-
活性炭吸附作为一种简单有效的水处理工艺,被广泛运用于废水的处理领域[1]。但是,常规的活性炭吸附工艺用于深度处理仍然存在材料成本高、活性炭利用率偏低以及吸附饱和后需进行再生回收等难题,造成工艺成本的增加[2-3]。因此,针对活性炭吸附工艺,提高活性炭的利用率,减少活性炭的再生频次是工艺优化的重要内容之一。目前,研究大多从炭吸附材料本身性质入手来提高吸附的效果,而有关吸附反应器的设计改良研究则较少[4-5]。
目前,废水活性炭吸附工艺中常采用的设备形式有固定床、流化床[6]和序批式反应器等[7]。固定床又称填充床,活性炭等吸附材料固定填充在装置(如吸附塔)内部,不随水流发生流动,具有设备结构简单、吸附剂磨损小等优势,是活性炭吸附水处理工艺中最常用的方式之一[8]。流化床吸附技术利用固体流态化原理,使水流自下而上通过固体吸附剂颗粒床层使其达到流态化状态,借助吸附剂颗粒和水流的充分接触,使得水流中污染物被活性炭吸附去除[9-15]。与固定床和流化床不同,序批式反应器的进水为非连续进水方式,通过机械搅拌使得吸附剂和废水充分接触,吸附一定时间后进行固液分离和排水。序批式反应器将单一的反应器分解为多个串联的小型反应器,便于机械搅拌强化吸附效果,但需要进行澄清和固液分离操作[16-19]。
为进一步指导工程实践,为活性炭吸附反应器的选择和设计提供科学指导,本研究以双酚A(BPA)为吸附质,活性炭为吸附剂,分别搭建了小型的固定床、流化床、优化流化床以及序批式反应器模拟装置,研究不同吸附反应器中BPA的去除规律,对不同吸附床中的BPA去除效率、穿透时间、活性炭容量利用效率等,进行了综合评估和比较。
不同反应器中活性炭去除双酚A的吸附容量利用率研究
The utilization of adsorption capacity of granular activated carbon for removal of bisphenol A in different reactors
-
摘要: 实验考察了活性炭在固定床、流化床和序批式反应器中吸附去除双酚A(BPA)的吸附规律和吸附容量利用效率。结果表明,对于固定床来说,进水流速越小、填充高度越高时,活性炭对双酚A的吸附去除效果更好,活性炭的利用率也更高。对于流化床,在总投加量一定的情况下,采用分次添加,可以进一步提高流化床中活性炭的容量利用率。序批式反应器由于有机械搅拌辅助传质,拥有各反应器中最优的活性炭容量利用率。本研究通过不同反应器吸附去除BPA的比较研究,为实际的废水吸附深度处理工艺的设计和设备选型提供了有价值的参考。Abstract: The experiment investigated the adsorption behavior and adsorption capacity utilization efficiency of the activated carbon in different reactors. The results showed that, for the activated carbon in a fixed bed reactor, a lower flow rate and a higher filling height could achieve a better adsorption and a higher removal efficiency on bisphenol A. In the case of the fluidized bed, under a constant total dosage, the utilization efficiency of the activated carbon could be further improved by using incremental additions. The sequencing batch reactor, with a mechanical agitation for enhanced mass transfer, exhibited the highest utilization efficiency of the activated carbon among all the reactors. It provided valuable references for the design and selection of the equipments for the practical wastewater adsorption treatment process.
-
Key words:
- activated carbon /
- adsorption /
- fixed bed /
- fluidized bed /
- sequence batch reaction bed
-
图 2 (a)不同种类炭材料的流化床对BPA的去除率;(b)流化床活性炭单位吸附量;(c)一次性投加与分批投加炭材料的流化床对BPA的去除率比较
Figure 2. (a) Removal efficiencies of BPA by fluidized bed with different activated carbon materials; (b) adsorption capacity of activated carbon in different fluidized bed reactors; (c) removal efficiencies of BPA by activated carbon with a one-time and multiple-time dosage mode in a fluidized bed reactor
-
[1] GUO J, LUA A C. Adsorption of sulphur dioxide onto activated carbon prepared from oil-palm shells with and without pre-impregnation[J]. Separation and purification technology, 2003, 30(3): 265 − 273. doi: 10.1016/S1383-5866(02)00166-1 [2] 李栗莹. 活性炭吸附技术在水处理中的应用[J]. 化工管理, 2020(23): 116 − 117. doi: 10.3969/j.issn.1008-4800.2020.23.056 [3] 张晓涛. 木质纤维素/层状硅酸盐纳米复合材料的制备及吸附性能研究[D]. 呼和浩特: 内蒙古农业大学, 2018. [4] NEKOUEI F, NEKOUEI S, TYAGI I, et al. Kinetic thermodynamic and isotherm studies for acid blue 129 removal from liquids using copper oxide nanoparticle-modified activated carbon as a novel adsorbent[J]. Journal of molecular liquids, 2015, 201: 124 − 133. doi: 10.1016/j.molliq.2014.09.027 [5] 左雨欣, 任晓聪. 常用吸附剂及其回收再生技术研究[J]. 当代化工研究, 2021(6): 41 − 42. doi: 10.3969/j.issn.1672-8114.2021.06.018 [6] YE N, CIMETIERE N, HEIM V, et al. Upscaling fixed bed adsorption behaviors towards emerging micropollutants in treated natural waters with aging activated carbon: Model development and validation[J]. Water research, 2019, 148: 30 − 40. doi: 10.1016/j.watres.2018.10.029 [7] 刘剑, 鄢瑛, 张会平. 甲苯在结构化固定床上的吸附性能研究[J]. 材料导报, 2014, 28(14): 44 − 47. [8] 陈天崖, 张世豪, 王亚茹. 活性炭固定床吸附硝基苯废水性能研究[J]. 湖北农业科学, 2019, 58(8): 71 − 73. doi: 10.14088/j.cnki.issn0439-8114.2019.08.016 [9] WANG R C, CHANG S C. Adsorption/desorption of phenols onto granular activated carbon in a liquid-solid fluidized bed[J]. Journal of chemical technology and biotechnology, 1999, 74(7): 647 − 654. doi: 10.1002/(SICI)1097-4660(199907)74:7<647::AID-JCTB95>3.0.CO;2-E [10] 唐思. 流化吸附法去除水中苯酚的材料及工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2012. [11] LANGMUIR I. The Adsorption of Gases on Plane Surfaces of Glass Mica and Platinum[J]. Journal of the american chemical society, 1918, 40: 1361 − 1403. doi: 10.1021/ja02242a004 [12] FREUNDLICH H. Über die Adsorption in Lösungen[J]. Ztschrift physikalische chemie, 1906, 57: 385 − 471. [13] NAJA G, VOLESKY B. Behavior of the mass transfer zone in a biosorption column[J]. Environmental science & technology, 2006, 40(12): 3996 − 4003. [14] DOU B L, CHEN B B, GAO J S, et al. HCl removal and chlorine distribution in the mass transfer zone of a fixed-bed reactor at high temperature[J]. Energy & fuels, 2006, 20(3): 959 − 963. [15] VIEIRA M G A, NETO A F A, GIMENES M L, et al. Removal of nickel on Bofe bentonite calcined clay in porous bed[J]. Journal of hazardous materials, 2010, 176(1-3): 109 − 118. doi: 10.1016/j.jhazmat.2009.10.128 [16] 高宇翔. VOCs在活性炭固定床上的吸附动力学[D]. 广州: 华南理工大学, 2012. [17] 周璇, 张均龙, 马彦涛. 浅谈农村污水处理现状及展望[J]. 农业与技术, 2020, 40(18): 56 − 58. [18] 周兵. 活性炭吸附脱硫实验研究和数学模拟[D]. 上海: 华东理工大学, 2014. [19] Ahmad A A, Hameed B H. Fixed-bed adsorption of reactive azo dye onto granular activated carbon prepared from waste[J]. Journal of hazardous materials, 2010, 175(1-3): 298 − 303. doi: 10.1016/j.jhazmat.2009.10.003