[1] LUO H C, GUO W Q, ZHAO Q, et al. Compared effects of “solid-based” hydrogen peroxide pretreatment on disintegration and properties of waste activated sludge[J]. Chinese Chemical Letters, 2022, 33(3): 1293-1297. doi: 10.1016/j.cclet.2021.08.002
[2] SI Q S, GUO W Q, WANG H Z, et al. Carbon quantum dots-based semiconductor preparation methods, applications and mechanisms in environmental contamination[J]. Chinese Chemical Letters, 2020, 31(10): 2556-2566. doi: 10.1016/j.cclet.2020.08.036
[3] HOANG N T, MANH T D, NGUYEN V T, et al. Kinetic study on methylene blue removal from aqueous solution using UV/chlorine process and its combination with other advanced oxidation processes[J]. Chemosphere, 2022, 308: 136457. doi: 10.1016/j.chemosphere.2022.136457
[4] SHI C J, LI C, WANG Y, et al. Review of advanced oxidation processes based on peracetic acid for organic pollutants[J]. Water, 2022, 14(15): 2309. doi: 10.3390/w14152309
[5] SHAH N S, HE X X, KHAN H M, et al. Efficient removal of endosulfan from aqueous solution by UV-C/peroxides: A comparative study[J]. Journal of Hazardous Materials, 2013, 263: 584-592. doi: 10.1016/j.jhazmat.2013.10.019
[6] 万思文, 徐志威, 易琳雅, 等. 过氧乙酸在高级氧化工艺中的应用研究[J]. 环境科学与技术, 2021, 44(8): 64-74. doi: 10.19672/j.cnki.1003-6504.0763.21.338 WAN S W, XU Z W, YI L Y, et al. Research on the application of peracetic acid in advanced oxidation process[J]. Environmental Science & Technology, 2021, 44(8): 64-74 (in Chinese). doi: 10.19672/j.cnki.1003-6504.0763.21.338
[7] AZAIZEH H, LINDEN K G, BARSTOW C, et al. Constructed wetlands combined with UV disinfection systems for removal of enteric pathogens and wastewater contaminants[J]. Water Science and Technology, 2013, 67(3): 651-657. doi: 10.2166/wst.2012.615
[8] WANG J W, WANG Z P, CHENG Y J, et al. Molybdenum disulfide (MoS2): A novel activator of peracetic acid for the degradation of sulfonamide antibiotics[J]. Water Research, 2021, 201: 117291. doi: 10.1016/j.watres.2021.117291
[9] GU J, SONG Y, YANG Y, et al. Mechanical insights into activation of peroxides by quinones: Formation of oxygen-centered radicals or singlet oxygen[J]. Environmental Science & Technology, 2022, 56(12): 8776-8783.
[10] CORREA-SANCHEZ S, PEÑUELA G A. Peracetic acid-based advanced oxidation processes for the degradation of emerging pollutants: A critical review[J]. Journal of Water Process Engineering, 2022, 49: 102986. doi: 10.1016/j.jwpe.2022.102986
[11] CHEN J C, PAVLOSTATHIS S G. Peracetic acid fate and decomposition in poultry processing wastewater streams[J]. Bioresource Technology Reports, 2019, 7: 100285. doi: 10.1016/j.biteb.2019.100285
[12] KITIS M. Disinfection of wastewater with peracetic acid: A review[J]. Environment International, 2004, 30(1): 47-55. doi: 10.1016/S0160-4120(03)00147-8
[13] CHANG W, SMALL D A, TOGHROL F, et al. Microarray analysis of toxicogenomic effects of peracetic acid on Pseudomonas aeruginosa[J]. Environmental Science & Technology, 2005, 39(15): 5893-5899.
[14] CHANG W, TOGHROL F, BENTLEY W E. Toxicogenomic response of Staphylococcus aureus to peracetic acid[J]. Environmental Science & Technology, 2006, 40(16): 5124-5131.
[15] ZHANG C Q, BROWN P J B, MILES R J, et al. Inhibition of regrowth of planktonic and biofilm bacteria after peracetic acid disinfection[J]. Water Research, 2019, 149: 640-649. doi: 10.1016/j.watres.2018.10.062
[16] DUNKIN N, WENG S, SCHWAB K J, et al. Comparative inactivation of murine norovirus and MS2 bacteriophage by peracetic acid and monochloramine in municipal secondary wastewater effluent[J]. Environmental Science & Technology, 2017, 51(5): 2972-2981.
[17] SANTORO D, CRAPULLI F, RAISEE M, et al. Nondeterministic computational fluid dynamics modeling of Escherichia coli inactivation by peracetic acid in municipal wastewater contact tanks[J]. Environmental Science & Technology, 2015, 49(12): 7265-7275.
[18] DUNKIN N, WENG S, COULTER C G, et al. Reduction of human norovirus GI, GII, and surrogates by peracetic acid and monochloramine in municipal secondary wastewater effluent[J]. Environmental Science & Technology, 2017, 51(20): 11918-11927.
[19] ANTONELLI M, ROSSI S, MEZZANOTTE V, et al. Secondary effluent disinfection:   PAA long term efficiency[J]. Environmental Science & Technology, 2006, 40(15): 4771-4775.
[20] ZHANG K J, ZHOU X Y, DU P H, et al. Oxidation of β-lactam antibiotics by peracetic acid: Reaction kinetics, product and pathway evaluation[J]. Water Research, 2017, 123: 153-161. doi: 10.1016/j.watres.2017.06.057
[21] ZHANG W J, CAO B D, WANG D S, et al. Influence of wastewater sludge treatment using combined peroxyacetic acid oxidation and inorganic coagulants re-flocculation on characteristics of extracellular polymeric substances (EPS)[J]. Water Research, 2016, 88: 728-739. doi: 10.1016/j.watres.2015.10.049
[22] CAMPO N, de FLORA C, MAFFETTONE R, et al. Inactivation kinetics of antibiotic resistant Escherichia coli in secondary wastewater effluents by peracetic and performic acids[J]. Water Research, 2020, 169: 115227. doi: 10.1016/j.watres.2019.115227
[23] RAGAZZO P, CHIUCCHINI N, PICCOLO V, et al. Wastewater disinfection: Long-term laboratory and full-scale studies on performic acid in comparison with peracetic acid and chlorine[J]. Water Research, 2020, 184: 116169. doi: 10.1016/j.watres.2020.116169
[24] LUUKKONEN T, HEYNINCK T, RÄMÖ J, et al. Comparison of organic peracids in wastewater treatment: Disinfection, oxidation and corrosion[J]. Water Research, 2015, 85: 275-285. doi: 10.1016/j.watres.2015.08.037
[25] DOMÍNGUEZ HENAO L, TUROLLA A, ANTONELLI M. Disinfection by-products formation and ecotoxicological effects of effluents treated with peracetic acid: A review[J]. Chemosphere, 2018, 213: 25-40. doi: 10.1016/j.chemosphere.2018.09.005
[26] FARINELLI G, COHA M, VIONE D, et al. Formation of halogenated byproducts upon water treatment with peracetic acid[J]. Environmental Science & Technology, 2022, 56(8): 5123-5131.
[27] 曹聪, 张土乔, 张富标, 等. 饮用水中的新型消毒剂: 过氧乙酸的研究进展[J]. 中国给水排水, 2018, 34(4): 36-40. CAO C, ZHANG T Q, ZHANG F B, et al. Research progress of peracetic acid (PAA): An emerging disinfectant in drinking water[J]. China Water & Wastewater, 2018, 34(4): 36-40 (in Chinese).
[28] 戴寅豪, 杨绍贵, 祁承都, 等. 活化过氧乙酸技术去除水体有机污染物研究进展[J]. 环境化学, 2021, 40(2): 497-508. doi: 10.7524/j.issn.0254-6108.2020083001 Dai Y H, Yang S G, Qi C D, et al. Activation of peracetic acid process for aquatic organic pollutants degradation: A review[J]. Environmental Chemistry, 2021, 40(2): 497-508 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020083001
[29] DENG J W, LIU S L, FU Y S, et al. Heat-activated peracetic acid for degradation of diclofenac: Kinetics, influencing factors and mechanism[J]. Environmental Technology, 2022: 1-9.
[30] PING Q, YAN T T, WANG L, et al. Insight into using a novel ultraviolet/peracetic acid combination disinfection process to simultaneously remove antibiotics and antibiotic resistance genes in wastewater: Mechanism and comparison with conventional processes[J]. Water Research, 2022, 210: 118019. doi: 10.1016/j.watres.2021.118019
[31] 李文涛, 李梦凯, 强志民. 化学剂量法原理及其在水处理紫外线技术研究中的应用[J]. 环境化学, 2020, 39(2): 326-333. doi: 10.7524/j.issn.0254-6108.2019031502 LI W T, LI M K, QIANG Z M. Principles and application of chemical actinometry in the research of UV technology for water treatment[J]. Environmental Chemistry, 2020, 39(2): 326-333 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019031502
[32] ZHANG T Q, WANG T, MEJIA-TICKNER B, et al. Inactivation of bacteria by peracetic acid combined with ultraviolet irradiation: Mechanism and optimization[J]. Environmental Science & Technology, 2020, 54(15): 9652-9661.
[33] CHEN S A, CAI M Q, LIU Y Z, et al. Effects of water matrices on the degradation of naproxen by reactive radicals in the UV/peracetic acid process[J]. Water Research, 2019, 150: 153-161. doi: 10.1016/j.watres.2018.11.044
[34] WANG L Q, YE J Y, ZHANG J Y, et al. Removal of sulfamethazine using peracetic acid activated by Fe0 and UV: Efficiency and mechanism study[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106358. doi: 10.1016/j.jece.2021.106358
[35] KIBBEE R, ÖRMECI B. Peracetic acid (PAA) and low-pressure ultraviolet (LP-UV) inactivation of Coxsackievirus B3 (CVB3) in municipal wastewater individually and concurrently[J]. Water Research, 2020, 183: 116048. doi: 10.1016/j.watres.2020.116048
[36] AO X W, WANG W B, SUN W J, et al. Degradation and transformation of norfloxacin in medium-pressure ultraviolet/peracetic acid process: An investigation of the role of pH[J]. Water Research, 2021, 203: 117458. doi: 10.1016/j.watres.2021.117458
[37] RIZZO L, AGOVINO T, NAHIM-GRANADOS S, et al. Tertiary treatment of urban wastewater by solar and UV-C driven advanced oxidation with peracetic acid: Effect on contaminants of emerging concern and antibiotic resistance[J]. Water Research, 2019, 149: 272-281. doi: 10.1016/j.watres.2018.11.031
[38] SILVEIRA L O, DO ROSÁRIO D K A, GIORI A C G, et al. Combination of peracetic acid and ultrasound reduces Salmonella Typhimurium on fresh lettuce (Lactuca sativa L. var. crispa)[J]. Journal of Food Science and Technology, 2018, 55(4): 1535-1540. doi: 10.1007/s13197-018-3071-8
[39] DAI Y H, QI C D, CAO H, et al. Enhanced degradation of sulfamethoxazole by microwave-activated peracetic acid under alkaline condition: Influencing factors and mechanism[J]. Separation and Purification Technology, 2022, 288: 120716. doi: 10.1016/j.seppur.2022.120716
[40] WANG J W, WAN Y, DING J Q, et al. Thermal activation of peracetic acid in aquatic solution: The mechanism and application to degrade sulfamethoxazole[J]. Environmental Science & Technology, 2020, 54(22): 14635-14645.
[41] SGROI M, SNYDER S A, ROCCARO P. Comparison of AOPs at pilot scale: Energy costs for micro-pollutants oxidation, disinfection by-products formation and pathogens inactivation[J]. Chemosphere, 2021, 273: 128527. doi: 10.1016/j.chemosphere.2020.128527
[42] WANG S X, WANG H B, LIU Y Q, et al. Effective degradation of sulfamethoxazole with Fe2+-zeolite/peracetic acid[J]. Separation and Purification Technology, 2020, 233: 115973. doi: 10.1016/j.seppur.2019.115973
[43] LING X, CAI A H, CHEN M J, et al. A comparison of oxidation and re-flocculation behaviors of Fe2+/PAA and Fe2+/H2O2 treatments for enhancing sludge dewatering: A mechanism study[J]. Science of the Total Environment, 2022, 847: 157690. doi: 10.1016/j.scitotenv.2022.157690
[44] CARLOS T D, BEZERRA L B, VIEIRA M M, et al. Fenton-type process using peracetic acid: Efficiency, reaction elucidations and ecotoxicity[J]. Journal of Hazardous Materials, 2021, 403: 123949. doi: 10.1016/j.jhazmat.2020.123949
[45] 侯琳萌, 清华, 吉庆华. 类芬顿反应的催化剂、原理与机制研究进展[J]. 环境化学, 2022, 41(6): 1843-1855. doi: 10.7524/j.issn.0254-6108.2021030301 HOU L M, QINGHUA, JI Q H. Research progress on catalysts, principles and mechanisms of Fenton-like reactions[J]. Environmental Chemistry, 2022, 41(6): 1843-1855 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021030301
[46] KIM J, ZHANG T Q, LIU W, et al. Advanced oxidation process with peracetic acid and Fe(II) for contaminant degradation[J]. Environmental Science & Technology, 2019, 53(22): 13312-13322.
[47] LIN J B, ZOU J, CAI H Y, et al. Hydroxylamine enhanced Fe(Ⅱ)-activated peracetic acid process for diclofenac degradation: Efficiency, mechanism and effects of various parameters[J]. Water Research, 2021, 207: 117796. doi: 10.1016/j.watres.2021.117796
[48] KIM J, WANG J Y, ASHLEY D C, et al. Enhanced degradation of micropollutants in a peracetic acid–Fe(Ⅲ) system with picolinic acid[J]. Environmental Science & Technology, 2022, 56(7): 4437-4446.
[49] MANOLI K, LI R B, KIM J, et al. Ferrate(Ⅵ)-peracetic acid oxidation process: Rapid degradation of pharmaceuticals in water[J]. Chemical Engineering Journal, 2022, 429: 132384. doi: 10.1016/j.cej.2021.132384
[50] LIU B H, GUO W Q, JIA W R, et al. Insights into the oxidation of organic contaminants by Co(Ⅱ) activated peracetic acid: The overlooked role of high-valent cobalt-oxo species[J]. Water Research, 2021, 201: 117313. doi: 10.1016/j.watres.2021.117313
[51] 阿尔娜·海萨尔, 贾剑平, 任定益, 等. 类Fenton氧化技术去除聚丙烯酰胺的研究[J]. 精细石油化工, 2016, 33(6): 55-58. AERNA· HAISAER, JIA J P, REN D Y, et al. The removal of HPAM with Fenton-like reagents oxidation process[J]. Speciality Petrochemicals, 2016, 33(6): 55-58(in Chinese).
[52] 田丹, 吴玮, 沈芷璇, 等. Co(Ⅱ)活化过氧乙酸降解有机染料研究[J]. 环境科学学报, 2018, 38(10): 4023-4031. TIAN D, WU W, SHEN Z X, et al. Degradation of organic dyes with peracetic acid activated by Co (Ⅱ)[J]. Acta Scientiae Circumstantiae, 2018, 38(10): 4023-4031 (in Chinese).
[53] KIM J, DU P H, LIU W, et al. Cobalt/peracetic acid: Advanced oxidation of aromatic organic compounds by acetylperoxyl radicals[J]. Environmental Science & Technology, 2020, 54(8): 5268-5278.
[54] WANG Z P, WANG J W, XIONG B, et al. Application of cobalt/peracetic acid to degrade sulfamethoxazole at neutral condition: Efficiency and mechanisms[J]. Environmental Science & Technology, 2020, 54(1): 464-475.
[55] LUUKKONEN T, von GUNTEN U. Oxidation of organic micropollutant surrogate functional groups with peracetic acid activated by aqueous Co(II), Cu(II), or Ag(I) and geopolymer-supported Co(II)[J]. Water Research, 2022, 223: 118984. doi: 10.1016/j.watres.2022.118984
[56] LI R B, MANOLI K, KIM J, et al. Peracetic acid–ruthenium(Ⅲ) oxidation process for the degradation of micropollutants in water[J]. Environmental Science & Technology, 2021, 55(13): 9150-9160.
[57] BOKARE A D, CHOI W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes[J]. Journal of Hazardous Materials, 2014, 275: 121-135. doi: 10.1016/j.jhazmat.2014.04.054
[58] 王静晓, 朱柯安, 陈飞. 氯离子活化过氧乙酸对罗丹明B的降解性能及机理研究[J]. 环境科学研究, 2021, 34(12): 2850-2858. WANG J X, ZHU K A, CHEN F. Degradation performance and mechanism of rhodamine B by chloride activated peracetic acid[J]. Research of Environmental Sciences, 2021, 34(12): 2850-2858 (in Chinese) .
[59] WANG H Z, LIU B H, SI Q S, et al. Developing functional carbon nitride materials for efficient peroxymonosulfate activation: From interface catalysis to irradiation synergy[J]. Environmental Functional Materials, 2022, 1(1): 21-33. doi: 10.1016/j.efmat.2022.05.007
[60] DAS NEVES A P N, CARLOS T D, BEZERRA L B, et al. Carbonate anion photolyzed by solar radiation or combined with peracetic acid to form reactive species for dye degradation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 420: 113511. doi: 10.1016/j.jphotochem.2021.113511
[61] DENG J W, WANG H B, FU Y S, et al. Phosphate-induced activation of peracetic acid for diclofenac degradation: Kinetics, influence factors and mechanism[J]. Chemosphere, 2022, 287: 132396. doi: 10.1016/j.chemosphere.2021.132396
[62] 邓杰文, 张琳悦, 付永胜, 等. Cu(Ⅱ)协同热活化过氧乙酸降解水中双氯芬酸[J]. 环境化学, 2023, 42(4 ): 1222-1229. doi: 10.7524/j.issn.0254-6108.2021111602 DENG J W, ZHANG L Y, FU Y S, et al. Degradation of diclofenac in water by Cu(Ⅱ)-combined with heat activation of peracetic acid[J]. Environmental Chemistry, 2023, 42(4 ): 1222-1229 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021111602
[63] GHANBARI F, GIANNAKIS S, LIN K Y A, et al. Acetaminophen degradation by a synergistic peracetic acid/UVC-LED/Fe(Ⅱ) advanced oxidation process: Kinetic assessment, process feasibility and mechanistic considerations[J]. Chemosphere, 2021, 263: 128119. doi: 10.1016/j.chemosphere.2020.128119
[64] LIN J B, HU Y Y, XIAO J Y, et al. Enhanced diclofenac elimination in Fe(Ⅱ)/peracetic acid process by promoting Fe(III)/Fe(Ⅱ) cycle with ABTS as electron shuttle[J]. Chemical Engineering Journal, 2021, 420: 129692. doi: 10.1016/j.cej.2021.129692
[65] 徐文露, 张凌燕, 邱杨率, 等. 石墨基复合材料负载零价纳米铁吸附重金属离子的研究进展[J]. 环境化学, 2022, 41(1): 376-385. doi: 10.7524/j.issn.0254-6108.2020091601 XU W L, ZHANG L Y, QIU Y S, et al. Research progress on adsorption of heavy metal ions by graphite based composites supported with nano zero valent iron[J]. Environmental Chemistry, 2022, 41(1): 376-385 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020091601
[66] 周高峰, 周润宇, 刘义青, 等. 零价钴活化过氧乙酸降解水中罗丹明B的研究[J]. 环境科学学报, 2022, 42(11): 47-55. ZHOU G F, ZHOU R Y, LIU Y Q, et al. Degrdation of rhodamine B by peracetic acid activated with zero-valent cobalt[J]. Acta Scientiae Circumstantiae, 2022, 42(11): 47-55 (in Chinese).
[67] HE M F, LI W Q, XIE Z H, et al. Peracetic acid activation by mechanochemically sulfidated zero valent iron for micropollutants degradation: Enhancement mechanism and strategy for extending applicability[J]. Water Research, 2022, 222: 118887. doi: 10.1016/j.watres.2022.118887
[68] WANG L, YAN T T, TANG R J, et al. Motivation of reactive oxidation species in peracetic acid by adding nanoscale zero-valent iron to synergic removal of spiramycin under ultraviolet irradiation: Mechanism and N-nitrosodimethylamine formation potential assessment[J]. Water Research, 2021, 205: 117684. doi: 10.1016/j.watres.2021.117684
[69] YANG S R, HE C S, XIE Z H, et al. Efficient activation of PAA by FeS for fast removal of pharmaceuticals: The dual role of sulfur species in regulating the reactive oxidized species[J]. Water Research, 2022, 217: 118402. doi: 10.1016/j.watres.2022.118402
[70] XING D Y, SHAO S J, YANG Y Y, et al. Mechanistic insights into the efficient activation of peracetic acid by pyrite for the tetracycline abatement[J]. Water Research, 2022, 222: 118930. doi: 10.1016/j.watres.2022.118930
[71] ZHANG L L, CHEN J B, ZHANG Y L, et al. Interactions between peracetic acid and TiO2 nanoparticle in wastewater disinfection: Mechanisms and implications[J]. Chemical Engineering Journal, 2021, 412: 128703. doi: 10.1016/j.cej.2021.128703
[72] LI S, YANG Y L, ZHENG H S, et al. Introduction of oxygenvacancy to Manganese ferrite by Co substitution for enhanced peracetic acid activation and 1O2 dominated tetracycline hydrochloride degradation under microwave irradiation[J]. Water Research, 2022, 225: 119176. doi: 10.1016/j.watres.2022.119176
[73] WANG J W, XIONG B, MIAO L, et al. Applying a novel advanced oxidation process of activated peracetic acid by CoFe2O4 to efficiently degrade sulfamethoxazole[J]. Applied Catalysis B: Environmental, 2021, 280: 119422. doi: 10.1016/j.apcatb.2020.119422
[74] ROKHINA E V, MAKAROVA K, LAHTINEN M, et al. Ultrasound-assisted MnO2 catalyzed homolysis of peracetic acid for phenol degradation: The assessment of process chemistry and kinetics[J]. Chemical Engineering Journal, 2013, 221: 476-486. doi: 10.1016/j.cej.2013.02.018
[75] CUERDA-CORREA E M, ALEXANDRE-FRANCO M F, FERNÁNDEZ-GONZÁLEZ C. Advanced oxidation processes for the removal of antibiotics from water. an overview[J]. Water, 2019, 12(1): 102. doi: 10.3390/w12010102
[76] 王崇臣, 王恂. 金属-有机骨架在水处理中的应用研究进展[J]. 工业水处理, 2020, 40(11): 1-9 WANG C C, WANG X. The application of metal-organic frameworks in the wastewater treatment: A state-of-the-art review[J]. Industrial Water Treatment, 2020, 40(11): 1-9(in Chinese) .
[77] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714. doi: 10.7536/220501 CHU H Y, WANG T Y, WANG C C. Advanced oxidation processes(AOPs)for bacteria removal over MOFs-based materials[J]. Progress in Chemistry, 2022, 34(12): 2700-2714 (in Chinese). doi: 10.7536/220501
[78] FU H F, WANG C C, LIU W. MOFs for water purification[J]. Chinese Chemical Letters, 2022, 33(4): 1647-1649. doi: 10.1016/j.cclet.2021.08.065
[79] YI X H, WANG F X, DU X D, et al. Highly efficient photocatalytic Cr(Ⅵ) reduction and organic pollutants degradation of two new bifunctional 2D Cd/Co-based MOFs[J]. Polyhedron, 2018, 152: 216-224. doi: 10.1016/j.poly.2018.06.041
[80] DUAN J, CHEN L, JI H D, et al. Activation of peracetic acid by metal-organic frameworks (ZIF-67) for efficient degradation of sulfachloropyridazine[J]. Chinese Chemical Letters, 2022, 33(6): 3172-3176. doi: 10.1016/j.cclet.2021.11.072
[81] ZHANG L L, CHEN J B, ZHANG Y L, et al. Activation of peracetic acid with cobalt anchored on 2D sandwich-like MXenes (Co@MXenes) for organic contaminant degradation: High efficiency and contribution of acetylperoxyl radicals[J]. Applied Catalysis B: Environmental, 2021, 297: 120475. doi: 10.1016/j.apcatb.2021.120475
[82] 郑婷露, 张龙龙, 陈家斌, 等. 纳米核壳Co@NC催化剂活化过氧乙酸降解磺胺甲噁唑[J]. 环境科学, 2023, 44(5): 2635-2645. ZHENG T L, ZHANG L L, CHEN J B, et al. Degradation of SMX with peracetic acid activated by nano core-shell Co@NC catalyst[J]. Environmental Science, 2023, 44(5): 2635-2645 (in Chinese).
[83] LIU B H, GUO W Q, JIA W R, et al. Novel nonradical oxidation of sulfonamide antibiotics with Co(Ⅱ)-doped g-C3N4-activated peracetic acid: Role of high-valent cobalt–oxo species[J]. Environmental Science & Technology, 2021, 55(18): 12640-12651.
[84] ZHANG L L, CHEN J B, ZHANG Y L, et al. Highly efficient activation of peracetic acid by nano-CuO for carbamazepine degradation in wastewater: The significant role of H2O2 and evidence of acetylperoxy radical contribution[J]. Water Research, 2022, 216: 118322. doi: 10.1016/j.watres.2022.118322
[85] HU C G, LIN Y, CONNELL J W, et al. Carbon-based metal-free catalysts for energy storage and environmental remediation[J]. Advanced Materials (Deerfield Beach, Fla. ), 2019, 31(13): e1806128. doi: 10.1002/adma.201806128
[86] KONG D Z, ZHAO Y M, FAN X R, et al. Reduced graphene oxide triggers peracetic acid activation for robust removal of micropollutants: The role of electron transfer[J]. Environmental Science & Technology, 2022, 56(16): 11707-11717.
[87] DAI C M, LI S, DUAN Y P, et al. Mechanisms and product toxicity of activated carbon/peracetic acid for degradation of sulfamethoxazole: Implications for groundwater remediation[J]. Water Research, 2022, 216: 118347. doi: 10.1016/j.watres.2022.118347
[88] WU L Y, LI Z Y, CHENG P T, et al. Efficient activation of peracetic acid by mixed sludge derived biochar: Critical role of persistent free radicals[J]. Water Research, 2022, 223: 119013. doi: 10.1016/j.watres.2022.119013
[89] QIU M H, CHEN X F, FAN Y Q, et al. 1.11 ceramic membranes[M]//Comprehensive Membrane Science and Engineering. Amsterdam: Elsevier, 2017: 270-297.
[90] ZHAO Y M, ZHAO Y X, YU X, et al. Peracetic acid integrated catalytic ceramic membrane filtration for enhanced membrane fouling control: Performance evaluation and mechanism analysis[J]. Water Research, 2022, 220: 118710. doi: 10.1016/j.watres.2022.118710
[91] WANG S Y, ZHOU S M, TAO Y, et al. Organic peroxides and sulfur dioxide in aerosol: Source of particulate sulfate[J]. Environmental Science & Technology, 2019, 53(18): 10695-10704.
[92] LIAO Q B, WANG D N, KE C, et al. Metal-free Fenton-like photocatalysts based on covalent organic frameworks[J]. Applied Catalysis B: Environmental, 2021, 298: 120548. doi: 10.1016/j.apcatb.2021.120548
[93] SHI C J, WANG Y, ZHANG K, et al. Fe-biochar as a safe and efficient catalyst to activate peracetic acid for the removal of the acid orange dye from water[J]. Chemosphere, 2022, 307: 135686. doi: 10.1016/j.chemosphere.2022.135686
[94] 孙义才, 孙德栋, 王佳莹, 等. 铁碳微电解与过氧乙酸联用处理罗丹明B废水[J]. 工业水处理, 2018, 38(12): 93-96. doi: 10.11894/1005-829x.2018.38(12).093 SUN Y C, SUN D D, WANG J Y, et al. Combination of iron-carbon micro-electrolysis and peracetic acid for the treatment of Rhodamine B containing wastewater[J]. Industrial Water Treatment, 2018, 38(12): 93-96. (in Chinese) doi: 10.11894/1005-829x.2018.38(12).093
[95] LI T, JIN L L, ZHU S S, et al. Simultaneous removal of heterocyclic drugs and total nitrogen from biochemical tailwater by peracetic acid/cobalt-loaded ceramsite-based denitrification biofilter[J]. Environmental Pollution, 2022, 314: 120279. doi: 10.1016/j.envpol.2022.120279
[96] ZHANG L, FU Y S, WANG Z R, et al. Removal of diclofenac in water using peracetic acid activated by zero valent copper[J]. Separation and Purification Technology, 2021, 276: 119319. doi: 10.1016/j.seppur.2021.119319
[97] LI Y J, DONG H R, XIAO J Y, et al. Oxidation of sulfamethazine by a novel CuS/calcium peroxide/tetraacetylethylenediamine process: High efficiency and contribution of oxygen-centered radicals[J]. Chemical Engineering Journal, 2022, 446: 136882. doi: 10.1016/j.cej.2022.136882
[98] XIAO J Y, DONG H R, LI Y J, et al. Graphene shell-encapsulated copper-based nanoparticles (G@Cu-NPs) effectively activate peracetic acid for elimination of sulfamethazine in water under neutral condition[J]. Journal of Hazardous Materials, 2023, 441: 129895. doi: 10.1016/j.jhazmat.2022.129895
[99] KATARIA J, VADDU S, RAMA E N, et al. Evaluating the efficacy of peracetic acid on Salmonella and Campylobacter on chicken wings at various pH levels[J]. Poultry Science, 2020, 99(10): 5137-5142. doi: 10.1016/j.psj.2020.06.070
[100] ZHANG C Q, BROWN P J B, HU Z Q. Thermodynamic properties of an emerging chemical disinfectant, peracetic acid[J]. Science of the Total Environment, 2018, 621: 948-959. doi: 10.1016/j.scitotenv.2017.10.195
[101] ZHANG P Y, ZHANG X F, ZHAO X D, et al. Activation of peracetic acid with zero-valent iron for tetracycline abatement: The role of Fe(II) complexation with tetracycline[J]. Journal of Hazardous Materials, 2022, 424: 127653. doi: 10.1016/j.jhazmat.2021.127653
[102] ZHOU F Y, LU C, YAO Y Y, et al. Activated carbon fibers as an effective metal-free catalyst for peracetic acid activation: Implications for the removal of organic pollutants[J]. Chemical Engineering Journal, 2015, 281: 953-960. doi: 10.1016/j.cej.2015.07.034
[103] DAI Y H, CAO H, QI C D, et al. L-cysteine boosted Fe(III)-activated peracetic acid system for sulfamethoxazole degradation: Role of L-cysteine and mechanism[J]. Chemical Engineering Journal, 2023, 451: 138588. doi: 10.1016/j.cej.2022.138588
[104] XIONG Z K, JIANG Y N, WU Z L, et al. Synthesis strategies and emerging mechanisms of metal-organic frameworks for sulfate radical-based advanced oxidation process: A review[J]. Chemical Engineering Journal, 2021, 421: 127863. doi: 10.1016/j.cej.2020.127863
[105] KHARISSOVA O V, KHARISOV B I, GONZÁLEZ L T. Recent trends on density functional theory–assisted calculations of structures and properties of metal–organic frameworks and metal-organic frameworks-derived nanocarbons[J]. Journal of Materials Research, 2020, 35(11): 1424-1438. doi: 10.1557/jmr.2020.109
[106] CERRÓN-CALLE G A, SENFTLE T P, GARCIA-SEGURA S. Strategic tailored design of electrocatalysts for environmental remediation based on density functional theory (DFT) and microkinetic modeling[J]. Current Opinion in Electrochemistry, 2022, 35: 101062. doi: 10.1016/j.coelec.2022.101062
[107] ZOU Y D, WANG X X, KHAN A, et al. Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: A review[J]. Environmental Science & Technology, 2016, 50(14): 7290-7304.
[108] ZHANG P P, YANG Y Y, DUAN X G, et al. Density functional theory calculations for insight into the heterocatalyst reactivity and mechanism in persulfate-based advanced oxidation reactions[J]. ACS Catalysis, 2021, 11(17): 11129-11159. doi: 10.1021/acscatal.1c03099
[109] ZHOU G F, ZHOU R Y, LIU Y Q, et al. Efficient degradation of sulfamethoxazole using peracetic acid activated by zero-valent cobalt[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107783. doi: 10.1016/j.jece.2022.107783
[110] MIAO F, YUE X T, CHENG C, et al. Insights into the mechanism of carbocatalysis for peracetic acid activation: Kinetic discernment and active site identification[J]. Water Research, 2022, 227: 119346. doi: 10.1016/j.watres.2022.119346
[111] Da SILVA W P, CARLOS T D, CAVALLINI G S, et al. Peracetic acid: Structural elucidation for applications in wastewater treatment[J]. Water Research, 2020, 168: 115143. doi: 10.1016/j.watres.2019.115143
[112] BALACHANDRAN S, CHARAMBA L V C, MANOLI K, et al. Simultaneous inactivation of multidrug-resistant Escherichia coli and enterococci by peracetic acid in urban wastewater: Exposure-based kinetics and comparison with chlorine[J]. Water Research, 2021, 202: 117403. doi: 10.1016/j.watres.2021.117403
[113] MAFFETTONE R, MANOLI K, SANTORO D, et al. Performic acid disinfection of municipal secondary effluent wastewater: Inactivation of murine norovirus, fecal coliforms, and enterococci[J]. Environmental Science & Technology, 2020, 54(19): 12761-12770.
[114] FOSCHI J, BIANCHI G F, TUROLLA A, et al. Disinfection efficiency prediction under dynamic conditions: Application to peracetic acid disinfection of wastewater[J]. Water Research, 2022, 222: 118879. doi: 10.1016/j.watres.2022.118879
[115] MANOLI K, SARATHY S, MAFFETTONE R, et al. Detailed modeling and advanced control for chemical disinfection of secondary effluent wastewater by peracetic acid[J]. Water Research, 2019, 153: 251-262. doi: 10.1016/j.watres.2019.01.022