-
金属有机框架(MOF)材料MIL-125,由法国拉瓦锡材料研究所首先合成并报道[1],而后由法国巴黎东部化学与材料研究所首先合成并报道了氨基功能化的MIL-125-NH2[2]. MIL-125和MIL-125-NH2具有比表面积大、孔径尺寸较小及结构具有柔性特点[3 − 4]. 由于MIL-125和MIL-125-NH2独特的结构和性能,使其在气体存储[5]、吸附与分离[6 − 10]、(光)催化[11 − 12]等领域获得广泛应用. 目前,越来越多的研究人员对MIL-125和MIL-125-NH2的光催化性能产生兴趣. MIL-125因具有较宽带隙(Eg = 3.6 eV)而仅能被紫外光激发,而MIL-125-NH2具有较窄带隙(Eg = 2.6 eV)可被可见光激发[13],这也就使得MIL-125-NH2更加受到科研人员的关注. 但是,MIL-125-NH2自身仍然存在一些问题,使得MIL-125-NH2仍需要与一些功能材料复合以进一步增强其光催化性能. 总体来看,相关研究者将MIL-125或MIL-125-NH2与半导体类型的光催化剂进行复合,使其在可见光照射下表现出较为优异的光催化性能.
本文选择了部分典型MIL-125/ MIL-125-NH2复合光催化剂,介绍其制备的方法,并详细地探讨其光催化还原Cr(Ⅵ)和光催化降解染料、药物及个人护理品(PPCPs)的性能与机理,总结出它们的优势与不足.
MIL-125系列复合材料光催化去除水体污染物
Photocatalytic removal to water pollutants of MIL-125 series composites
-
摘要: 近年来,金属有机框架中MIL-125、MIL-125-NH2及其复合光催化剂去除水体污染物方面获得了广泛关注. 本综述具体说明了MIL-125、MIL-125-NH2及其复合光催化剂的合成方法,着重探讨了相关材料光催化去除各类水体污染物的研究进展. 通过对相应催化剂研究进展的总结,本文对其在光催化去除水体污染物方面的趋势进行了展望.Abstract: In recent years, it has been widely concerned that the water pollutants were photocatalytically removed by MIL-125, MIL-125-NH2 and their composite photocatalysts. This review described the synthesis methods and the photocatalysis performances of MIL-125, MIL-125-NH2 and their composite photocatalysts in detail, in which the research progress of photocatalytic removal toward various water pollutants was highlighted. Based on the summary of the catalysts research progress, the trend of their photocatalytic removal to water pollutants was prospected.
-
Key words:
- MIL-125 /
- composite material /
- photocatalytic /
- reduction of Cr(Ⅵ) /
- degradation of organic pollutants.
-
图 5 (a)TiO2@MIL-125复合材料样品的紫外-可见漫反射谱图,通过嵌入图可得到样品的Eg值;(b)TiO2@MIL-125复合材料样品在可见光照射下的光催化性能;(c)MT-2(15 mg催化剂,50 mL Cr(Ⅵ),5 mg·L−1)的循环实验;(d)Cr(Ⅵ)的还原机理图[14]
Figure 5. (a) Ultraviolet-visible diffuse reflection spectra of TiO2@MIL-125 composite samples, and the Eg value of the sample can be obtained by the embedded diagram; (b) The photocatalytic properties of TiO2@MIL-125 composite samples under visible light irradiation; (c) Cycle experiment of MT-2 (15 mg catalyst, 50 mL Cr (Ⅵ), 5 mg·L−1); (d) Reduction mechanism diagram of Cr (Ⅵ) [14]
图 7 (a)MIL-125-NH2@Ag/AgCl复合材料样品在可见光照射下的光催化性能;(b)50MN@AAC复合材料样品的光电流谱图;(c)50MN@AAC(40 mg催化剂,40 mL Cr(Ⅵ),10 mg·L−1)的循环实验;(d)Cr(Ⅵ)的还原机理图[16]
Figure 7. (a) Photocatalytic performance of MIL-125-NH2@Ag/AgCl composite samples under visible light irradiation;(b) Photocurrent spectra of 50MN@AAC composite samples;(c) Cycle experiment of 50MN@AAC (40 mg catalyst, 40 mL Cr (Ⅵ)),(d) Reduction mechanism diagram of Cr (Ⅵ)[16]
图 9 (a)Ag/MIL‐125(3% Ag)复合材料样品在可见光照射下的光催化性能;(b)Ag/MIL‐125(3% Ag)复合材料样品(20 mg催化剂,20 mL RhB,10 mg·L−1)的循环实验;(c)Ag/MIL‐125(3% Ag)复合材料样品光催化降解RhB的活性物质捕捉实验对RhB降解比率的影响;(d)Ag/MIL‐125(3% Ag)催化降解RhB的机理图[22]
Figure 9. (a) Photocatalytic properties of Ag/MIL‐125 (3% Ag) composites under visible light irradiation;(b) Cycle experiment of Ag/MIL‐125 (3% Ag) composite sample (20 mg catalyst, 20 mL RhB, 10 mg·L−1); (c) The effect of the degradation ratio of RhB by capture experiments for active substance on the photocatalytic degradation of RhB by Ag/MIL‐125 (3% Ag) composite samples; (d) Catalytic degradation mechanism of RhB by Ag/MIL‐125 (3% Ag) composites[22]
图 11 (a)Ag3PO4@NH2-MIL-125复合材料样品在可见光照射下的光催化性能;(b)Ag3PO4@ NH2-MIL-125(50 mg催化剂,100 mL MB,10 mg·L−1)的循环实验;(c)Ag3PO4@NH2-MIL-125复合材料样品光催化降解MB的活性物质捕捉实验对MB降解速率常数的影响;(d)pH = 0时Ag3PO4和NH2-MIL-125相对于标准氢电极(NHE)的能带结构[20]
Figure 11. (a) The photocatalytic properties of Ag3PO4@NH2-MIL-125 composite samples under visible light irradiation; (b) Cyclic experiment of Ag3PO4@NH2-MIL-125 (50 mg catalyst, 100 mL MB, 10 mg·L−1); (c) The effect of capture experiments for active substance on the degradation rate constant of MB for the photocatalytic degradation of MB by Ag3PO4@NH2-MIL-125 composite samples; (d) Band structure of Ag3PO4 and NH2-MIL-125 related to standard hydrogen electrode (NHE) at pH = 0[20]
图 13 (a)MIL-125ML/gCN复合材料样品在可见光照射下的光催化性能;(b)MIL-125ML/gCN-20(30 mg催化剂,100 mL 头孢克肟,20 mg·L−1)的循环实验;(c)MIL-125ML/gCN-20的投加量对其在可见光照射下的光催化性能的影响;(d)活性物质捕捉实验对MIL-125ML/gCN-20光催化降解头孢克肟的的影响;(e)MIL-125ML/gCN-20复合材料光催化降解头孢克肟的机理[52]
Figure 13. (a) Photocatalytic performance of MIL-125ML/gCN composites under visible light irradiation; (b) Cycle experiment of MIL-125ML/gCN-20 (30 mg catalyst, 100 mL cefixime, 20 mg·L−1); (c) The effect of dosage of MIL-125ML/gCN-20 on its photocatalytic performance under visible light irradiation; (d) The effect of capture experiment for active substance on the photocatalytic degradation of cefixime by MIL-125ML/gCN-20; (e) The photocatalytic degradation mechanism of cefixime by MIL-125ML/gCN-20 composite[52]
图 15 (a)NH2-MIL-125@ ZnIn2S4复合材料样品在可见光照射下的光催化性能;(b)NM(2%)@ZIS(50 mg催化剂,50 mL 四环素,20 mg·L−1)的循环实验;(c)NM(2%)@ZIS光催化降解四环素的活性物质捕捉实验对四环素降解的影响;(d)NM(2%)@ZIS复合材料光催化降解四环素的机理[50]
Figure 15. (a) The photocatalytic performance of NH2-MIL-125@ZnIn2S4 composite under visible light irradiation; (b) The cyclic experiment of NM (2%) @ZIS (50 mg catalyst, 50 mL tetracycline, 20 mg·L−1); (c) The effect of capture experiment for active substance on the photocatalytic tetracycline degradation by NM (2%) @ZIS; (d) Photocatalytic degradation mechanism of tetracycline by NM (2%) @ZIS composites[50]
表 1 MIL-125系列复合材料光催化去除水体污染物的典型实例
Table 1. Typical examples of photocatalytic removal to water pollutants by MIL-125 series composites
金属有机框架
Metal-organic frameworks复合组分
Composite component污染物
Pollutants初始浓度/(mg·L−1)
Initial concentration最优pH
Optimal pH反应时间/min
Reaction time去除率/%
Removal efficiency参考文献
ReferencesMIL-125 TiO2 六价铬 5 2 80 100 [14] MIL-125-NH2 Bi2S3 六价铬 10 3 90 100 [15] MIL-125-NH2 Ag/AgCl 六价铬 40 6 120 98.4 [16] MIL-125-NH2 Ag/Ag3PO4 六价铬 10 2 70 100 [17] MIL-125-NH2 PPynt 六价铬 10 2 60 99.02 [18] MIL-125 Cr-III 亚甲基蓝 20 — 120 99 [19] MIL-125-NH2 Ag3PO4 亚甲基蓝 10 — 50 100 [20] MIL-125-NH2 Ag3VO4 亚甲基蓝 5 — 60 96.4 [21] MIL-125 Ag 罗丹明B 10 — 40 95 [22] MIL-125 Ag/rGO 罗丹明B 50 — 50 95.7 [23] MIL-125 BiVO4 罗丹明B 10 — 180 92 [24] MIL-125 MnO2 罗丹明B 10 — 80 100 [25] MIL-125 ZnIn2S4 罗丹明B 15 — 50 97.7 [26] MIL-125 NiS 罗丹明B 15 — 60 98.5 [27] MIL-125-NH2 BiOBr 罗丹明B 20 — 100 96 [28] MIL-125-NH2 PHIK 罗丹明B 100 — 120 94 [29] MIL-125-NH2 CdS 罗丹明B 180 — 120 97 [30] MIL-125-NH2 CQDs 罗丹明B 10 — 120 100 [31] MIL-125-NH2 CoSx 罗丹明B 20 — 45 95.4 [32] MIL-125-NH2 Bi2WO6 罗丹明B 10 — 50 98 [33] MIL-125-NH2 BiOI 罗丹明B 40 — 240 99 [34] MIL-125-NH2 SnS2 罗丹明B 40 — 80 90.5 [35] MIL-125-NH2 CdS/石墨烯 罗丹明B 10 — 30 95 [36] MIL-125-NH2 Fe3+ 罗丹明B 14.4 4 120 82.4 [37] MIL-125-NH2 g-C3N4 罗丹明B 10 — 120 96.4 [38] MIL-125 Zn2GeO4 罗丹明6G 10 — 90 100 [39] MIL-125-NH2 Cu 甲基橙 10 — 90 99 [40] MIL-125-NH2 Ag/AgBr 甲基橙 20 — 120 70 [41] MIL-125-NH2 Ca/TiO2 甲基橙 20 5 120 87.29 [42] MIL-125 In2S3 四环素 46 3.3 60 63.3 [43] MIL-125 CQDs 四环素 20 5 240 90 [44] MIL-125 Bi2WO6 四环素 20 — 80 73 [45] MIL-125-NH2 BiOCl 四环素 20 — 120 78 [46] MIL-125-NH2 Bi2WO6 四环素 20 — 120 77.8 [47] MIL-125-NH2 TPE-2NH2 四环素 30 7 120 90 [48] MIL-125-NH2 BiOBr 四环素 25 7 90 88 [49] MIL-125-NH2 Znln2S4 四环素 20 — 80 92.8 [50] MIL-125 BiOBr 环丙沙星 10 — 80 91 [51] MIL-125 g-C3N4 头孢克肟 20 4 120 98 [52] MIL-125-NH2 ZnO 左氧氟沙星 10 7 240 90 [53] MIL-125-NH2 Pt 对乙酰氨基酚 5 — 180 100 [54] MIL-125-NH2 Ag,CdS 酮洛芬 10 4 180 94.2 [55] MIL-125-NH2 Bi2MoO6 二氯酚 10 — 180 93.28 [56] MIL-125-NH2 g-C3N4 双氯芬酸 10 — 120 100 [57] MIL-125-NH2 ZIF-67 硝基苯酚 10 — 60 100 [58] 注:MIL-125-NH2与NH2-MIL-125两种写法都正确. PHIK是聚庚氨酰亚胺钾的缩写. TPE-2NH2是一种双氨基多苯环有机配体的缩写. CQDs代表碳量子点. PPynt代表聚吡咯碳纳米管. “—”表示原文未提及. Note: Both MIL-125-NH2 and NH2-MIL-125 are correct. PHIK stands for potassium poly (heptazine imide). TPE-2NH2 is short for an organic ligand with two aminos and some phenyl rings. CQDs stands for carbon quantum dots. PPynt stands for polypyrrole carbon nanotubes. "—" indicates that it is not mentioned in the original article. -
[1] DAN-HARDI M, SERRE C, FROT T, et al. A new photoactive crystalline highly porous titanium(IV) dicarboxylate[J]. Journal of the American Chemical Society, 2009, 131(31): 10857-10859. doi: 10.1021/ja903726m [2] ZLOTEA C, PHANON D, MAZAJ M, et al. Effect of NH2 and CF3 functionalization on the hydrogen sorption properties of MOFs[J]. Dalton Transactions, 2011, 40(18): 4879-4881. doi: 10.1039/c1dt10115c [3] REN X Y, WANG C C, LI Y, et al. Ag(I) removal and recovery from wastewater adopting NH2-MIL-125 as efficient adsorbent: A 3Rs (reduce, recycle and reuse) approach and practice[J]. Chemical Engineering Journal, 2022, 442: 136306. doi: 10.1016/j.cej.2022.136306 [4] KIM S N, KIM J, KIM H Y, et al. Adsorption/catalytic properties of MIL-125 and NH2-MIL-125[J]. Catalysis Today, 2013, 204: 85-93. doi: 10.1016/j.cattod.2012.08.014 [5] ZHANG X, LIU Y F, PANG Y P, et al. Significantly improved kinetics, reversibility and cycling stability for hydrogen storage in NaAlH4 with the Ti-incorporated metal organic framework MIL-125(Ti)[J]. Journal of Materials Chemistry A, 2014, 2(6): 1847-1854. doi: 10.1039/C3TA14202G [6] MOREIRA M A, SANTOS J C, FERREIRA A F P, et al. Toward understanding the influence of ethylbenzene in p-xylene selectivity of the porous titanium amino terephthalate MIL-125(Ti): Adsorption equilibrium and separation of xylene isomers[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2012, 28(7): 3494-3502. doi: 10.1021/la204969t [7] KIM B, LEE Y R, KIM H Y, et al. Adsorption of volatile organic compounds over MIL-125-NH2[J]. Polyhedron, 2018, 154: 343-349. doi: 10.1016/j.poly.2018.08.010 [8] LIANG X X, WANG N, QU Y L, et al. Facile preparation of metal-organic framework (MIL-125)/chitosan beads for adsorption of Pb(II) from aqueous solutions[J]. Molecules, 2018, 23(7): 1524. doi: 10.3390/molecules23071524 [9] JIANG Q S, HAN Z L, YU X B, et al. NH2-MIL-125 (Ti)/biochar fibers for enhanced direct dyes adsorption[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106636. doi: 10.1016/j.jece.2021.106636 [10] LIU Z M, WANG C, WU Y C, et al. Synthesis of uniform-sized and microporous MIL-125(Ti) to boost arsenic removal by chemical adsorption[J]. Polyhedron, 2021, 196: 114980. doi: 10.1016/j.poly.2020.114980 [11] HE Y Z, LI H F, WU J, et al. In-situ formation of Au nanoparticles with surface plasmon resonance confined in the framework of Cu ions doped NH2-MIL-125(Ti) to enhance photocatalytic hydrogen production and NO removal[J]. Applied Surface Science, 2022, 604: 154641. doi: 10.1016/j.apsusc.2022.154641 [12] ZHANG X D, YUE K, RAO R Z, et al. Synthesis of acidic MIL-125 from plastic waste: Significant contribution of N orbital for efficient photocatalytic degradation of chlorobenzene and toluene[J]. Applied Catalysis B: Environmental, 2022, 310: 121300. doi: 10.1016/j.apcatb.2022.121300 [13] HENDON C H, TIANA D, FONTECAVE M, et al. Engineering the optical response of the titanium-MIL-125 metal–organic framework through ligand functionalization[J]. Journal of the American Chemical Society, 2013, 135(30): 10942-10945. doi: 10.1021/ja405350u [14] LI Y X, WANG C C, FU H F, et al. Marigold-flower-like TiO2/MIL-125 core−shell composite for enhanced photocatalytic Cr(VI) reduction[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105451. doi: 10.1016/j.jece.2021.105451 [15] WANG M H, YANG L Y, YUAN J Y, et al. Heterostructured Bi2S3@NH2-MIL-125(Ti) nanocomposite as a bifunctional photocatalyst for Cr(vi) reduction and rhodamine B degradation under visible light[J]. RSC Advances, 2018, 8(22): 12459-12470. doi: 10.1039/C8RA00882E [16] QIU J H, LI M, WANG H T, et al. Integration of plasmonic effect into MIL-125-NH2: An ultra-efficient photocatalyst for simultaneous removal of ternary system pollutants[J]. Chemosphere, 2020, 242: 125197. doi: 10.1016/j.chemosphere.2019.125197 [17] ZHOU Y C, WANG P, FU H F, et al. Ternary Ag/Ag3PO4/MIL-125-NH2 Z-scheme heterojunction for boosted photocatalytic Cr(Ⅵ) cleanup under visible light[J]. Chinese Chemical Letters, 2020, 31(10): 2645-2650. doi: 10.1016/j.cclet.2020.02.048 [18] CHOE J, YANG X A, YU J, et al. Visible- light responsive PPynt@NH2-MIL-125 nanocomposite for efficient reduction of Cr(Ⅵ)[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636: 128147. doi: 10.1016/j.colsurfa.2021.128147 [19] ABDELHAMEED R M, SIMÕES M M Q, SILVA A M S, et al. Enhanced photocatalytic activity of MIL-125 by post-synthetic modification with CrIII and Ag nanoparticles[J]. Chemistry - A European Journal, 2015, 21(31): 11072-11081. doi: 10.1002/chem.201500808 [20] ABDELHAMEED R M, TOBALDI D M, KARMAOUI M. Engineering highly effective and stable nanocomposite photocatalyst based on NH2-MIL-125 encirclement with Ag3PO4 nanoparticles[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 351: 50-58. doi: 10.1016/j.jphotochem.2017.10.011 [21] EMAM H E, AHMED H B, GOMAA E, et al. Doping of silver vanadate and silver tungstate nanoparticles for enhancement the photocatalytic activity of MIL-125-NH2 in dye degradation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 383: 111986. doi: 10.1016/j.jphotochem.2019.111986 [22] GUO H X, GUO D, ZHENG Z S, et al. Visible-light photocatalytic activity of Ag@MIL-125(Ti) microspheres[J]. Applied Organometallic Chemistry, 2015, 29(9): 618-623. doi: 10.1002/aoc.3341 [23] YUAN X Z, WANG H, WU Y, et al. One-pot self-assembly and photoreduction synthesis of silver nanoparticle-decorated reduced graphene oxide/MIL-125(Ti) photocatalyst with improved visible light photocatalytic activity[J]. Applied Organometallic Chemistry, 2016, 30(5): 289-296. doi: 10.1002/aoc.3430 [24] YANG Z Q, DING J E, FENG J N, et al. Preparation of BiVO4/MIL-125(Ti) composite with enhanced visible-light photocatalytic activity for dye degradation[J]. Applied Organometallic Chemistry, 2018, 32(4): e4285. doi: 10.1002/aoc.4285 [25] HAROON H, MAJID K. MnO2 nanosheets supported metal–organic framework MIL-125(Ti) towards efficient visible light photocatalysis: Kinetic and mechanistic study[J]. Chemical Physics Letters, 2020, 745: 137283. doi: 10.1016/j.cplett.2020.137283 [26] HUANG F, LI Q, LUO S, et al. Preparation and photocatalytic activity of ZnIn2S4/MIL-125 nanocomposites [J]. Journal of the Chinese Ceramic Society, 2021, 49 (6): 1167-1175. [27] LI Q, HUANG F, LI D K, et al. Synthesis of NiS/MIL-125 hybrids with expanded light absorption, fast carrier transfer and enhanced carrier separation[J]. Materials Research Bulletin, 2021, 133: 111058. doi: 10.1016/j.materresbull.2020.111058 [28] ZHU S R, LIU P F, WU M K, et al. Enhanced photocatalytic performance of BiOBr/NH2-MIL-125(Ti) composite for dye degradation under visible light[J]. Dalton Transactions, 2016, 45(43): 17521-17529. doi: 10.1039/C6DT02912D [29] RODRÍGUEZ N A, SAVATEEV A, GRELA M A, et al. Facile synthesis of potassium poly(heptazine imide) (PHIK)/Ti-based metal–organic framework (MIL-125-NH2) composites for photocatalytic applications[J]. ACS Applied Materials & Interfaces, 2017, 9(27): 22941-22949. [30] WANG H, CUI P H, SHI J X, et al. Controllable self-assembly of[email protected](Ti) heterostructure with enhanced photodegradation efficiency for organic pollutants through synergistic effect[J]. Materials Science in Semiconductor Processing, 2019, 97: 91-100. doi: 10.1016/j.mssp.2019.03.016 [31] WANG Q J, WANG G L, LIANG X F, et al. Supporting carbon quantum dots on NH2-MIL-125 for enhanced photocatalytic degradation of organic pollutants under a broad spectrum irradiation[J]. Applied Surface Science, 2019, 467/468: 320-327. doi: 10.1016/j.apsusc.2018.10.165 [32] LIU S J, ZOU Q C, MA Y, et al. A novel amorphous CoS x/NH2-MIL-125 composite for photocatalytic degradation of rhodamine B under visible light[J]. Journal of Materials Science, 2020, 55(34): 16171-16183. doi: 10.1007/s10853-020-05210-4 [33] XU Y F, ZHOU Y, DENG Y H, et al. Synthesis of Bi2WO6@NH2-MIL-125(Ti): A S-scheme photocatalyst with enhanced visible light catalytic activity[J]. Catalysis Letters, 2020, 150(12): 3470-3480. doi: 10.1007/s10562-020-03258-0 [34] DU J A, ZHANG J X, YANG T Y, et al. The research on the construction and the photocatalytic performance of BiOI/NH2-MIL-125(Ti) composite[J]. Catalysts, 2020, 11(1): 24. doi: 10.3390/catal11010024 [35] LING L Q, TU Y, LONG X Y, et al. The one-step synthesis of multiphase SnS2 modified by NH2-MIL-125(Ti) with effective photocatalytic performance for Rhodamine B under visible light[J]. Optical Materials, 2021, 111: 110564. doi: 10.1016/j.optmat.2020.110564 [36] NIVETHA R, GOTHANDAPANI K, RAGHAVAN V, et al. NH2-MIL-125(Ti) doped CdS/Graphene composite as electro and photo catalyst in basic medium under light irradiation[J]. Environmental Research, 2021, 200: 111719. doi: 10.1016/j.envres.2021.111719 [37] NGUYEN THI H T, TRAN THI K N, HOANG N B, et al. Enhanced degradation of rhodamine B by metallic organic frameworks based on NH2-MIL-125(Ti) under visible light[J]. Materials, 2021, 14(24): 7741. doi: 10.3390/ma14247741 [38] WANG J, CHEN C C, ZHAO Z H, et al. Construction of N-doped g-C3N4/NH2-MIL-125(Ti) S-scheme heterojunction for enhanced photocatalytic degradation of organic pollutants: DFT calculation and mechanism study[J]. Journal of Alloys and Compounds, 2022, 922: 166288. doi: 10.1016/j.jallcom.2022.166288 [39] KANG Q M, REN T J, ZHAO W Q, et al. Preparation of Zn2GeO4 nanosheets with MIL-125(Ti) hybrid photocatalyst for improved photodegradation of organic pollutants[J]. Materials Research Bulletin, 2021, 133: 111013. doi: 10.1016/j.materresbull.2020.111013 [40] AO D, ZHANG J, LIU H. Visible-light-driven photocatalytic degradation of pollutants over Cu-doped NH2-MIL-125(Ti)[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364: 524-533. doi: 10.1016/j.jphotochem.2018.06.044 [41] WU D Y, HAN L. Fabrication of novel Ag/AgBr/NH2-MIL-125(Ti) nanocomposites with enhanced visible-light photocatalytic activity[J]. Materials Research Express, 2019, 6(12): 125501. doi: 10.1088/2053-1591/ab540a [42] AHMADPOUR N, SAYADI M H, HOMAEIGOHAR S. Correction: A hierarchical Ca/TiO2/NH2-MIL-125 nanocomposite photocatalyst for solar visible light induced photodegradation of organic dye pollutants in water[J]. RSC Advances, 2023, 13(29): 19661. doi: 10.1039/D3RA90057F [43] WANG H, YUAN X Z, WU Y, et al. in situ synthesis of In2S3@MIL-125(Ti) core-shell microparticle for the removal of tetracycline from wastewater by integrated adsorption and visible-light-driven photocatalysis[J]. Applied Catalysis B: Environmental, 2016, 186: 19-29. doi: 10.1016/j.apcatb.2015.12.041 [44] JIANG E H, LIU X T, CHE H N, et al. Visible-light-driven Ag/Bi3O4Cl nanocomposite photocatalyst with enhanced photocatalytic activity for degradation of tetracycline[J]. RSC Advances, 2018, 8(65): 37200-37207. doi: 10.1039/C8RA07482H [45] YIN S, CHEN Y, GAO C, et al. In-situ preparation of MIL-125(Ti)/Bi2WO6 photocatalyst with accelerating charge carriers for the photodegradation of tetracycline hydrochloride[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 387: 112149. doi: 10.1016/j.jphotochem.2019.112149 [46] HU Q S, DI J, WANG B, et al. In-situ preparation of NH2-MIL-125(Ti)/BiOCl composite with accelerating charge carriers for boosting visible light photocatalytic activity[J]. Applied Surface Science, 2019, 466: 525-534. doi: 10.1016/j.apsusc.2018.10.020 [47] YIN S, CHEN Y, HU Q S, et al. Construction of NH2-MIL-125(Ti) nanoplates modified Bi2WO6 microspheres with boosted visible-light photocatalytic activity[J]. Research on Chemical Intermediates, 2020, 46(7): 3311-3326. doi: 10.1007/s11164-020-04132-9 [48] SONG X L, WANG Y, ZHU T, et al. Facile synthesis a novel core-shell amino functionalized MIL-125(Ti) micro-photocatalyst for enhanced degradation of tetracycline hydrochloride under visible light[J]. Chemical Engineering Journal, 2021, 416: 129126. doi: 10.1016/j.cej.2021.129126 [49] WANG Y, FENG S, WU W, et al. Ionic liquid-assisted solvothermal construction of NH2-MIL-125(Ti)/BiOBr heterojunction for removing tetracycline under visible light[J]. Optical Materials, 2022, 123: 111817. doi: 10.1016/j.optmat.2021.111817 [50] ZHU C Z, HE Q Y, YAO H Q, et al. Amino-functionalized NH2-MIL-125(Ti)-decorated hierarchical flowerlike Znln2S4 for boosted visible-light photocatalytic degradation[J]. Environmental Research, 2022, 204: 112368. doi: 10.1016/j.envres.2021.112368 [51] YANG J, LIU T Y, ZHOU H F, et al. In situ conversion of typical type-I MIL-125(Ti)/BiOBr into type-Ⅱ heterostructure photocatalyst via MOF self-sacrifice: Photocatalytic mechanism and theoretical study[J]. Journal of Alloys and Compounds, 2022, 900: 163440. doi: 10.1016/j.jallcom.2021.163440 [52] SALIMI M, ESRAFILI A, JONIDI JAFARI A, et al. Photocatalytic degradation of cefixime with MIL-125(Ti)-mixed linker decorated by g-C3N4 under solar driven light irradiation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 582: 123874. doi: 10.1016/j.colsurfa.2019.123874 [53] KAUR M, MEHTA S K, DEVI P, et al. NH2-MIL-125(Ti) nanoparticles decorated over ZnO microrods: An efficient bifunctional material for degradation of levofloxacin and detection of Cu(II)[J]. Journal of Alloys and Compounds, 2022, 928: 166909. doi: 10.1016/j.jallcom.2022.166909 [54] MUELAS-RAMOS V, BELVER C, RODRIGUEZ J J, et al. Synthesis of noble metal-decorated NH2-MIL-125 titanium MOF for the photocatalytic degradation of acetaminophen under solar irradiation[J]. Separation and Purification Technology, 2021, 272: 118896. doi: 10.1016/j.seppur.2021.118896 [55] ZHENG X N, LI Y, YANG J, et al. Z-Scheme heterojunction Ag/NH2-MIL-125(Ti)/CdS with enhanced photocatalytic activity for ketoprofen degradation: Mechanism and intermediates[J]. Chemical Engineering Journal, 2021, 422: 130105. doi: 10.1016/j.cej.2021.130105 [56] ZHANG S Y, DU M, KUANG J Y, et al. Surface-defect-rich mesoporous NH2-MIL-125 (Ti)@Bi2MoO6 core-shell heterojunction with improved charge separation and enhanced visible-light-driven photocatalytic performance[J]. Journal of Colloid and Interface Science, 2019, 554: 324-334. doi: 10.1016/j.jcis.2019.07.021 [57] MUELAS-RAMOS V, SAMPAIO M J, SILVA C G, et al. Degradation of diclofenac in water under LED irradiation using combined g-C3N4/NH2-MIL-125 photocatalysts[J]. Journal of Hazardous Materials, 2021, 416: 126199. doi: 10.1016/j.jhazmat.2021.126199 [58] ABDELHAMEED R M, EL-SHAHAT M. Fabrication of Au@CeO2nanocomposite with enhanced visible light photoreduction activity[J]. Journal of Environmental Chemical Engineering, 2019, 7(3): 103194. doi: 10.1016/j.jece.2019.103194 [59] XU C, ZHANG W, CHEN Y T, et al. Synthesis of NH2-MIL-125/NH2-MIL-125-P@TiO2 and its adsorption to uranyl ions[J]. ChemistrySelect, 2019, 4(43): 12801-12806. doi: 10.1002/slct.201902745 [60] WANG C C, DU X D, LI J, et al. Photocatalytic Cr(Ⅵ) reduction in metal-organic frameworks: A mini-review[J]. Applied Catalysis B: Environmental, 2016, 193: 198-216. doi: 10.1016/j.apcatb.2016.04.030 [61] BESHARAT F, AHMADPOOR F, NASROLLAHZADEH M. Graphene-based (nano)catalysts for the reduction of Cr(Ⅵ): A review[J]. Journal of Molecular Liquids, 2021, 334: 116123. doi: 10.1016/j.molliq.2021.116123 [62] STERN C M, JEGEDE T O, HULSE V A, et al. Electrochemical reduction of Cr(Ⅵ) in water: Lessons learned from fundamental studies and applications[J]. Chemical Society Reviews, 2021, 50(3): 1642-1667. doi: 10.1039/D0CS01165G [63] LI X, HE J F, ZHANG W L, et al. Ag nanoparticles interlayered Fe3O4/Ag/m(TiO2-ZrO2) magnetic photocatalysts with enhanced stability and photocatalytic performance for Cr(Ⅵ) reduction[J]. Applied Surface Science, 2023, 607: 155076. doi: 10.1016/j.apsusc.2022.155076 [64] LIU C R, XIAO H, LIU Y, et al. Internal electric field induced photocarriers separation of nickel-doped pyrite/pyrite homojunction with rich sulfur vacancies for superior Cr(Ⅵ) reduction[J]. Journal of Colloid and Interface Science, 2023, 629: 847-858. doi: 10.1016/j.jcis.2022.09.129 [65] SUN H M, WANG L, ZHANG Y, et al. Photocatalytic reduction performance and mechanisms of Cr(VI) by illite-g-C3N4 under visible light[J]. Applied Surface Science, 2023, 608: 155226. doi: 10.1016/j.apsusc.2022.155226 [66] KONSTANTINOU I K, ALBANIS T A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations[J]. Applied Catalysis B: Environmental, 2004, 49(1): 1-14. doi: 10.1016/j.apcatb.2003.11.010 [67] WAGHCHAURE R H, ADOLE V A, JAGDALE B S. Photocatalytic degradation of methylene blue, rhodamine B, methyl orange and Eriochrome black T dyes by modified ZnO nanocatalysts: A concise review[J]. Inorganic Chemistry Communications, 2022, 143: 109764. doi: 10.1016/j.inoche.2022.109764 [68] KUMAR A, KHAN M, HE J H, et al. Recent developments and challenges in practical application of visible-light-driven TiO2-based heterojunctions for PPCP degradation: A critical review[J]. Water Research, 2020, 170: 115356. doi: 10.1016/j.watres.2019.115356 [69] McKAY S, TSCHARKE B, HAWKER D, et al. Calibration and validation of a microporous polyethylene passive sampler for quantitative estimation of illicit drug and pharmaceutical and personal care product (PPCP) concentrations in wastewater influent[J]. Science of the Total Environment, 2020, 704: 135891. doi: 10.1016/j.scitotenv.2019.135891 [70] ZHANG S C, TAN M Y, DU S W, et al. Base-metal oxide semiconductor electrodes for PPCP degradation: Ti-doped α-Fe2O3 for sulfosalicylic acid oxidation as an example[J]. Chemosphere, 2023, 313: 137354. doi: 10.1016/j.chemosphere.2022.137354