-
碘代消毒副产物(I-DBPs)在水中的检出含量虽然较低,但比常规氯代和溴代表现出更强的细胞毒性和遗传毒性[1]. 有研究表明, 三碘甲烷,碘乙酸和碘乙腈的毒性分别是其同类的氯代物质146[2]、500、74倍[3-4]. Mahmut的研究表明,当水中的碘离子的浓度为40 μg·L−1升高至400 μg·L−1,碘代三卤甲烷(I-THMs)生成量由30 nmol·L−1升高至250 nmol·L−1以上[5]. 此外,碘代的显影剂如碘帕醇,泛影酸盐等也是I-DBPs的重要碘源和前驱体. 在北美地区一些水厂的调查中,即使水中的碘离子的浓度很低,但仍在出水中监测到了一定量的I-DBPs [6].
含氮有机物是广泛存在于自然水体中的一类重要的天然有机物,主要来自于人类生产生活用水排放,动植物腐败以及土壤溶出等,包括氨基酸、多肽、蛋白质、嘌呤和硝基腐殖酸等物质[7]. 含氮有机物是水体消毒过程中亚硝胺、卤代硝基甲烷以及卤乙腈等消毒副产物最重要的前驱物,因而受到了广泛的研究和关注[8]. 但是,关于水中含氮有机物在氯化过程中I-DBPs的生成规律研究则较少. Li等研究了色氨酸在氯化后I-THMs的生成量为27.21 μg·L−1,是常规三卤甲烷的1.3倍[9]. 查晓松等用鱼油模拟天然水体中生物源有机物对氯胺消毒过程中碘乙腈(IAN)等含氮消毒副产物的生成趋势,在实验条件下,IAN的最大生成量为 106.95 μg·L−1, IAN 的生成量则随I-和总有机碳浓度的增加而增加[10]. 有别于在复杂水质条件下的消毒研究,对典型含氮有机物,如氨基酸、多肽、蛋白质等的消毒副产物生成势研究,有助于针对性的制定前体物的去除工艺以及消毒策略,控制I-DBPs对人类饮用水的健康风险.
本文选取了6种典型的含氮有机物,包括3种氨基酸,多肽,硝基腐殖酸,蛋白质等,对其氯化消毒后的I-THMs的生成潜能进行了系统的研究,为I-DBPs的生成控制提供的一定参考依据.
典型含氮有机物氯化消毒过程中碘代三卤甲烷生成特征
Formation of iodo-trihalomethanes during the chlorination of typical nitrogenous organics
-
摘要: 碘代消毒副产物因其较强的细胞和遗传毒性给人们的饮用水安全造成了安全风险. 本研究选取了水中常见的典型含氮有机物,包括氨基酸、多肽、蛋白质以及腐殖酸,对其氯化后碘代三卤甲烷(I-THMs)的生成规律予以研究. 探讨了反应时间、氯投加量和pH对I-THMs生成的影响. 结果表明,碘仿是最主要的I-THMs,I-THMs的生成速率,种类和数量与前体物的结构相关. 色氨酸、赖氨酸和蛋白质氯化后I-THMs产量分别达到47.40、37.64、65.04 μg·L−1. pH主要影响水中HOI的分布从而影响I-THMs的生成. 高氯投加量和Br-会抑制I-THMs的生成,但也增加其他消毒副产物的生成风险.Abstract: Iodinated disinfection byproducts pose threats to drinking water safety because of the cytotoxicity and genotoxicity. In this research, the formation of iodo-trihalomethanes(I-THMs) after chlorination of typical nitrogenous organics, including amino acids, peptides, proteins and humic acids, were studied. The effects of reaction time, active chlorine dosage, pH and bromide on I-THMs production were investigated. The results showed that iodoform is the most important I-THMs after chlorination, and the rate, type and quantity of I-THMs were related to the structure of the precursors. The total I-THMs of Tryptophan, lysine and protein was 47.40, 37.64, 65.04 μg·L−1, respectively after chlorination. The distribution of HOI was strongly associated with solution pH, thus influence the formation of I-THMs. Generally, high chlorine dosages and bromine ions could restrain the formation of I-THMs, but also increased the risks of other disinfection byproducts.
-
Key words:
- nitrogen-organics /
- iodo-trihalomethanes /
- chlorination /
- iodide
-
[1] YE T, XU B, LIN Y L, et al. Formation of iodinated disinfection by-products during oxidation of iodide-containing waters with chlorine dioxide [J]. Water Research, 2013, 47(9): 3006-3014. doi: 10.1016/j.watres.2013.03.003 [2] 李宏伟, 丁顺克, 肖融, 等. Fe3+对氯胺消毒体系中碘代消毒副产物生成影响研究 [J]. 给水排水, 2021, 57(2): 27-34. [3] POSTIGO C, RICHARDSON S D, BARCELÓ D. Formation of iodo-trihalomethanes, iodo-haloacetic acids, and haloacetaldehydes during chlorination and chloramination of iodine containing waters in laboratory controlled reactions [J]. Journal of Environmental Sciences, 2017, 58: 127-134. doi: 10.1016/j.jes.2017.04.009 [4] POSTIGO C, ZONJA B. Iodinated disinfection byproducts: Formation and concerns [J]. Current Opinion in Environmental Science & Health, 2019, 7: 19-25. [5] ERSAN M S, LIU C, AMY G, et al. Chloramination of iodide-containing waters: Formation of iodinated disinfection byproducts and toxicity correlation with total organic halides of treated waters [J]. Science of the Total Environment, 2019, 697: 134142. doi: 10.1016/j.scitotenv.2019.134142 [6] TUGULEA A M, ARANDA-RODRIGUEZ R, BÉRUBÉ D, et al. The influence of precursors and treatment process on the formation of Iodo-THMs in Canadian drinking water [J]. Water Research, 2018, 130: 215-223. doi: 10.1016/j.watres.2017.11.055 [7] CHANG H H, WANG G S. Correlations between surrogate nitrogenous organic precursors and C-, N-DBP formation [J]. Water Science and Technology, 2011, 64(12): 2395-2403. doi: 10.2166/wst.2011.823 [8] BOND T, HUANG J, TEMPLETON M R, et al. Occurrence and control of nitrogenous disinfection by-products in drinking water - A review [J]. Water Research, 2011, 45(15): 4341-4354. doi: 10.1016/j.watres.2011.05.034 [9] LI C, LIN Q F, DONG F L, et al. Formation of iodinated trihalomethanes during chlorination of amino acid in waters [J]. Chemosphere, 2019, 217: 355-363. doi: 10.1016/j.chemosphere.2018.10.190 [10] 查晓松, 于颖奇. 鱼油氯胺消毒过程中溴代和碘代含氮消毒副产物的生成 [J]. 环境化学, 2023, 42(5): 1414-1423. doi: 10.7524/j.issn.0254-6108.2022101705 [11] HU S Y, GONG T T, XIAN Q M, et al. Formation of iodinated trihalomethanes and haloacetic acids from aromatic iodinated disinfection byproducts during chloramination [J]. Water Research, 2018, 147: 254-263. doi: 10.1016/j.watres.2018.09.058 [12] GUO W H, SHAN Y C, YANG X. Factors affecting the formation of iodo-trihalomethanes during oxidation with chlorine dioxide [J]. Journal of Hazardous Materials, 2014, 264: 91-97. doi: 10.1016/j.jhazmat.2013.10.064 [13] YE T, ZHANG T Y, TIAN F X, et al. The fate and transformation of iodine species in UV irradiation and UV-based advanced oxidation processes [J]. Water Research, 2021, 206: 117755. doi: 10.1016/j.watres.2021.117755 [14] ALLARD S, NOTTLE C E, CHAN A, et al. Ozonation of iodide-containing waters: Selective oxidation of iodide to iodate with simultaneous minimization of bromate and I-THMs [J]. Water Research, 2013, 47(6): 1953-1960. doi: 10.1016/j.watres.2012.12.002