-
城市化和工业化的发展导致废水治理和水环境的污染问题日益凸显,这对居民用水安全乃至生态环境保护都有不利影响. 近年来针对污水治理进行了大量研究,包括采用热、酸/碱、超声波、紫外(UV)、微波、高级氧化过程(AOPs)、生物发酵技术和相应的组合技术等[1]. 其中AOPs是目前工程技术人员青睐的热门技术之一. AOPs是指通过物理化学方法生成自由基等高反应活性物质以高效氧化降解甚至矿化污染物的过程[2 − 3]. 从早期的活化过氧化氢产生羟基自由基,到活化过硫酸盐产生硫酸根自由基,基于过氧化物活化的AOPs技术在迅速发展[4 − 5].
过氧乙酸(PAA)是一种高效有机过氧酸,除了具有直接杀菌的能力,还能够经活化产生羟基、乙酰氧基、乙酰过氧基等自由基实现污染物的降解[6]. 研究人员在20世纪初合成了PAA,之后PAA在食品、化工、医疗以及水处理领域中的应用不断发展. PAA最开始在水处理中的应用是作为消毒剂,研究者试图用PAA来作为氯消毒的替代品,因为PAA在水处理应用中只产生少量消毒副产物,且具有广谱的杀菌性和经济性. 进一步地,美国环保局在1999年批准了将PAA用于下水道污水消毒,又在2012年批准了PAA在废水消毒方面的应用[7]. 近年来,由于PAA具有高氧化还原电位(E0=1.96 V),有学者们将PAA用来氧化降解水中的有机污染物[8]. 而最近的研究主要集中在如何借助外界能量或者助催化剂来提高PAA的氧化能力[9]. 另一方面,相比于过硫酸盐或过氧化氢,PAA和在水处理领域中的应用存在着优势与缺点[10]. 过硫酸盐作为氧化剂容易产生硫酸根离子从而导致二次污染,相对来说PAA造成的二次污染较小. 当过氧化氢作为微生物消毒剂时,相较于PAA,过氧化氢需要投入更大剂量来达到相同的微生物灭活水平. 然而,相比于过硫酸盐和过氧化氢来说,PAA的稳定性更差,这在一定程度上限制了它的应用.
根据图1呈现的共线性分析结果可以看到,消毒、污染物去除、废水处理以及高级氧化等是近10年PAA研究的主要方向,其中又涉及臭氧、过氧化氢、次氯酸钠、超声等均相技术的联用,以及有机自由基、协同作用等机制的探讨.
与其他过氧化物活化技术类似,PAA活化的均相体系同样存在能耗大、成本高、对基质透光度要求高、过渡金属离子污染水质等问题,导致实际水环境应用受到阻碍. 因此,探索低成本、环境友好的非均相活化材料是未来基于PAA活化的AOPs研究的重要方向. 然而,目前有关非均相活化PAA的研究尚处于起步阶段,关于PAA活化功能材料的开发、材料界面PAA的活化机制,以及非均相活化PAA体系的复杂水环境中的应用等方面的研究仍然缺乏系统性与针对性. 已有综述文献阐述了基于PAA的高级氧化技术在水污染环境中的应用,分析了相关水环境基质、PAA的投加量、催化剂的投加量对污染物降解的影响以及PAA在消毒领域的应用. 然而在均相和非均相体系中对PAA的活化的机制探究,以及理论计算和模型拟合在活化PAA的研究,仍缺乏相关文献给出总结或评述. 基于此,本文综述了基于PAA活化的功能材料开发与水环境应用的新近研究进展,以期为以PAA活化为导向的功能材料开发与技术运用提供思路.
过氧乙酸活化功能材料开发与水环境应用
Development and application of peracetic acid activation-oriented functional materials in water treatment
-
摘要: 近年来,水处理消毒剂过氧乙酸(PAA)在高级氧化过程(AOPs)中受到了越来越多的关注. 虽然基于PAA活化的均相体系已经得到了大量报道,但非均相活化材料具有成本低、易操控、应用性更强、反应路径多元化等优势,逐渐发展为研究的热门方向. 本文首先梳理了均相活化PAA技术的研究进展,随后着重综述了基于非均相材料活化的PAA技术在水处理中的新近研究成果,总结了涉及自由基和非自由基的材料界面氧化机制,讨论了影响PAA活化除污效果的主要因素,并介绍了理论计算和模型拟合在PAA技术研究中的具体运用. 最后,总结了现阶段非均相活化PAA技术研究的现状,并对未来以PAA活化功能为导向的材料开发与水环境应用进行了展望.Abstract: In recent years, peracetic acid (PAA) has gained significant attention as a disinfectant for water treatment in advanced oxidation processes (AOPs). While homogenous PAA activation systems have been extensively studied, there has been a growing interest in non-homogenous activation materials due to their advantages, including low cost, easy operability, stronger applicability, and diversified reaction pathways. In this review, we first reviewed the research progress of homogenous PAA activation technology, and then focused on summarizing the recent research results of non-homogenous material-activated PAA technology in water treatment. We elucidated the radical and non-radical oxidation mechanisms at the material interface, discussed the main factors affecting the removal of pollutants through PAA activation, and introduced the specific application of theoretical calculations in PAA technology research. Finally, we concluded the current status and shortcomings of non-homogenous PAA activation technology research and provided prospects for future material development and water environment application oriented to PAA activation functionality.
-
Key words:
- peracetic acid /
- environmental material /
- advanced oxidation process /
- free radical /
- water treatment.
-
表 1 PAA和H2O2理化性质
Table 1. Physiochemistry properties of PAA and H2O2
指标
PropertyPAA H2O2 摩尔质量/(g·mol−1) 76.05 34.01 密度/(g mL−1) 1.0375 1.71 沸点/℃ 105 150.2 闪点/℃ 41 107 酸度(pKa) 8.2 11.75 稳定性 不稳定 较稳定 过氧键键能/(kJ·mol−1) 159.0 213.4 氧化还原电位/V 1.96 1.78 对人体健康造成相似损害的浓度比(PAA/H2O2)[12] 0.24:1 表 2 单独PAA的作用效果及机制
Table 2. The performance and mechanism of PAA alone
目标物质
Target pollutant处理效果
Performance作用机制
Mechanism大肠杆菌[13 − 15] 浓度为250 mg·min·L−1时菌群含量降至100 CFU·L-1 在细胞膜打孔并破坏膜蛋白;影响膜转运基因的调控和DNA修复、小分子转运蛋白的合成以及细胞保护过程相关基因的表达
消毒处理29 h后仍未出现再生长 诺如病毒[16 − 19] 浓度为 69 mg·min·L−1时能够导致废水中病毒减少3个数量级 能够导致病毒蛋白质和核酸的改变 30—60 mg·min·L−1处理导致GII毒株减少1.5个数量级 β-内酰胺[22] 10 mg L−1 PAA处理10 min导致内酰胺减少了62%—95% 攻击分子内的硫醚键 EPS[23] 浓度为0.36 g·g−1悬浮物时可溶性EPS和分散状态EPS分别达到186 mg·g−1和65 mg·g−1悬浮物 溶解和破环凝聚状态的EPS并将类蛋白物质降解为小分子 表 3 均相体系中PAA活化的降解效果和主要反应物质
Table 3. Degradation performance of activating PAA in homogeneous system and main active species
反应体系
System目标污染物
Target pollutant降解效果
Degradation performance主要反应物质
Main active speciesUV/PAA[35] 柯萨奇病毒B3 3 mg·L−1 PAA处理导致毒株减少4个数量级. PAA-UV/PAA[35] 病原微生物 杜兰斯菌、表皮葡萄球菌、大肠杆菌分别降低了3.1、6.2
和5.6个数量级中压UV /PAA[36] 诺氟沙星 pH 5、7、9条件下去除率分别达到85.8%、96.6%、97.2% ·OH,
CH3C(O)OO·UV/PAA[33] 萘普生 kobs值为0.11 min−1 R—C· UV/Fe0/PAA[34] 磺胺嘧啶 60 min后去除率达到85%. R—C· UV/PAA[31] 四环素、四环素抗性细菌 四环素降至检测限以下,细菌表达受到显著抑制(3.2%—38.9%) ·OH, R—C· 太阳光/PAA[37] 病原微生物、SMX QUV = 38.03 kJ L−1处理210 min后大肠杆菌降至检测限 ·OH 超声波/PAA[38] 肠道沙门氏菌 附着在生菜上的病菌降低了3.0个数量级 微波/PAA[39] SMX 碱性条件下反应30 min后的去除率达到94.2% 1O2, R—C· 热/PAA[29,40] DCF 65 ℃下体系中去除率达到96% CH3C(O)O·, CH3C(O)OO· 热/PAA[29,40] SMX 60 ℃处理0.2 mmol·L−1 PAA去除率达到86% CH3C(O)O·, CH3C(O)OO· 热/Cu(Ⅱ) /PAA[42] DCF 60 ℃处理DCF被完全降解 CH3C(O)O·, ·OH,CH3C(O)OO· Fe(Ⅲ)/
PAA[44]亚甲蓝染料 30 min后去除率达到98.98% CH3C(O)OO·, CH3C(O)·, ·OH Fe(Ⅱ)/
PAA[43 − 44,51]聚丙烯酰胺 10 mg·L−1 PAA处理15 min去除率达81% ·OH 亚甲蓝、萘普生、BPA 12 min后亚甲蓝、萘普生、BPA最大去除率分别达到89.4%、98.2%和87.7% CH3C(O)O·, CH3C(O)·, CH3·, Fe(Ⅳ) 羟胺/Fe(Ⅱ)/
PAA[47]DCF 10 min内去除率接近95% Fe(IV)O2, R—O· 吡啶甲酸/Fe(Ⅲ)/
PAA[48]微污染物 10 min内萘普生和磺酸甲恶唑完全降解 Fe(Ⅳ), Fe(V) ABTS/
Fe(Ⅱ)/PAA[49]DCF 30 min内DCF的去除率接近92% ABTS·+ Co(Ⅱ)/
PAA[50,52 − 54]酸性橙 60 min后去除率达到92% CH3C(O)O·, CH3C(O)OO· 芳香族化合物 萘普生和2-萘酚的KPAA分别达到6.83×10−2、6.67×10−2 CH3C(O)OO· SMX 中性条件下反应15 min后去除率达到89.4% CH3C(O)OO·, CH3C(O)O· 有机微污染物 酸性条件下(pH 3.5)BPA和SMX分别在15 min和20 min完全降解,甲基苯基亚砜和卡马西平的去除率分别达到88.7%和84.5% Co(IV), CH3C(O)OO·, CH3C(O)O· 苯酚 最大去除率达到99% 产生自由基 Cu(Ⅱ)/
PAA[55]苯酚 最大去除率达到65% 产生自由基 Ag(Ⅰ)/
PAA[55]苯酚 最大去除率达到20% 产生自由基或激活H2O2 Ru(Ⅲ)/
PAA[56]SMX 200 μmol·L−1 PAA处理SMX 2 min内完全去除 CH3C(O)O·, CH3C(O)OO· Cl-/PAA[58] 罗丹明B 10 min后去除率达到96.2% CH3C(O)O·,1O2, CH3C(O)OO· 磷酸盐缓冲液/PAA[59] DCF pH 7.4环境中45 min后去除率达到96% CH3C(O)O·,·OH, CH3C(O)OO· Na2CO3/阳光/PAA[60] 亚甲蓝染料 第一、二阶段kobs值分别达到0.0139 min−1和0.0494 min−1 1O2 醌/PAA[9] 1O2, ·OH, CH3O· 表 4 非均相活化材料对过氧乙酸的激活作用
Table 4. Activation of PAA by different heterogeneous materials
活化材料
Material目标污染物
Target pollutant降解效果
Degradation performance主要反应物质
Main active species零价钴[66] 罗丹明B 180 s内去除率达到98.3% CH3C(O)O ·, CH3C(O)OO· nZVI/UV[68] 螺旋霉素 在20 min内完全降解 ·OH, R—C· 硫化零价铁[67] 微污染物 15 min内SMX、DCF钠、布洛芬、卡马西平、萘普生和左氧氟沙星的去除率分别达到99.64%、98.5%、99.2%、99.8%、97.5%、97.4% ·OH FeS[69] SMX 3 min内去除率达到80.32% ·OH 黄铁矿[70] 四环素 在30 min内完全去除 CH3C(O)OO· 纳米铜[65,84] 卡马西平 表观反应速率常数为0.07 min−1,达到对照组的2倍. CH3C(O)OO· 微波/钴取代锰铁氧体[72] 盐酸四环素 5 min内去除率达到98.61% 1O2 钴铁氧体[73] SMX 30 min内去除率达到74.7% CH3C(O)O·, CH3C(O)OO· 超声/MnO2[74] 苯酚 第一阶段(60 min)去除率接近70%. ·OH 分子筛咪唑骨架(ZIF)67[80] 磺胺氯达嗪 3 min内去除率达到100% CH3C(O)OO· Co@
MXenes[81]富电子有机污染物 四环素、氟喹诺酮类、2,4-二氯苯酚和罗丹明B分别在5 min、10 min和20 min、20 min内完全降解,环丙沙星、SMX、磺胺嘧啶在30 min时的去除率分别达到95%、90%和89% CH3C(O)OO· 钴掺杂g-C3N4[83] SMX 在20 min内完全降解 Co(Ⅳ) 纳米核壳Co@NC[82] SMX 在中性条件下5 min时去除率达到98% CH3C(O)O·, CH3C(O)OO· rGO[86] SMX 去除率在2 min时达到95% 电子转移和1O2 热改性活性炭[87] SMX 150 min去除率达到99.4% CH3C(O)O·, CH3C(O)OO·电子转移 污泥生物炭[88] 对氯苯酚 去除率达到85%—100% R—O· FeOCl功能化的陶瓷膜[90] 牛血清白蛋白 20 min后牛血清白蛋白几乎被完全降解 ·OH和1O2 锐钛矿型TiO2[71] 电子转移 碳铁微电解材料[94] 罗丹明B 脱色率在40 min时达到92.1%,TOC的
去除率达到80.6%·OH 铁-生物炭[93] 酸性橙染料 去除率达到93.3% R—O· 负载钴陶粒[95] 微污染物 SMX、磺胺嘧啶、卡马西平的去除率分别达到67.77%、70.20%、89.25% -
[1] LUO H C, GUO W Q, ZHAO Q, et al. Compared effects of “solid-based” hydrogen peroxide pretreatment on disintegration and properties of waste activated sludge[J]. Chinese Chemical Letters, 2022, 33(3): 1293-1297. doi: 10.1016/j.cclet.2021.08.002 [2] SI Q S, GUO W Q, WANG H Z, et al. Carbon quantum dots-based semiconductor preparation methods, applications and mechanisms in environmental contamination[J]. Chinese Chemical Letters, 2020, 31(10): 2556-2566. doi: 10.1016/j.cclet.2020.08.036 [3] HOANG N T, MANH T D, NGUYEN V T, et al. Kinetic study on methylene blue removal from aqueous solution using UV/chlorine process and its combination with other advanced oxidation processes[J]. Chemosphere, 2022, 308: 136457. doi: 10.1016/j.chemosphere.2022.136457 [4] SHI C J, LI C, WANG Y, et al. Review of advanced oxidation processes based on peracetic acid for organic pollutants[J]. Water, 2022, 14(15): 2309. doi: 10.3390/w14152309 [5] SHAH N S, HE X X, KHAN H M, et al. Efficient removal of endosulfan from aqueous solution by UV-C/peroxides: A comparative study[J]. Journal of Hazardous Materials, 2013, 263: 584-592. doi: 10.1016/j.jhazmat.2013.10.019 [6] 万思文, 徐志威, 易琳雅, 等. 过氧乙酸在高级氧化工艺中的应用研究[J]. 环境科学与技术, 2021, 44(8): 64-74. doi: 10.19672/j.cnki.1003-6504.0763.21.338 WAN S W, XU Z W, YI L Y, et al. Research on the application of peracetic acid in advanced oxidation process[J]. Environmental Science & Technology, 2021, 44(8): 64-74 (in Chinese). doi: 10.19672/j.cnki.1003-6504.0763.21.338
[7] AZAIZEH H, LINDEN K G, BARSTOW C, et al. Constructed wetlands combined with UV disinfection systems for removal of enteric pathogens and wastewater contaminants[J]. Water Science and Technology, 2013, 67(3): 651-657. doi: 10.2166/wst.2012.615 [8] WANG J W, WANG Z P, CHENG Y J, et al. Molybdenum disulfide (MoS2): A novel activator of peracetic acid for the degradation of sulfonamide antibiotics[J]. Water Research, 2021, 201: 117291. doi: 10.1016/j.watres.2021.117291 [9] GU J, SONG Y, YANG Y, et al. Mechanical insights into activation of peroxides by quinones: Formation of oxygen-centered radicals or singlet oxygen[J]. Environmental Science & Technology, 2022, 56(12): 8776-8783. [10] CORREA-SANCHEZ S, PEÑUELA G A. Peracetic acid-based advanced oxidation processes for the degradation of emerging pollutants: A critical review[J]. Journal of Water Process Engineering, 2022, 49: 102986. doi: 10.1016/j.jwpe.2022.102986 [11] CHEN J C, PAVLOSTATHIS S G. Peracetic acid fate and decomposition in poultry processing wastewater streams[J]. Bioresource Technology Reports, 2019, 7: 100285. doi: 10.1016/j.biteb.2019.100285 [12] KITIS M. Disinfection of wastewater with peracetic acid: A review[J]. Environment International, 2004, 30(1): 47-55. doi: 10.1016/S0160-4120(03)00147-8 [13] CHANG W, SMALL D A, TOGHROL F, et al. Microarray analysis of toxicogenomic effects of peracetic acid on Pseudomonas aeruginosa[J]. Environmental Science & Technology, 2005, 39(15): 5893-5899. [14] CHANG W, TOGHROL F, BENTLEY W E. Toxicogenomic response of Staphylococcus aureus to peracetic acid[J]. Environmental Science & Technology, 2006, 40(16): 5124-5131. [15] ZHANG C Q, BROWN P J B, MILES R J, et al. Inhibition of regrowth of planktonic and biofilm bacteria after peracetic acid disinfection[J]. Water Research, 2019, 149: 640-649. doi: 10.1016/j.watres.2018.10.062 [16] DUNKIN N, WENG S, SCHWAB K J, et al. Comparative inactivation of murine norovirus and MS2 bacteriophage by peracetic acid and monochloramine in municipal secondary wastewater effluent[J]. Environmental Science & Technology, 2017, 51(5): 2972-2981. [17] SANTORO D, CRAPULLI F, RAISEE M, et al. Nondeterministic computational fluid dynamics modeling of Escherichia coli inactivation by peracetic acid in municipal wastewater contact tanks[J]. Environmental Science & Technology, 2015, 49(12): 7265-7275. [18] DUNKIN N, WENG S, COULTER C G, et al. Reduction of human norovirus GI, GII, and surrogates by peracetic acid and monochloramine in municipal secondary wastewater effluent[J]. Environmental Science & Technology, 2017, 51(20): 11918-11927. [19] ANTONELLI M, ROSSI S, MEZZANOTTE V, et al. Secondary effluent disinfection: PAA long term efficiency[J]. Environmental Science & Technology, 2006, 40(15): 4771-4775. [20] ZHANG K J, ZHOU X Y, DU P H, et al. Oxidation of β-lactam antibiotics by peracetic acid: Reaction kinetics, product and pathway evaluation[J]. Water Research, 2017, 123: 153-161. doi: 10.1016/j.watres.2017.06.057 [21] ZHANG W J, CAO B D, WANG D S, et al. Influence of wastewater sludge treatment using combined peroxyacetic acid oxidation and inorganic coagulants re-flocculation on characteristics of extracellular polymeric substances (EPS)[J]. Water Research, 2016, 88: 728-739. doi: 10.1016/j.watres.2015.10.049 [22] CAMPO N, de FLORA C, MAFFETTONE R, et al. Inactivation kinetics of antibiotic resistant Escherichia coli in secondary wastewater effluents by peracetic and performic acids[J]. Water Research, 2020, 169: 115227. doi: 10.1016/j.watres.2019.115227 [23] RAGAZZO P, CHIUCCHINI N, PICCOLO V, et al. Wastewater disinfection: Long-term laboratory and full-scale studies on performic acid in comparison with peracetic acid and chlorine[J]. Water Research, 2020, 184: 116169. doi: 10.1016/j.watres.2020.116169 [24] LUUKKONEN T, HEYNINCK T, RÄMÖ J, et al. Comparison of organic peracids in wastewater treatment: Disinfection, oxidation and corrosion[J]. Water Research, 2015, 85: 275-285. doi: 10.1016/j.watres.2015.08.037 [25] DOMÍNGUEZ HENAO L, TUROLLA A, ANTONELLI M. Disinfection by-products formation and ecotoxicological effects of effluents treated with peracetic acid: A review[J]. Chemosphere, 2018, 213: 25-40. doi: 10.1016/j.chemosphere.2018.09.005 [26] FARINELLI G, COHA M, VIONE D, et al. Formation of halogenated byproducts upon water treatment with peracetic acid[J]. Environmental Science & Technology, 2022, 56(8): 5123-5131. [27] 曹聪, 张土乔, 张富标, 等. 饮用水中的新型消毒剂: 过氧乙酸的研究进展[J]. 中国给水排水, 2018, 34(4): 36-40. CAO C, ZHANG T Q, ZHANG F B, et al. Research progress of peracetic acid (PAA): An emerging disinfectant in drinking water[J]. China Water & Wastewater, 2018, 34(4): 36-40 (in Chinese).
[28] 戴寅豪, 杨绍贵, 祁承都, 等. 活化过氧乙酸技术去除水体有机污染物研究进展[J]. 环境化学, 2021, 40(2): 497-508. doi: 10.7524/j.issn.0254-6108.2020083001 Dai Y H, Yang S G, Qi C D, et al. Activation of peracetic acid process for aquatic organic pollutants degradation: A review[J]. Environmental Chemistry, 2021, 40(2): 497-508 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020083001
[29] DENG J W, LIU S L, FU Y S, et al. Heat-activated peracetic acid for degradation of diclofenac: Kinetics, influencing factors and mechanism[J]. Environmental Technology, 2022: 1-9. [30] PING Q, YAN T T, WANG L, et al. Insight into using a novel ultraviolet/peracetic acid combination disinfection process to simultaneously remove antibiotics and antibiotic resistance genes in wastewater: Mechanism and comparison with conventional processes[J]. Water Research, 2022, 210: 118019. doi: 10.1016/j.watres.2021.118019 [31] 李文涛, 李梦凯, 强志民. 化学剂量法原理及其在水处理紫外线技术研究中的应用[J]. 环境化学, 2020, 39(2): 326-333. doi: 10.7524/j.issn.0254-6108.2019031502 LI W T, LI M K, QIANG Z M. Principles and application of chemical actinometry in the research of UV technology for water treatment[J]. Environmental Chemistry, 2020, 39(2): 326-333 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019031502
[32] ZHANG T Q, WANG T, MEJIA-TICKNER B, et al. Inactivation of bacteria by peracetic acid combined with ultraviolet irradiation: Mechanism and optimization[J]. Environmental Science & Technology, 2020, 54(15): 9652-9661. [33] CHEN S A, CAI M Q, LIU Y Z, et al. Effects of water matrices on the degradation of naproxen by reactive radicals in the UV/peracetic acid process[J]. Water Research, 2019, 150: 153-161. doi: 10.1016/j.watres.2018.11.044 [34] WANG L Q, YE J Y, ZHANG J Y, et al. Removal of sulfamethazine using peracetic acid activated by Fe0 and UV: Efficiency and mechanism study[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106358. doi: 10.1016/j.jece.2021.106358 [35] KIBBEE R, ÖRMECI B. Peracetic acid (PAA) and low-pressure ultraviolet (LP-UV) inactivation of Coxsackievirus B3 (CVB3) in municipal wastewater individually and concurrently[J]. Water Research, 2020, 183: 116048. doi: 10.1016/j.watres.2020.116048 [36] AO X W, WANG W B, SUN W J, et al. Degradation and transformation of norfloxacin in medium-pressure ultraviolet/peracetic acid process: An investigation of the role of pH[J]. Water Research, 2021, 203: 117458. doi: 10.1016/j.watres.2021.117458 [37] RIZZO L, AGOVINO T, NAHIM-GRANADOS S, et al. Tertiary treatment of urban wastewater by solar and UV-C driven advanced oxidation with peracetic acid: Effect on contaminants of emerging concern and antibiotic resistance[J]. Water Research, 2019, 149: 272-281. doi: 10.1016/j.watres.2018.11.031 [38] SILVEIRA L O, DO ROSÁRIO D K A, GIORI A C G, et al. Combination of peracetic acid and ultrasound reduces Salmonella Typhimurium on fresh lettuce (Lactuca sativa L. var. crispa)[J]. Journal of Food Science and Technology, 2018, 55(4): 1535-1540. doi: 10.1007/s13197-018-3071-8 [39] DAI Y H, QI C D, CAO H, et al. Enhanced degradation of sulfamethoxazole by microwave-activated peracetic acid under alkaline condition: Influencing factors and mechanism[J]. Separation and Purification Technology, 2022, 288: 120716. doi: 10.1016/j.seppur.2022.120716 [40] WANG J W, WAN Y, DING J Q, et al. Thermal activation of peracetic acid in aquatic solution: The mechanism and application to degrade sulfamethoxazole[J]. Environmental Science & Technology, 2020, 54(22): 14635-14645. [41] SGROI M, SNYDER S A, ROCCARO P. Comparison of AOPs at pilot scale: Energy costs for micro-pollutants oxidation, disinfection by-products formation and pathogens inactivation[J]. Chemosphere, 2021, 273: 128527. doi: 10.1016/j.chemosphere.2020.128527 [42] WANG S X, WANG H B, LIU Y Q, et al. Effective degradation of sulfamethoxazole with Fe2+-zeolite/peracetic acid[J]. Separation and Purification Technology, 2020, 233: 115973. doi: 10.1016/j.seppur.2019.115973 [43] LING X, CAI A H, CHEN M J, et al. A comparison of oxidation and re-flocculation behaviors of Fe2+/PAA and Fe2+/H2O2 treatments for enhancing sludge dewatering: A mechanism study[J]. Science of the Total Environment, 2022, 847: 157690. doi: 10.1016/j.scitotenv.2022.157690 [44] CARLOS T D, BEZERRA L B, VIEIRA M M, et al. Fenton-type process using peracetic acid: Efficiency, reaction elucidations and ecotoxicity[J]. Journal of Hazardous Materials, 2021, 403: 123949. doi: 10.1016/j.jhazmat.2020.123949 [45] 侯琳萌, 清华, 吉庆华. 类芬顿反应的催化剂、原理与机制研究进展[J]. 环境化学, 2022, 41(6): 1843-1855. doi: 10.7524/j.issn.0254-6108.2021030301 HOU L M, QINGHUA, JI Q H. Research progress on catalysts, principles and mechanisms of Fenton-like reactions[J]. Environmental Chemistry, 2022, 41(6): 1843-1855 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021030301
[46] KIM J, ZHANG T Q, LIU W, et al. Advanced oxidation process with peracetic acid and Fe(II) for contaminant degradation[J]. Environmental Science & Technology, 2019, 53(22): 13312-13322. [47] LIN J B, ZOU J, CAI H Y, et al. Hydroxylamine enhanced Fe(Ⅱ)-activated peracetic acid process for diclofenac degradation: Efficiency, mechanism and effects of various parameters[J]. Water Research, 2021, 207: 117796. doi: 10.1016/j.watres.2021.117796 [48] KIM J, WANG J Y, ASHLEY D C, et al. Enhanced degradation of micropollutants in a peracetic acid–Fe(Ⅲ) system with picolinic acid[J]. Environmental Science & Technology, 2022, 56(7): 4437-4446. [49] MANOLI K, LI R B, KIM J, et al. Ferrate(Ⅵ)-peracetic acid oxidation process: Rapid degradation of pharmaceuticals in water[J]. Chemical Engineering Journal, 2022, 429: 132384. doi: 10.1016/j.cej.2021.132384 [50] LIU B H, GUO W Q, JIA W R, et al. Insights into the oxidation of organic contaminants by Co(Ⅱ) activated peracetic acid: The overlooked role of high-valent cobalt-oxo species[J]. Water Research, 2021, 201: 117313. doi: 10.1016/j.watres.2021.117313 [51] 阿尔娜·海萨尔, 贾剑平, 任定益, 等. 类Fenton氧化技术去除聚丙烯酰胺的研究[J]. 精细石油化工, 2016, 33(6): 55-58. AERNA· HAISAER, JIA J P, REN D Y, et al. The removal of HPAM with Fenton-like reagents oxidation process[J]. Speciality Petrochemicals, 2016, 33(6): 55-58(in Chinese).
[52] 田丹, 吴玮, 沈芷璇, 等. Co(Ⅱ)活化过氧乙酸降解有机染料研究[J]. 环境科学学报, 2018, 38(10): 4023-4031. TIAN D, WU W, SHEN Z X, et al. Degradation of organic dyes with peracetic acid activated by Co (Ⅱ)[J]. Acta Scientiae Circumstantiae, 2018, 38(10): 4023-4031 (in Chinese).
[53] KIM J, DU P H, LIU W, et al. Cobalt/peracetic acid: Advanced oxidation of aromatic organic compounds by acetylperoxyl radicals[J]. Environmental Science & Technology, 2020, 54(8): 5268-5278. [54] WANG Z P, WANG J W, XIONG B, et al. Application of cobalt/peracetic acid to degrade sulfamethoxazole at neutral condition: Efficiency and mechanisms[J]. Environmental Science & Technology, 2020, 54(1): 464-475. [55] LUUKKONEN T, von GUNTEN U. Oxidation of organic micropollutant surrogate functional groups with peracetic acid activated by aqueous Co(II), Cu(II), or Ag(I) and geopolymer-supported Co(II)[J]. Water Research, 2022, 223: 118984. doi: 10.1016/j.watres.2022.118984 [56] LI R B, MANOLI K, KIM J, et al. Peracetic acid–ruthenium(Ⅲ) oxidation process for the degradation of micropollutants in water[J]. Environmental Science & Technology, 2021, 55(13): 9150-9160. [57] BOKARE A D, CHOI W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes[J]. Journal of Hazardous Materials, 2014, 275: 121-135. doi: 10.1016/j.jhazmat.2014.04.054 [58] 王静晓, 朱柯安, 陈飞. 氯离子活化过氧乙酸对罗丹明B的降解性能及机理研究[J]. 环境科学研究, 2021, 34(12): 2850-2858. WANG J X, ZHU K A, CHEN F. Degradation performance and mechanism of rhodamine B by chloride activated peracetic acid[J]. Research of Environmental Sciences, 2021, 34(12): 2850-2858 (in Chinese) .
[59] WANG H Z, LIU B H, SI Q S, et al. Developing functional carbon nitride materials for efficient peroxymonosulfate activation: From interface catalysis to irradiation synergy[J]. Environmental Functional Materials, 2022, 1(1): 21-33. doi: 10.1016/j.efmat.2022.05.007 [60] DAS NEVES A P N, CARLOS T D, BEZERRA L B, et al. Carbonate anion photolyzed by solar radiation or combined with peracetic acid to form reactive species for dye degradation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 420: 113511. doi: 10.1016/j.jphotochem.2021.113511 [61] DENG J W, WANG H B, FU Y S, et al. Phosphate-induced activation of peracetic acid for diclofenac degradation: Kinetics, influence factors and mechanism[J]. Chemosphere, 2022, 287: 132396. doi: 10.1016/j.chemosphere.2021.132396 [62] 邓杰文, 张琳悦, 付永胜, 等. Cu(Ⅱ)协同热活化过氧乙酸降解水中双氯芬酸[J]. 环境化学, 2023, 42(4 ): 1222-1229. doi: 10.7524/j.issn.0254-6108.2021111602 DENG J W, ZHANG L Y, FU Y S, et al. Degradation of diclofenac in water by Cu(Ⅱ)-combined with heat activation of peracetic acid[J]. Environmental Chemistry, 2023, 42(4 ): 1222-1229 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021111602
[63] GHANBARI F, GIANNAKIS S, LIN K Y A, et al. Acetaminophen degradation by a synergistic peracetic acid/UVC-LED/Fe(Ⅱ) advanced oxidation process: Kinetic assessment, process feasibility and mechanistic considerations[J]. Chemosphere, 2021, 263: 128119. doi: 10.1016/j.chemosphere.2020.128119 [64] LIN J B, HU Y Y, XIAO J Y, et al. Enhanced diclofenac elimination in Fe(Ⅱ)/peracetic acid process by promoting Fe(III)/Fe(Ⅱ) cycle with ABTS as electron shuttle[J]. Chemical Engineering Journal, 2021, 420: 129692. doi: 10.1016/j.cej.2021.129692 [65] 徐文露, 张凌燕, 邱杨率, 等. 石墨基复合材料负载零价纳米铁吸附重金属离子的研究进展[J]. 环境化学, 2022, 41(1): 376-385. doi: 10.7524/j.issn.0254-6108.2020091601 XU W L, ZHANG L Y, QIU Y S, et al. Research progress on adsorption of heavy metal ions by graphite based composites supported with nano zero valent iron[J]. Environmental Chemistry, 2022, 41(1): 376-385 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020091601
[66] 周高峰, 周润宇, 刘义青, 等. 零价钴活化过氧乙酸降解水中罗丹明B的研究[J]. 环境科学学报, 2022, 42(11): 47-55. ZHOU G F, ZHOU R Y, LIU Y Q, et al. Degrdation of rhodamine B by peracetic acid activated with zero-valent cobalt[J]. Acta Scientiae Circumstantiae, 2022, 42(11): 47-55 (in Chinese).
[67] HE M F, LI W Q, XIE Z H, et al. Peracetic acid activation by mechanochemically sulfidated zero valent iron for micropollutants degradation: Enhancement mechanism and strategy for extending applicability[J]. Water Research, 2022, 222: 118887. doi: 10.1016/j.watres.2022.118887 [68] WANG L, YAN T T, TANG R J, et al. Motivation of reactive oxidation species in peracetic acid by adding nanoscale zero-valent iron to synergic removal of spiramycin under ultraviolet irradiation: Mechanism and N-nitrosodimethylamine formation potential assessment[J]. Water Research, 2021, 205: 117684. doi: 10.1016/j.watres.2021.117684 [69] YANG S R, HE C S, XIE Z H, et al. Efficient activation of PAA by FeS for fast removal of pharmaceuticals: The dual role of sulfur species in regulating the reactive oxidized species[J]. Water Research, 2022, 217: 118402. doi: 10.1016/j.watres.2022.118402 [70] XING D Y, SHAO S J, YANG Y Y, et al. Mechanistic insights into the efficient activation of peracetic acid by pyrite for the tetracycline abatement[J]. Water Research, 2022, 222: 118930. doi: 10.1016/j.watres.2022.118930 [71] ZHANG L L, CHEN J B, ZHANG Y L, et al. Interactions between peracetic acid and TiO2 nanoparticle in wastewater disinfection: Mechanisms and implications[J]. Chemical Engineering Journal, 2021, 412: 128703. doi: 10.1016/j.cej.2021.128703 [72] LI S, YANG Y L, ZHENG H S, et al. Introduction of oxygenvacancy to Manganese ferrite by Co substitution for enhanced peracetic acid activation and 1O2 dominated tetracycline hydrochloride degradation under microwave irradiation[J]. Water Research, 2022, 225: 119176. doi: 10.1016/j.watres.2022.119176 [73] WANG J W, XIONG B, MIAO L, et al. Applying a novel advanced oxidation process of activated peracetic acid by CoFe2O4 to efficiently degrade sulfamethoxazole[J]. Applied Catalysis B: Environmental, 2021, 280: 119422. doi: 10.1016/j.apcatb.2020.119422 [74] ROKHINA E V, MAKAROVA K, LAHTINEN M, et al. Ultrasound-assisted MnO2 catalyzed homolysis of peracetic acid for phenol degradation: The assessment of process chemistry and kinetics[J]. Chemical Engineering Journal, 2013, 221: 476-486. doi: 10.1016/j.cej.2013.02.018 [75] CUERDA-CORREA E M, ALEXANDRE-FRANCO M F, FERNÁNDEZ-GONZÁLEZ C. Advanced oxidation processes for the removal of antibiotics from water. an overview[J]. Water, 2019, 12(1): 102. doi: 10.3390/w12010102 [76] 王崇臣, 王恂. 金属-有机骨架在水处理中的应用研究进展[J]. 工业水处理, 2020, 40(11): 1-9 WANG C C, WANG X. The application of metal-organic frameworks in the wastewater treatment: A state-of-the-art review[J]. Industrial Water Treatment, 2020, 40(11): 1-9(in Chinese) .
[77] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714. doi: 10.7536/220501 CHU H Y, WANG T Y, WANG C C. Advanced oxidation processes(AOPs)for bacteria removal over MOFs-based materials[J]. Progress in Chemistry, 2022, 34(12): 2700-2714 (in Chinese). doi: 10.7536/220501
[78] FU H F, WANG C C, LIU W. MOFs for water purification[J]. Chinese Chemical Letters, 2022, 33(4): 1647-1649. doi: 10.1016/j.cclet.2021.08.065 [79] YI X H, WANG F X, DU X D, et al. Highly efficient photocatalytic Cr(Ⅵ) reduction and organic pollutants degradation of two new bifunctional 2D Cd/Co-based MOFs[J]. Polyhedron, 2018, 152: 216-224. doi: 10.1016/j.poly.2018.06.041 [80] DUAN J, CHEN L, JI H D, et al. Activation of peracetic acid by metal-organic frameworks (ZIF-67) for efficient degradation of sulfachloropyridazine[J]. Chinese Chemical Letters, 2022, 33(6): 3172-3176. doi: 10.1016/j.cclet.2021.11.072 [81] ZHANG L L, CHEN J B, ZHANG Y L, et al. Activation of peracetic acid with cobalt anchored on 2D sandwich-like MXenes (Co@MXenes) for organic contaminant degradation: High efficiency and contribution of acetylperoxyl radicals[J]. Applied Catalysis B: Environmental, 2021, 297: 120475. doi: 10.1016/j.apcatb.2021.120475 [82] 郑婷露, 张龙龙, 陈家斌, 等. 纳米核壳Co@NC催化剂活化过氧乙酸降解磺胺甲噁唑[J]. 环境科学, 2023, 44(5): 2635-2645. ZHENG T L, ZHANG L L, CHEN J B, et al. Degradation of SMX with peracetic acid activated by nano core-shell Co@NC catalyst[J]. Environmental Science, 2023, 44(5): 2635-2645 (in Chinese).
[83] LIU B H, GUO W Q, JIA W R, et al. Novel nonradical oxidation of sulfonamide antibiotics with Co(Ⅱ)-doped g-C3N4-activated peracetic acid: Role of high-valent cobalt–oxo species[J]. Environmental Science & Technology, 2021, 55(18): 12640-12651. [84] ZHANG L L, CHEN J B, ZHANG Y L, et al. Highly efficient activation of peracetic acid by nano-CuO for carbamazepine degradation in wastewater: The significant role of H2O2 and evidence of acetylperoxy radical contribution[J]. Water Research, 2022, 216: 118322. doi: 10.1016/j.watres.2022.118322 [85] HU C G, LIN Y, CONNELL J W, et al. Carbon-based metal-free catalysts for energy storage and environmental remediation[J]. Advanced Materials (Deerfield Beach, Fla. ), 2019, 31(13): e1806128. doi: 10.1002/adma.201806128 [86] KONG D Z, ZHAO Y M, FAN X R, et al. Reduced graphene oxide triggers peracetic acid activation for robust removal of micropollutants: The role of electron transfer[J]. Environmental Science & Technology, 2022, 56(16): 11707-11717. [87] DAI C M, LI S, DUAN Y P, et al. Mechanisms and product toxicity of activated carbon/peracetic acid for degradation of sulfamethoxazole: Implications for groundwater remediation[J]. Water Research, 2022, 216: 118347. doi: 10.1016/j.watres.2022.118347 [88] WU L Y, LI Z Y, CHENG P T, et al. Efficient activation of peracetic acid by mixed sludge derived biochar: Critical role of persistent free radicals[J]. Water Research, 2022, 223: 119013. doi: 10.1016/j.watres.2022.119013 [89] QIU M H, CHEN X F, FAN Y Q, et al. 1.11 ceramic membranes[M]//Comprehensive Membrane Science and Engineering. Amsterdam: Elsevier, 2017: 270-297. [90] ZHAO Y M, ZHAO Y X, YU X, et al. Peracetic acid integrated catalytic ceramic membrane filtration for enhanced membrane fouling control: Performance evaluation and mechanism analysis[J]. Water Research, 2022, 220: 118710. doi: 10.1016/j.watres.2022.118710 [91] WANG S Y, ZHOU S M, TAO Y, et al. Organic peroxides and sulfur dioxide in aerosol: Source of particulate sulfate[J]. Environmental Science & Technology, 2019, 53(18): 10695-10704. [92] LIAO Q B, WANG D N, KE C, et al. Metal-free Fenton-like photocatalysts based on covalent organic frameworks[J]. Applied Catalysis B: Environmental, 2021, 298: 120548. doi: 10.1016/j.apcatb.2021.120548 [93] SHI C J, WANG Y, ZHANG K, et al. Fe-biochar as a safe and efficient catalyst to activate peracetic acid for the removal of the acid orange dye from water[J]. Chemosphere, 2022, 307: 135686. doi: 10.1016/j.chemosphere.2022.135686 [94] 孙义才, 孙德栋, 王佳莹, 等. 铁碳微电解与过氧乙酸联用处理罗丹明B废水[J]. 工业水处理, 2018, 38(12): 93-96. doi: 10.11894/1005-829x.2018.38(12).093 SUN Y C, SUN D D, WANG J Y, et al. Combination of iron-carbon micro-electrolysis and peracetic acid for the treatment of Rhodamine B containing wastewater[J]. Industrial Water Treatment, 2018, 38(12): 93-96. (in Chinese) doi: 10.11894/1005-829x.2018.38(12).093
[95] LI T, JIN L L, ZHU S S, et al. Simultaneous removal of heterocyclic drugs and total nitrogen from biochemical tailwater by peracetic acid/cobalt-loaded ceramsite-based denitrification biofilter[J]. Environmental Pollution, 2022, 314: 120279. doi: 10.1016/j.envpol.2022.120279 [96] ZHANG L, FU Y S, WANG Z R, et al. Removal of diclofenac in water using peracetic acid activated by zero valent copper[J]. Separation and Purification Technology, 2021, 276: 119319. doi: 10.1016/j.seppur.2021.119319 [97] LI Y J, DONG H R, XIAO J Y, et al. Oxidation of sulfamethazine by a novel CuS/calcium peroxide/tetraacetylethylenediamine process: High efficiency and contribution of oxygen-centered radicals[J]. Chemical Engineering Journal, 2022, 446: 136882. doi: 10.1016/j.cej.2022.136882 [98] XIAO J Y, DONG H R, LI Y J, et al. Graphene shell-encapsulated copper-based nanoparticles (G@Cu-NPs) effectively activate peracetic acid for elimination of sulfamethazine in water under neutral condition[J]. Journal of Hazardous Materials, 2023, 441: 129895. doi: 10.1016/j.jhazmat.2022.129895 [99] KATARIA J, VADDU S, RAMA E N, et al. Evaluating the efficacy of peracetic acid on Salmonella and Campylobacter on chicken wings at various pH levels[J]. Poultry Science, 2020, 99(10): 5137-5142. doi: 10.1016/j.psj.2020.06.070 [100] ZHANG C Q, BROWN P J B, HU Z Q. Thermodynamic properties of an emerging chemical disinfectant, peracetic acid[J]. Science of the Total Environment, 2018, 621: 948-959. doi: 10.1016/j.scitotenv.2017.10.195 [101] ZHANG P Y, ZHANG X F, ZHAO X D, et al. Activation of peracetic acid with zero-valent iron for tetracycline abatement: The role of Fe(II) complexation with tetracycline[J]. Journal of Hazardous Materials, 2022, 424: 127653. doi: 10.1016/j.jhazmat.2021.127653 [102] ZHOU F Y, LU C, YAO Y Y, et al. Activated carbon fibers as an effective metal-free catalyst for peracetic acid activation: Implications for the removal of organic pollutants[J]. Chemical Engineering Journal, 2015, 281: 953-960. doi: 10.1016/j.cej.2015.07.034 [103] DAI Y H, CAO H, QI C D, et al. L-cysteine boosted Fe(III)-activated peracetic acid system for sulfamethoxazole degradation: Role of L-cysteine and mechanism[J]. Chemical Engineering Journal, 2023, 451: 138588. doi: 10.1016/j.cej.2022.138588 [104] XIONG Z K, JIANG Y N, WU Z L, et al. Synthesis strategies and emerging mechanisms of metal-organic frameworks for sulfate radical-based advanced oxidation process: A review[J]. Chemical Engineering Journal, 2021, 421: 127863. doi: 10.1016/j.cej.2020.127863 [105] KHARISSOVA O V, KHARISOV B I, GONZÁLEZ L T. Recent trends on density functional theory–assisted calculations of structures and properties of metal–organic frameworks and metal-organic frameworks-derived nanocarbons[J]. Journal of Materials Research, 2020, 35(11): 1424-1438. doi: 10.1557/jmr.2020.109 [106] CERRÓN-CALLE G A, SENFTLE T P, GARCIA-SEGURA S. Strategic tailored design of electrocatalysts for environmental remediation based on density functional theory (DFT) and microkinetic modeling[J]. Current Opinion in Electrochemistry, 2022, 35: 101062. doi: 10.1016/j.coelec.2022.101062 [107] ZOU Y D, WANG X X, KHAN A, et al. Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: A review[J]. Environmental Science & Technology, 2016, 50(14): 7290-7304. [108] ZHANG P P, YANG Y Y, DUAN X G, et al. Density functional theory calculations for insight into the heterocatalyst reactivity and mechanism in persulfate-based advanced oxidation reactions[J]. ACS Catalysis, 2021, 11(17): 11129-11159. doi: 10.1021/acscatal.1c03099 [109] ZHOU G F, ZHOU R Y, LIU Y Q, et al. Efficient degradation of sulfamethoxazole using peracetic acid activated by zero-valent cobalt[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107783. doi: 10.1016/j.jece.2022.107783 [110] MIAO F, YUE X T, CHENG C, et al. Insights into the mechanism of carbocatalysis for peracetic acid activation: Kinetic discernment and active site identification[J]. Water Research, 2022, 227: 119346. doi: 10.1016/j.watres.2022.119346 [111] Da SILVA W P, CARLOS T D, CAVALLINI G S, et al. Peracetic acid: Structural elucidation for applications in wastewater treatment[J]. Water Research, 2020, 168: 115143. doi: 10.1016/j.watres.2019.115143 [112] BALACHANDRAN S, CHARAMBA L V C, MANOLI K, et al. Simultaneous inactivation of multidrug-resistant Escherichia coli and enterococci by peracetic acid in urban wastewater: Exposure-based kinetics and comparison with chlorine[J]. Water Research, 2021, 202: 117403. doi: 10.1016/j.watres.2021.117403 [113] MAFFETTONE R, MANOLI K, SANTORO D, et al. Performic acid disinfection of municipal secondary effluent wastewater: Inactivation of murine norovirus, fecal coliforms, and enterococci[J]. Environmental Science & Technology, 2020, 54(19): 12761-12770. [114] FOSCHI J, BIANCHI G F, TUROLLA A, et al. Disinfection efficiency prediction under dynamic conditions: Application to peracetic acid disinfection of wastewater[J]. Water Research, 2022, 222: 118879. doi: 10.1016/j.watres.2022.118879 [115] MANOLI K, SARATHY S, MAFFETTONE R, et al. Detailed modeling and advanced control for chemical disinfection of secondary effluent wastewater by peracetic acid[J]. Water Research, 2019, 153: 251-262. doi: 10.1016/j.watres.2019.01.022