic study on photocatalytic degradation of reactive orange 5 solution with phosphotungstic acid[J]. Journal of Molecular Catalysis A: Chemical, 2008, 283(1/2): 93-98.
|
[38] |
WANG X N, BRIGANTE M, MAILHOT G, et al. Bismuth catalyst mediated degradation of p-hydroxyphenylacetic acid: Photoactivation, interfacial mechanism, and influence of some critical parameters[J]. Chemical Engineering Journal, 2018, 349: 822-828. doi: 10.1016/j.cej.2018.05.097
|
[39] |
PARK Y K, HA H H, YU Y H, et al. The photocatalytic destruction of cimetidine using microwave-assisted TiO2 photocatalysts hybrid system[J]. Journal of Hazardous Materials, 2020, 391: 122568. doi: 10.1016/j.jhazmat.2020.122568
|
[40] |
CHEN F, LIU L L, ZHANG Y J, et al. Enhanced full solar spectrum photocatalysis by nitrogen-doped graphene quantum dots decorated BiO2- x nanosheets: Ultrafast charge transfer and molecular oxygen activation[J]. Applied Catalysis B: Environmental, 2020, 277: 119218. doi: 10.1016/j.apcatb.2020.119218
|
[41] |
NAKAMURA I, NEGISHI N, KUTSUNA S, et al. Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal[J]. Journal of Molecular Catalysis A: Chemical, 2000, 161(1/2): 205-212.
|
[42] |
SUN X S, LUO X, ZHANG X D, et al. Enhanced superoxide generation on defective surfaces for selective photooxidation[J]. Journal of the American Chemical Society, 2019, 141(9): 3797-3801. doi: 10.1021/jacs.8b13051
|
[43] |
TRUONG H B, HUY B T, RAY S K, et al. Visible light-activated NGQD/nsC3N4/Bi2WO6 microsphere composite for effluent organic matter treatment[J]. Chemical Engineering Journal, 2021, 415: 129024. doi: 10.1016/j.cej.2021.129024
|
[44] |
MOONSIRI M, RANGSUNVIGIT P, CHAVADEJ S, et al. Effects of Pt and Ag on the photocatalytic degradation of 4-chlorophenol and its by-products[J]. Chemical Engineering Journal, 2004, 97(2/3): 241-248.
|
[45] |
WEI D D, WU J Q, WANG Y F, et al. Dual defect sites of nitrogen vacancy and cyano group synergistically boost the activation of oxygen molecules for efficient photocatalytic decontamination[J]. Chemical Engineering Journal, 2023, 462: 142291. doi: 10.1016/j.cej.2023.142291
|
[46] |
ZHANG N, LIU G G, LIU H J, et al. Diclofenac photodegradation under simulated sunlight: Effect of different forms of nitrogen and Kinetics[J]. Journal of Hazardous Materials, 2011, 192(1): 411-418.
|
[47] |
MA D J, LIU G G, LV W Y, et al. Photodegradation of naproxen in water under simulated solar radiation: Mechanism, kinetics, and toxicity variation[J]. Environmental Science and Pollution Research, 2014, 21(13): 7797-7804. doi: 10.1007/s11356-014-2721-2
|
[48] |
ALBINI A, MONTI S. Photophysics and photochemistry of fluoroquinolones[J]. Chemical Society Reviews, 2003, 32(4): 238-250. doi: 10.1039/b209220b
|
[49] |
CHEN Q, LÜ F, ZHANG H, et al. Where should Fenton go for the degradation of refractory organic contaminants in wastewater?[J]. Water Research, 2023, 229: 119479. doi: 10.1016/j.watres.2022.119479
|
[50] |
SUN H W, XIE G H, HE D, et al. Ascorbic acid promoted magnetite Fenton degradation of alachlor: Mechanistic insights and kinetic modeling[J]. Applied Catalysis B: Environmental, 2020, 267: 118383. doi: 10.1016/j.apcatb.2019.118383
|
[51] |
HE P J, LIU W Y, QIU J J, et al. Improvement criteria for different advanced technologies towards bio-stabilized leachate based on molecular subcategories of DOM[J]. Journal of Hazardous Materials, 2021, 414: 125463. doi: 10.1016/j.jhazmat.2021.125463
|
[52] |
MYLON S E, SUN Q, WAITE T D. Process optimization in use of zero valent iron nanoparticles for oxidative transformations[J]. Chemosphere, 2010, 81(1): 127-131. doi: 10.1016/j.chemosphere.2010.06.045
|
[53] |
LI X Q, ELLIOTT D W, ZHANG W X. Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects[J]. Critical Reviews in Solid State and Materials Sciences, 2006, 31(4): 111-122. doi: 10.1080/10408430601057611
|
[54] |
SHIMIZU A, TOKUMURA M, NAKAJIMA K, et al. Phenol removal using zero-valent iron powder in the presence of dissolved oxygen: Roles of decomposition by the Fenton reaction and adsorption/precipitation[J]. Journal of Hazardous Materials, 2012, 201/202: 60-67. doi: 10.1016/j.jhazmat.2011.11.009
|
[55] |
WANG K S, LIN C L, WEI M C, et al. Effects of dissolved oxygen on dye removal by zero-valent iron[J]. Journal of Hazardous Materials, 2010, 182(1/2/3): 886-895.
|
[56] |
BRILLAS E. A review on the photoelectro-Fenton process as efficient electrochemical advanced oxidation for wastewater remediation. Treatment with UV light, sunlight, and coupling with conventional and other photo-assisted advanced technologies[J]. Chemosphere, 2020, 250: 126198. doi: 10.1016/j.chemosphere.2020.126198
|
[57] |
MÁRQUEZ A A, SIRÉS I, BRILLAS E, et al. Mineralization of Methyl Orange azo dye by processes based on H2O2 electrogeneration at a 3D-like air-diffusion cathode[J]. Chemosphere, 2020, 259: 127466. doi: 10.1016/j.chemosphere.2020.127466
|
[58] |
DU Z L, ZHU C Q, JING S C, et al. Boosting dissolved oxygen utilization by oriented electron transfer on dual-site S-scheme heterojunction for low-H2O2-consumption photo-Fenton reaction[J]. Chemical Engineering Journal, 2023, 462: 142146. doi: 10.1016/j.cej.2023.142146
|
[59] |
WANG Y F, ZHANG M T. Proton-coupled electron-transfer reduction of dioxygen: The importance of precursor complex formation between electron donor and proton donor[J]. Journal of the American Chemical Society, 2022, 144(27): 12459-12468. doi: 10.1021/jacs.2c04467
|
[60] |
YIN Y, LV R L, ZHANG W M, et al. Exploring mechanisms of different active species formation in heterogeneous Fenton systems by regulating iron chemical environment[J]. Applied Catalysis B: Environmental, 2021, 295: 120282. doi: 10.1016/j.apcatb.2021.120282
|
[61] |
HONG P D, WU Z J, YANG D D, et al. Efficient generation of singlet oxygen (1O2) by hollow amorphous Co/C composites for selective degradation of oxytetracycline via Fenton-like process[J]. Chemical Engineering Journal, 2021, 421: 129594. doi: 10.1016/j.cej.2021.129594
|
[62] |
WANG Z Y, HE J G, YU D H, et al. N-doped coralline Co9S8− xN x for inducing Amitriptyline decontamination in Electro-Fenton Process: Degradation scheme Elucidation, nitrogen activating catalyst delocalized electron and enhancing 2-Electron oxygen reduction reaction mechanism investigation[J]. Chemical Engineering Journal, 2023, 457: 141171. doi: 10.1016/j.cej.2022.141171
|
[63] |
YANG Y J, SHEN H Y, XU L J. Three-dimensional graphene anchored nZVI hybrid MnO2 as a dissolved oxygen activated Fenton-like catalyst for efficient mineralization of oxytetracycline[J]. Chemical Engineering Journal, 2023, 464: 142781. doi: 10.1016/j.cej.2023.142781
|
[64] |
YAO B, LUO Z R, ZHI D, et al. Current progress in degradation and removal methods of polybrominated diphenyl ethers from water and soil: A review[J]. Journal of Hazardous Materials, 2021, 403: 123674. doi: 10.1016/j.jhazmat.2020.123674
|
[65] |
LIU Y M, CHEN S, QUAN X, et al. Efficient mineralization of perfluorooctanoate by electro-Fenton with H2O2 electro-generated on hierarchically porous carbon[J]. Environmental Science & Technology, 2015, 49(22): 13528-13533.
|
[66] |
YU F K, ZHANG Y F, ZHANG Y, et al. Promotion of the degradation perfluorooctanoic acid by electro-Fenton under the bifunctional electrodes: Focusing active reaction region by Fe/N co-doped graphene modified cathode[J]. Chemical Engineering Journal, 2023, 457: 141320. doi: 10.1016/j.cej.2023.141320
|
[67] |
ZHU Y S, DENG F X, QIU S, et al. A self-sufficient electro-Fenton system with enhanced oxygen transfer for decontamination of pharmaceutical wastewater[J]. Chemical Engineering Journal, 2022, 429: 132176. doi: 10.1016/j.cej.2021.132176
|
[68] |
YU D H, HE J G, WANG Z Y, et al. Mineralization of norfloxacin in a CoFe–LDH/CF cathode-based heterogeneous electro-Fenton system: Preparation parameter optimization of the cathode and conversion mechanisms of H2O2 to ·OH[J]. Chemical Engineering Journal, 2021, 417: 129240. doi: 10.1016/j.cej.2021.129240
|
[69] |
GUO D L, JIANG S T, JIN L M, et al. CNT encapsulated MnOx for an enhanced flow-through electro-Fenton process: The involvement of Mn(iv)[J]. Journal of Materials Chemistry A, 2022, 10(30): 15981-15989. doi: 10.1039/D2TA03445J
|
[70] |
ARIS A, SHARRATT P N. Influence of initial dissolved oxygen concentration on Fenton’s reagent degradation[J]. Environmental Technology, 2006, 27(10): 1153-1161. doi: 10.1080/09593332708618729
|
[71] |
KOHANTORABI M, MOUSSAVI G, GIANNAKIS S. A review of the innovations in metal- and carbon-based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation, with focus on radical vs. non-radical degradation pathways of organic contaminants[J]. Chemical Engineering Journal, 2021, 411: 127957. doi: 10.1016/j.cej.2020.127957
|
[72] |
GAO Y, WANG Q, JI G Z, et al. Degradation of antibiotic pollutants by persulfate activated with various carbon materials[J]. Chemical Engineering Journal, 2022, 429: 132387. doi: 10.1016/j.cej.2021.132387
|
[73] |
LEE J, von GUNTEN U, KIM J H. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks[J]. Environmental Science & Technology, 2020, 54(6): 3064-3081.
|
[74] |
XU X Y, PLIEGO G, ALONSO C, et al. Reaction pathways of heat-activated persulfate oxidation of naphthenic acids in the presence and absence of dissolved oxygen in water[J]. Chemical Engineering Journal, 2019, 370: 695-705. doi: 10.1016/j.cej.2019.03.213
|
[75] |
ZHU C Y, ZHU F X, LIU C, et al. Reductive hexachloroethane degradation by S2O8•– with thermal activation of persulfate under anaerobic conditions[J]. Environmental Science & Technology, 2018, 52(15): 8548-8557.
|
[76] |
LIU H Z, BRUTON T A, LI W, et al. Oxidation of benzene by persulfate in the presence of Fe(Ⅲ)- and Mn(Ⅳ)-containing oxides: Stoichiometric efficiency and transformation products[J]. Environmental Science & Technology, 2016, 50(2): 890-898.
|
[77] |
XU X Y, PLIEGO G, ZAZO J A, et al. Mineralization of naphtenic acids with thermally-activated persulfate: The important role of oxygen[J]. Journal of Hazardous Materials, 2016, 318: 355-362. doi: 10.1016/j.jhazmat.2016.07.009
|
[78] |
ZHANG R, WANG X X, ZHOU L, et al. The impact of dissolved oxygen on sulfate radical-induced oxidation of organic micro-pollutants: A theoretical study[J]. Water Research, 2018, 135: 144-154. doi: 10.1016/j.watres.2018.02.028
|
[79] |
FANG G D, GAO J, DIONYSIOU D D, et al. Activation of persulfate by quinones: Free radical reactions and implication for the degradation of PCBs[J]. Environmental Science & Technology, 2013, 47(9): 4605-4611.
|
[80] |
YANG X R, DING X, ZHOU L, et al. New insights into clopyralid degradation by sulfate radical: Pyridine ring cleavage pathways[J]. Water Research, 2020, 171: 115378. doi: 10.1016/j.watres.2019.115378
|
[81] |
WANG J Q, WANG C J, GUO H G, et al. Crucial roles of oxygen and superoxide radical in bisulfite-activated persulfate oxidation of bisphenol AF: Mechanisms, kinetics and DFT studies[J]. Journal of Hazardous Materials, 2020, 391: 122228. doi: 10.1016/j.jhazmat.2020.122228
|
[82] |
WEI Y, ZOU Q C, YE P, et al. Photocatalytic degradation of organic pollutants in wastewater with g-C3N4/sulfite system under visible light irradiation[J]. Chemosphere, 2018, 208: 358-365. doi: 10.1016/j.chemosphere.2018.06.006
|
[83] |
GUO W Q, YANG Z Z, DU J S, et al. Degradation of sulfadiazine in water by a UV/O3 process: Performance and degradation pathway[J]. RSC Advances, 2016, 6(62): 57138-57143. doi: 10.1039/C6RA09078H
|
[84] |
MANSOURI L, TIZAOUI C, GEISSEN S U, et al. A comparative study on ozone, hydrogen peroxide and UV based advanced oxidation processes for efficient removal of diethyl phthalate in water[J]. Journal of Hazardous Materials, 2019, 363: 401-411. doi: 10.1016/j.jhazmat.2018.10.003
|
[85] |
WANG J, LIU H B, GAO Y, et al. Pilot-scale advanced treatment of actual high-salt textile wastewater by a UV/O3 pressurization process: Evaluation of removal kinetics and reverse osmosis desalination process[J]. Science of the Total Environment, 2023, 857: 159725. doi: 10.1016/j.scitotenv.2022.159725
|
[86] |
ALAPI T, BERECZ L, ARANY E, et al. Comparison of the UV-induced photolysis, ozonation, and their combination at the same energy input using a self-devised experimental apparatus[J]. Ozone: Science & Engineering, 2013, 35(5): 350-358.
|
[87] |
WU Q Y, YANG Z W, DU Y, et al. The promotions on radical formation and micropollutant degradation by the synergies between ozone and chemical reagents (synergistic ozonation): A review[J]. Journal of Hazardous Materials, 2021, 418: 126327. doi: 10.1016/j.jhazmat.2021.126327
|
[88] |
HUA Z C, GUO K H, KONG X J, et al. PPCP degradation and DBP formation in the solar/free chlorine system: Effects of pH and dissolved oxygen[J]. Water Research, 2019, 150: 77-85. doi: 10.1016/j.watres.2018.11.041
|
[89] |
ILAN Y, RABANI J. On some fundamental reactions in radiation chemistry: Nanosecond pulse radiolysis[J]. International Journal for Radiation Physics and Chemistry, 1976, 8(5): 609-611. doi: 10.1016/0020-7055(76)90030-9
|
[90] |
GASMI I, HAMDAOUI O, FERKOUS H, et al. Sonochemical advanced oxidation process for the degradation of furosemide in water: Effects of sonication’s conditions and scavengers[J]. Ultrasonics Sonochemistry, 2023, 95: 106361. doi: 10.1016/j.ultsonch.2023.106361
|
[91] |
KERBOUA K, MEROUANI S, HAMDAOUI O, et al. How do dissolved gases affect the sonochemical process of hydrogen production? An overview of thermodynamic and mechanistic effects–On the “hot spot theory”[J]. Ultrasonics Sonochemistry, 2021, 72: 105422. doi: 10.1016/j.ultsonch.2020.105422
|
[92] |
GAO Y Q, GAO N Y, DENG Y, et al. Factors affecting sonolytic degradation of sulfamethazine in water[J]. Ultrasonics Sonochemistry, 2013, 20(6): 1401-1407. doi: 10.1016/j.ultsonch.2013.04.007
|
[93] |
MARGULIS M A. Fundamental aspects of sonochemistry[J]. Ultrasonics, 1992, 30(3): 152-155. doi: 10.1016/0041-624X(92)90065-T
|
[94] |
MAKINO K, MOSSOBA M M, RIESZ P. Chemical effects of ultrasound on aqueous solutions. Formation of hydroxyl radicals and hydrogen atoms[J]. The Journal of Physical Chemistry, 1983, 87(8): 1369-1377. doi: 10.1021/j100231a020
|
[95] |
MORIWAKI H, TAKAGI Y, TANAKA M, et al. Sonochemical decomposition of perfluorooctane sulfonate and perfluorooctanoic acid[J]. Environmental Science & Technology, 2005, 39(9): 3388-3392.
|
[96] |
RAYAROTH M P, ARAVIND U K, ARAVINDAKUMAR C T. Degradation of pharmaceuticals by ultrasound-based advanced oxidation process[J]. Environmental Chemistry Letters, 2016, 14(3): 259-290. doi: 10.1007/s10311-016-0568-0
|
[97] |
HU Y B, LO S L, LI Y F, et al. Autocatalytic degradation of perfluorooctanoic acid in a permanganate-ultrasonic system[J]. Water Research, 2018, 140: 148-157. doi: 10.1016/j.watres.2018.04.044
|
[98] |
XU D, MA H L. Degradation of rhodamine B in water by ultrasound-assisted TiO2 photocatalysis[J]. Journal of Cleaner Production, 2021, 313: 127758. doi: 10.1016/j.jclepro.2021.127758
|
[99] |
LU X H, QIU W, PENG J L, et al. A review on additives-assisted ultrasound for organic pollutants degradation[J]. Journal of Hazardous Materials, 2021, 403: 123915. doi: 10.1016/j.jhazmat.2020.123915
|
[100] |
LU X H, ZHAO J N, WANG Q, et al. Sonolytic degradation of bisphenol S: Effect of dissolved oxygen and peroxydisulfate, oxidation products and acute toxicity[J]. Water Research, 2019, 165: 114969. doi: 10.1016/j.watres.2019.114969
|
[101] |
ZHAO Z, WANG D D, GAO R, et al. Magnetic-field-stimulated efficient photocatalytic N2 fixation over defective BaTiO3 perovskites[J]. Angewandte Chemie International Edition, 2021, 60(21): 11910-11918. doi: 10.1002/anie.202100726
|
[102] |
MA W, YAO B H, ZHANG W, et al. Fabrication of PVDF-based piezocatalytic active membrane with enhanced oxytetracycline degradation efficiency through embedding few-layer E-MoS2 nanosheets[J]. Chemical Engineering Journal, 2021, 415: 129000. doi: 10.1016/j.cej.2021.129000
|
[103] |
HUANG J, WANG Y, LIU X Q, et al. Synergistically enhanced charge separation in BiFeO3/Sn: TiO2 nanorod photoanode via bulk and surface dual modifications[J]. Nano Energy, 2019, 59: 33-40. doi: 10.1016/j.nanoen.2019.02.025
|
[104] |
WU J M, CHANG W E, CHANG Y T, et al. Piezo-catalytic effect on the enhancement of the ultra-high degradation activity in the dark by single- and few-layers MoS2 nanoflowers[J]. Advanced Materials, 2016, 28(19): 3718-3725. doi: 10.1002/adma.201505785
|
[105] |
CHEN X Y, LIU L F, FENG Y W, et al. Fluid eddy induced piezo-promoted photodegradation of organic dye pollutants in wastewater on ZnO nanorod arrays/3D Ni foam[J]. Materials Today, 2017, 20(9): 501-506. doi: 10.1016/j.mattod.2017.08.027
|
[106] |
WAN L C, TIAN W R, LI N J, et al. Hydrophilic porous PVDF membrane embedded with BaTiO3 featuring controlled oxygen vacancies for piezocatalytic water cleaning[J]. Nano Energy, 2022, 94: 106930. doi: 10.1016/j.nanoen.2022.106930
|
[107] |
COMNINELLIS C. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment[J]. Electrochimica Acta, 1994, 39(11/12): 1857-1862.
|
[108] |
BONFATTI F, FERRO S, LAVEZZO F, et al. Electrochemical incineration of glucose as a model organic substrate. I. role of the electrode material[J]. Journal of the Electrochemical Society, 1999, 146(6): 2175-2179. doi: 10.1149/1.1391909
|
[109] |
PANIZZA M, CERISOLA G. Direct and mediated anodic oxidation of organic pollutants[J]. Chemical Reviews, 2009, 109(12): 6541-6569. doi: 10.1021/cr9001319
|
[110] |
YU T T, LIU L F, LI L, et al. A self-biased fuel cell with TiO2/g-C3N4 anode catalyzed alkaline pollutant degradation with light and without light—What is the degradation mechanism?[J]. Electrochimica Acta, 2016, 210: 122-129. doi: 10.1016/j.electacta.2016.05.162
|
[111] |
XIA B, YAO J J, HAN C X, et al. Degradation of ofloxacin by UVA-LED/TiO2 nanotube arrays photocatalytic fuel cells[J]. Chemical Papers, 2018, 72(2): 359-368. doi: 10.1007/s11696-017-0285-6
|
[112] |
LIU X W, SUN X F, LI D B, et al. Anodic Fenton process assisted by a microbial fuel cell for enhanced degradation of organic pollutants[J]. Water Research, 2012, 46(14): 4371-4378. doi: 10.1016/j.watres.2012.05.044
|
[113] |
PENG Y, HE X, ZHENG N C, et al. Transferring waste of biomass and heavy metal into photocatalysts for hydrogen peroxide activation[J]. Chemical Engineering Journal, 2021, 420: 129867. doi: 10.1016/j.cej.2021.129867
|
[114] |
HE X, ZHENG N C, HU R T, et al. Hydrothermal and pyrolytic conversion of biomasses into catalysts for advanced oxidation treatments[J]. Advanced Functional Materials, 2021, 31(7): 2006505. doi: 10.1002/adfm.202006505
|
[115] |
KUANG C Z, ZENG G S, ZHOU Y J, et al. Integrating anodic sulfate activation with cathodic H2O2 production/activation to generate the sulfate and hydroxyl radicals for the degradation of emerging organic contaminants[J]. Water Research, 2023, 229: 119464. doi: 10.1016/j.watres.2022.119464
|
[116] |
XU C M, TIAN Y, SUN J R, et al. Novel preoxidation-assisted mechanism to preciously form and disperse Bi2O3 nanodots in carbon nanofibers for ultralong-life and high-rate sodium storage[J]. ACS Applied Materials & Interfaces, 2023, 15(1): 1891-1902.
|
[117] |
AGMON N, BAKKER H J, CAMPEN R K, et al. Protons and hydroxide ions in aqueous systems[J]. Chemical Reviews, 2016, 116(13): 7642-7672. doi: 10.1021/acs.chemrev.5b00736
|