[1] |
DAN-HARDI M, SERRE C, FROT T, et al. A new photoactive crystalline highly porous titanium(IV) dicarboxylate[J]. Journal of the American Chemical Society, 2009, 131(31): 10857-10859. doi: 10.1021/ja903726m
|
[2] |
ZLOTEA C, PHANON D, MAZAJ M, et al. Effect of NH2 and CF3 functionalization on the hydrogen sorption properties of MOFs[J]. Dalton Transactions, 2011, 40(18): 4879-4881. doi: 10.1039/c1dt10115c
|
[3] |
REN X Y, WANG C C, LI Y, et al. Ag(I) removal and recovery from wastewater adopting NH2-MIL-125 as efficient adsorbent: A 3Rs (reduce, recycle and reuse) approach and practice[J]. Chemical Engineering Journal, 2022, 442: 136306. doi: 10.1016/j.cej.2022.136306
|
[4] |
KIM S N, KIM J, KIM H Y, et al. Adsorption/catalytic properties of MIL-125 and NH2-MIL-125[J]. Catalysis Today, 2013, 204: 85-93. doi: 10.1016/j.cattod.2012.08.014
|
[5] |
ZHANG X, LIU Y F, PANG Y P, et al. Significantly improved kinetics, reversibility and cycling stability for hydrogen storage in NaAlH4 with the Ti-incorporated metal organic framework MIL-125(Ti)[J]. Journal of Materials Chemistry A, 2014, 2(6): 1847-1854. doi: 10.1039/C3TA14202G
|
[6] |
MOREIRA M A, SANTOS J C, FERREIRA A F P, et al. Toward understanding the influence of ethylbenzene in p-xylene selectivity of the porous titanium amino terephthalate MIL-125(Ti): Adsorption equilibrium and separation of xylene isomers[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2012, 28(7): 3494-3502. doi: 10.1021/la204969t
|
[7] |
KIM B, LEE Y R, KIM H Y, et al. Adsorption of volatile organic compounds over MIL-125-NH2[J]. Polyhedron, 2018, 154: 343-349. doi: 10.1016/j.poly.2018.08.010
|
[8] |
LIANG X X, WANG N, QU Y L, et al. Facile preparation of metal-organic framework (MIL-125)/chitosan beads for adsorption of Pb(II) from aqueous solutions[J]. Molecules, 2018, 23(7): 1524. doi: 10.3390/molecules23071524
|
[9] |
JIANG Q S, HAN Z L, YU X B, et al. NH2-MIL-125 (Ti)/biochar fibers for enhanced direct dyes adsorption[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106636. doi: 10.1016/j.jece.2021.106636
|
[10] |
LIU Z M, WANG C, WU Y C, et al. Synthesis of uniform-sized and microporous MIL-125(Ti) to boost arsenic removal by chemical adsorption[J]. Polyhedron, 2021, 196: 114980. doi: 10.1016/j.poly.2020.114980
|
[11] |
HE Y Z, LI H F, WU J, et al. In-situ formation of Au nanoparticles with surface plasmon resonance confined in the framework of Cu ions doped NH2-MIL-125(Ti) to enhance photocatalytic hydrogen production and NO removal[J]. Applied Surface Science, 2022, 604: 154641. doi: 10.1016/j.apsusc.2022.154641
|
[12] |
ZHANG X D, YUE K, RAO R Z, et al. Synthesis of acidic MIL-125 from plastic waste: Significant contribution of N orbital for efficient photocatalytic degradation of chlorobenzene and toluene[J]. Applied Catalysis B: Environmental, 2022, 310: 121300. doi: 10.1016/j.apcatb.2022.121300
|
[13] |
HENDON C H, TIANA D, FONTECAVE M, et al. Engineering the optical response of the titanium-MIL-125 metal–organic framework through ligand functionalization[J]. Journal of the American Chemical Society, 2013, 135(30): 10942-10945. doi: 10.1021/ja405350u
|
[14] |
LI Y X, WANG C C, FU H F, et al. Marigold-flower-like TiO2/MIL-125 core−shell composite for enhanced photocatalytic Cr(VI) reduction[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105451. doi: 10.1016/j.jece.2021.105451
|
[15] |
WANG M H, YANG L Y, YUAN J Y, et al. Heterostructured Bi2S3@NH2-MIL-125(Ti) nanocomposite as a bifunctional photocatalyst for Cr(vi) reduction and rhodamine B degradation under visible light[J]. RSC Advances, 2018, 8(22): 12459-12470. doi: 10.1039/C8RA00882E
|
[16] |
QIU J H, LI M, WANG H T, et al. Integration of plasmonic effect into MIL-125-NH2: An ultra-efficient photocatalyst for simultaneous removal of ternary system pollutants[J]. Chemosphere, 2020, 242: 125197. doi: 10.1016/j.chemosphere.2019.125197
|
[17] |
ZHOU Y C, WANG P, FU H F, et al. Ternary Ag/Ag3PO4/MIL-125-NH2 Z-scheme heterojunction for boosted photocatalytic Cr(Ⅵ) cleanup under visible light[J]. Chinese Chemical Letters, 2020, 31(10): 2645-2650. doi: 10.1016/j.cclet.2020.02.048
|
[18] |
CHOE J, YANG X A, YU J, et al. Visible- light responsive PPynt@NH2-MIL-125 nanocomposite for efficient reduction of Cr(Ⅵ)[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636: 128147. doi: 10.1016/j.colsurfa.2021.128147
|
[19] |
ABDELHAMEED R M, SIMÕES M M Q, SILVA A M S, et al. Enhanced photocatalytic activity of MIL-125 by post-synthetic modification with CrIII and Ag nanoparticles[J]. Chemistry - A European Journal, 2015, 21(31): 11072-11081. doi: 10.1002/chem.201500808
|
[20] |
ABDELHAMEED R M, TOBALDI D M, KARMAOUI M. Engineering highly effective and stable nanocomposite photocatalyst based on NH2-MIL-125 encirclement with Ag3PO4 nanoparticles[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 351: 50-58. doi: 10.1016/j.jphotochem.2017.10.011
|
[21] |
EMAM H E, AHMED H B, GOMAA E, et al. Doping of silver vanadate and silver tungstate nanoparticles for enhancement the photocatalytic activity of MIL-125-NH2 in dye degradation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 383: 111986. doi: 10.1016/j.jphotochem.2019.111986
|
[22] |
GUO H X, GUO D, ZHENG Z S, et al. Visible-light photocatalytic activity of Ag@MIL-125(Ti) microspheres[J]. Applied Organometallic Chemistry, 2015, 29(9): 618-623. doi: 10.1002/aoc.3341
|
[23] |
YUAN X Z, WANG H, WU Y, et al. One-pot self-assembly and photoreduction synthesis of silver nanoparticle-decorated reduced graphene oxide/MIL-125(Ti) photocatalyst with improved visible light photocatalytic activity[J]. Applied Organometallic Chemistry, 2016, 30(5): 289-296. doi: 10.1002/aoc.3430
|
[24] |
YANG Z Q, DING J E, FENG J N, et al. Preparation of BiVO4/MIL-125(Ti) composite with enhanced visible-light photocatalytic activity for dye degradation[J]. Applied Organometallic Chemistry, 2018, 32(4): e4285. doi: 10.1002/aoc.4285
|
[25] |
HAROON H, MAJID K. MnO2 nanosheets supported metal–organic framework MIL-125(Ti) towards efficient visible light photocatalysis: Kinetic and mechanistic study[J]. Chemical Physics Letters, 2020, 745: 137283. doi: 10.1016/j.cplett.2020.137283
|
[26] |
HUANG F, LI Q, LUO S, et al. Preparation and photocatalytic activity of ZnIn2S4/MIL-125 nanocomposites [J]. Journal of the Chinese Ceramic Society, 2021, 49 (6): 1167-1175.
|
[27] |
LI Q, HUANG F, LI D K, et al. Synthesis of NiS/MIL-125 hybrids with expanded light absorption, fast carrier transfer and enhanced carrier separation[J]. Materials Research Bulletin, 2021, 133: 111058. doi: 10.1016/j.materresbull.2020.111058
|
[28] |
ZHU S R, LIU P F, WU M K, et al. Enhanced photocatalytic performance of BiOBr/NH2-MIL-125(Ti) composite for dye degradation under visible light[J]. Dalton Transactions, 2016, 45(43): 17521-17529. doi: 10.1039/C6DT02912D
|
[29] |
RODRÍGUEZ N A, SAVATEEV A, GRELA M A, et al. Facile synthesis of potassium poly(heptazine imide) (PHIK)/Ti-based metal–organic framework (MIL-125-NH2) composites for photocatalytic applications[J]. ACS Applied Materials & Interfaces, 2017, 9(27): 22941-22949.
|
[30] |
WANG H, CUI P H, SHI J X, et al. Controllable self-assembly of[email protected](Ti) heterostructure with enhanced photodegradation efficiency for organic pollutants through synergistic effect[J]. Materials Science in Semiconductor Processing, 2019, 97: 91-100. doi: 10.1016/j.mssp.2019.03.016
|
[31] |
WANG Q J, WANG G L, LIANG X F, et al. Supporting carbon quantum dots on NH2-MIL-125 for enhanced photocatalytic degradation of organic pollutants under a broad spectrum irradiation[J]. Applied Surface Science, 2019, 467/468: 320-327. doi: 10.1016/j.apsusc.2018.10.165
|
[32] |
LIU S J, ZOU Q C, MA Y, et al. A novel amorphous CoS x/NH2-MIL-125 composite for photocatalytic degradation of rhodamine B under visible light[J]. Journal of Materials Science, 2020, 55(34): 16171-16183. doi: 10.1007/s10853-020-05210-4
|
[33] |
XU Y F, ZHOU Y, DENG Y H, et al. Synthesis of Bi2WO6@NH2-MIL-125(Ti): A S-scheme photocatalyst with enhanced visible light catalytic activity[J]. Catalysis Letters, 2020, 150(12): 3470-3480. doi: 10.1007/s10562-020-03258-0
|
[34] |
DU J A, ZHANG J X, YANG T Y, et al. The research on the construction and the photocatalytic performance of BiOI/NH2-MIL-125(Ti) composite[J]. Catalysts, 2020, 11(1): 24. doi: 10.3390/catal11010024
|
[35] |
LING L Q, TU Y, LONG X Y, et al. The one-step synthesis of multiphase SnS2 modified by NH2-MIL-125(Ti) with effective photocatalytic performance for Rhodamine B under visible light[J]. Optical Materials, 2021, 111: 110564. doi: 10.1016/j.optmat.2020.110564
|
[36] |
NIVETHA R, GOTHANDAPANI K, RAGHAVAN V, et al. NH2-MIL-125(Ti) doped CdS/Graphene composite as electro and photo catalyst in basic medium under light irradiation[J]. Environmental Research, 2021, 200: 111719. doi: 10.1016/j.envres.2021.111719
|
[37] |
NGUYEN THI H T, TRAN THI K N, HOANG N B, et al. Enhanced degradation of rhodamine B by metallic organic frameworks based on NH2-MIL-125(Ti) under visible light[J]. Materials, 2021, 14(24): 7741. doi: 10.3390/ma14247741
|
[38] |
WANG J, CHEN C C, ZHAO Z H, et al. Construction of N-doped g-C3N4/NH2-MIL-125(Ti) S-scheme heterojunction for enhanced photocatalytic degradation of organic pollutants: DFT calculation and mechanism study[J]. Journal of Alloys and Compounds, 2022, 922: 166288. doi: 10.1016/j.jallcom.2022.166288
|
[39] |
KANG Q M, REN T J, ZHAO W Q, et al. Preparation of Zn2GeO4 nanosheets with MIL-125(Ti) hybrid photocatalyst for improved photodegradation of organic pollutants[J]. Materials Research Bulletin, 2021, 133: 111013. doi: 10.1016/j.materresbull.2020.111013
|
[40] |
AO D, ZHANG J, LIU H. Visible-light-driven photocatalytic degradation of pollutants over Cu-doped NH2-MIL-125(Ti)[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364: 524-533. doi: 10.1016/j.jphotochem.2018.06.044
|
[41] |
WU D Y, HAN L. Fabrication of novel Ag/AgBr/NH2-MIL-125(Ti) nanocomposites with enhanced visible-light photocatalytic activity[J]. Materials Research Express, 2019, 6(12): 125501. doi: 10.1088/2053-1591/ab540a
|
[42] |
AHMADPOUR N, SAYADI M H, HOMAEIGOHAR S. Correction: A hierarchical Ca/TiO2/NH2-MIL-125 nanocomposite photocatalyst for solar visible light induced photodegradation of organic dye pollutants in water[J]. RSC Advances, 2023, 13(29): 19661. doi: 10.1039/D3RA90057F
|
[43] |
WANG H, YUAN X Z, WU Y, et al. in situ synthesis of In2S3@MIL-125(Ti) core-shell microparticle for the removal of tetracycline from wastewater by integrated adsorption and visible-light-driven photocatalysis[J]. Applied Catalysis B: Environmental, 2016, 186: 19-29. doi: 10.1016/j.apcatb.2015.12.041
|
[44] |
JIANG E H, LIU X T, CHE H N, et al. Visible-light-driven Ag/Bi3O4Cl nanocomposite photocatalyst with enhanced photocatalytic activity for degradation of tetracycline[J]. RSC Advances, 2018, 8(65): 37200-37207. doi: 10.1039/C8RA07482H
|
[45] |
YIN S, CHEN Y, GAO C, et al. In-situ preparation of MIL-125(Ti)/Bi2WO6 photocatalyst with accelerating charge carriers for the photodegradation of tetracycline hydrochloride[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 387: 112149. doi: 10.1016/j.jphotochem.2019.112149
|
[46] |
HU Q S, DI J, WANG B, et al. In-situ preparation of NH2-MIL-125(Ti)/BiOCl composite with accelerating charge carriers for boosting visible light photocatalytic activity[J]. Applied Surface Science, 2019, 466: 525-534. doi: 10.1016/j.apsusc.2018.10.020
|
[47] |
YIN S, CHEN Y, HU Q S, et al. Construction of NH2-MIL-125(Ti) nanoplates modified Bi2WO6 microspheres with boosted visible-light photocatalytic activity[J]. Research on Chemical Intermediates, 2020, 46(7): 3311-3326. doi: 10.1007/s11164-020-04132-9
|
[48] |
SONG X L, WANG Y, ZHU T, et al. Facile synthesis a novel core-shell amino functionalized MIL-125(Ti) micro-photocatalyst for enhanced degradation of tetracycline hydrochloride under visible light[J]. Chemical Engineering Journal, 2021, 416: 129126. doi: 10.1016/j.cej.2021.129126
|
[49] |
WANG Y, FENG S, WU W, et al. Ionic liquid-assisted solvothermal construction of NH2-MIL-125(Ti)/BiOBr heterojunction for removing tetracycline under visible light[J]. Optical Materials, 2022, 123: 111817. doi: 10.1016/j.optmat.2021.111817
|
[50] |
ZHU C Z, HE Q Y, YAO H Q, et al. Amino-functionalized NH2-MIL-125(Ti)-decorated hierarchical flowerlike Znln2S4 for boosted visible-light photocatalytic degradation[J]. Environmental Research, 2022, 204: 112368. doi: 10.1016/j.envres.2021.112368
|
[51] |
YANG J, LIU T Y, ZHOU H F, et al. In situ conversion of typical type-I MIL-125(Ti)/BiOBr into type-Ⅱ heterostructure photocatalyst via MOF self-sacrifice: Photocatalytic mechanism and theoretical study[J]. Journal of Alloys and Compounds, 2022, 900: 163440. doi: 10.1016/j.jallcom.2021.163440
|
[52] |
SALIMI M, ESRAFILI A, JONIDI JAFARI A, et al. Photocatalytic degradation of cefixime with MIL-125(Ti)-mixed linker decorated by g-C3N4 under solar driven light irradiation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 582: 123874. doi: 10.1016/j.colsurfa.2019.123874
|
[53] |
KAUR M, MEHTA S K, DEVI P, et al. NH2-MIL-125(Ti) nanoparticles decorated over ZnO microrods: An efficient bifunctional material for degradation of levofloxacin and detection of Cu(II)[J]. Journal of Alloys and Compounds, 2022, 928: 166909. doi: 10.1016/j.jallcom.2022.166909
|
[54] |
MUELAS-RAMOS V, BELVER C, RODRIGUEZ J J, et al. Synthesis of noble metal-decorated NH2-MIL-125 titanium MOF for the photocatalytic degradation of acetaminophen under solar irradiation[J]. Separation and Purification Technology, 2021, 272: 118896. doi: 10.1016/j.seppur.2021.118896
|
[55] |
ZHENG X N, LI Y, YANG J, et al. Z-Scheme heterojunction Ag/NH2-MIL-125(Ti)/CdS with enhanced photocatalytic activity for ketoprofen degradation: Mechanism and intermediates[J]. Chemical Engineering Journal, 2021, 422: 130105. doi: 10.1016/j.cej.2021.130105
|
[56] |
ZHANG S Y, DU M, KUANG J Y, et al. Surface-defect-rich mesoporous NH2-MIL-125 (Ti)@Bi2MoO6 core-shell heterojunction with improved charge separation and enhanced visible-light-driven photocatalytic performance[J]. Journal of Colloid and Interface Science, 2019, 554: 324-334. doi: 10.1016/j.jcis.2019.07.021
|
[57] |
MUELAS-RAMOS V, SAMPAIO M J, SILVA C G, et al. Degradation of diclofenac in water under LED irradiation using combined g-C3N4/NH2-MIL-125 photocatalysts[J]. Journal of Hazardous Materials, 2021, 416: 126199. doi: 10.1016/j.jhazmat.2021.126199
|
[58] |
ABDELHAMEED R M, EL-SHAHAT M. Fabrication of Au@CeO2nanocomposite with enhanced visible light photoreduction activity[J]. Journal of Environmental Chemical Engineering, 2019, 7(3): 103194. doi: 10.1016/j.jece.2019.103194
|
[59] |
XU C, ZHANG W, CHEN Y T, et al. Synthesis of NH2-MIL-125/NH2-MIL-125-P@TiO2 and its adsorption to uranyl ions[J]. ChemistrySelect, 2019, 4(43): 12801-12806. doi: 10.1002/slct.201902745
|
[60] |
WANG C C, DU X D, LI J, et al. Photocatalytic Cr(Ⅵ) reduction in metal-organic frameworks: A mini-review[J]. Applied Catalysis B: Environmental, 2016, 193: 198-216. doi: 10.1016/j.apcatb.2016.04.030
|
[61] |
BESHARAT F, AHMADPOOR F, NASROLLAHZADEH M. Graphene-based (nano)catalysts for the reduction of Cr(Ⅵ): A review[J]. Journal of Molecular Liquids, 2021, 334: 116123. doi: 10.1016/j.molliq.2021.116123
|
[62] |
STERN C M, JEGEDE T O, HULSE V A, et al. Electrochemical reduction of Cr(Ⅵ) in water: Lessons learned from fundamental studies and applications[J]. Chemical Society Reviews, 2021, 50(3): 1642-1667. doi: 10.1039/D0CS01165G
|
[63] |
LI X, HE J F, ZHANG W L, et al. Ag nanoparticles interlayered Fe3O4/Ag/m(TiO2-ZrO2) magnetic photocatalysts with enhanced stability and photocatalytic performance for Cr(Ⅵ) reduction[J]. Applied Surface Science, 2023, 607: 155076. doi: 10.1016/j.apsusc.2022.155076
|
[64] |
LIU C R, XIAO H, LIU Y, et al. Internal electric field induced photocarriers separation of nickel-doped pyrite/pyrite homojunction with rich sulfur vacancies for superior Cr(Ⅵ) reduction[J]. Journal of Colloid and Interface Science, 2023, 629: 847-858. doi: 10.1016/j.jcis.2022.09.129
|
[65] |
SUN H M, WANG L, ZHANG Y, et al. Photocatalytic reduction performance and mechanisms of Cr(VI) by illite-g-C3N4 under visible light[J]. Applied Surface Science, 2023, 608: 155226. doi: 10.1016/j.apsusc.2022.155226
|
[66] |
KONSTANTINOU I K, ALBANIS T A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations[J]. Applied Catalysis B: Environmental, 2004, 49(1): 1-14. doi: 10.1016/j.apcatb.2003.11.010
|
[67] |
WAGHCHAURE R H, ADOLE V A, JAGDALE B S. Photocatalytic degradation of methylene blue, rhodamine B, methyl orange and Eriochrome black T dyes by modified ZnO nanocatalysts: A concise review[J]. Inorganic Chemistry Communications, 2022, 143: 109764. doi: 10.1016/j.inoche.2022.109764
|
[68] |
KUMAR A, KHAN M, HE J H, et al. Recent developments and challenges in practical application of visible-light-driven TiO2-based heterojunctions for PPCP degradation: A critical review[J]. Water Research, 2020, 170: 115356. doi: 10.1016/j.watres.2019.115356
|
[69] |
McKAY S, TSCHARKE B, HAWKER D, et al. Calibration and validation of a microporous polyethylene passive sampler for quantitative estimation of illicit drug and pharmaceutical and personal care product (PPCP) concentrations in wastewater influent[J]. Science of the Total Environment, 2020, 704: 135891. doi: 10.1016/j.scitotenv.2019.135891
|
[70] |
ZHANG S C, TAN M Y, DU S W, et al. Base-metal oxide semiconductor electrodes for PPCP degradation: Ti-doped α-Fe2O3 for sulfosalicylic acid oxidation as an example[J]. Chemosphere, 2023, 313: 137354. doi: 10.1016/j.chemosphere.2022.137354
|