-
塑料因其优异的物理化学性能、低成本、使用便利成为全球最常用的基础材料之一[1]。2021年联合国环境规划署发布数据显示,目前全球累计生产的塑料有8.3×1010 t。在过去40年中,产量增两倍多,但总体回收率小于10%。海洋中现存近亿吨的塑料垃圾,且每年仍有约9×107~1.4×108 t塑料持续排放,给全球海洋生态系统造成的经济损失高达80亿美元,仅水产品损失就达31亿美元(UNEP,2021)。塑料污染是一个严重的问题,特别是尺寸小于5 mm的塑料[2]。微塑料(microplastics, MPs)是由大塑料碎裂化形成,或者原始生产的塑料微珠[3-5]。微塑料的大小、形状和颜色与天然沉积物和饲料的相似性可能会误导生物摄入。这会引发营养不良,甚至导致饥饿效应,表现为受影响生物的生长速度改变、健康状况降低和行为改变[5-9],进而可能影响渔业养殖产量和利润。形状不规则且边缘锋利的微塑料可磨损并破坏生物体中胃肠道黏膜的完整性[10]。此外,由于消化道酶促作用等,摄入的微塑料可能会释放单体和塑料添加剂,造成更多潜在危害[11-12]。另一方面,微塑料可作为某些环境污染物和致病菌的载体,摄入微塑料可促进它们转移到生物体内,并导致不良健康影响甚至死亡[11,13-15]。
红树林区海水养殖活动频繁,是粮食供应重要来源。微塑料赋存特征与海产品质量相关,是评估食品安全需要考虑的关键问题。虾等甲壳类动物会摄入其生长环境中的桡足类、鱼类幼虫,以及水生环境中的微塑料[16-18]。当虾被鱼类等更高营养级捕食者或人类食用时,可通过食物链转移和富集。虽然人类不食用虾的头部,但肌肉与消化组织微塑料赋存威胁水产品质量安全和人体健康。况且许多人在不去除肠道(虾线)的情况下将它们整个食用。人类食用被微塑料污染的虾形成直接的接触(传播)途径,对粮食安全和公共健康构成威胁。这些矛头指向如何研究微塑料在虾类海产品中赋存特征,以及在营养转移和积累中的潜在作用[18-19]。现有研究主要关注贝类和鱼类,对于虾类的报道比较有限。之前在几项研究中报道世界不同地区虾体内普遍检出微塑料[20-22]。这些研究中,选择虾是因为它们在食物链中发挥着重要作用,为从鱼类到人类的各种营养级生物提供食物。南美白对虾(Penaeus vannamei)是一种高度消费的海产品。2020年,世界对虾养殖年产量约为6×106 t,南美白对虾是其中养殖量最大的品种,约为5×106 t [23]。2020年,中国南美白对虾养殖产量同比增加4.41%,已占全球南美白对虾养殖产量的80%以上(《2020年全国渔业经济统计公报》)。10年来,南美白对虾的产量涨幅79.96%,2020年,福建省南美白对虾养殖产量为1.16×106 t(《2021年中国渔业年鉴》)。漳州是福建重要的南美白对虾养殖基地,养殖过程不可避免使用塑料养殖设施、渔具等。研究漳州红树林区海水养殖中南美白对虾微塑料的赋存特征,来源和影响因素对进一步评估水产品质量安全与养殖经济效益具有重要意义。
红树林海水养殖南美白对虾微塑料赋存特征、来源和影响因素
Occurrence characteristics, sources and influencing factors of microplastics in Penaeus vannamei from mangrove wetland
-
摘要: 微塑料污染威胁海水养殖与人体健康。南美白对虾(Penaeus vannamei)是一种高度消费海产品,文章首次对福建漳州红树林区南美白对虾微塑料赋存特征、来源和影响因素进行研究。结果证实南美白对虾体内普遍检出各种形状、尺寸和颜色的微塑料,未发现微塑料丰度与生物学特征的相关性。从尺寸特征上看,主要以小尺寸微塑料为主(1~50 μm),占比74.7%。内脏和虾壳中的微塑料检出量占比最高,肌肉相对较少(平均1.89 n/a),单独食用肌肉相对安全。共检出4种形状微塑料,纤维状和颗粒状占比75.8%。颜色占比最高的是白色和透明色,分别达22%和20%。漳州南美白对虾体内微塑料更多来自内源性污染,封闭或半封闭的养殖池塘促进微塑料积累。微塑料普遍检出预示着潜在海产品安全风险,建议进一步研究毒理以评估其对人体健康的影响。Abstract: Microplastic pollution threatens mariculture and human health. Penaeus vannamei is a highly consumed seafood. The characteristics, sources, and influencing factors of microplastics in Penaeus vannamei in the mangrove forest area of Zhangzhou, Fujian were studied at the first time. The results showed that microplastics of various shapes, sizes, and colors were commonly detected. No correlation between microplastic abundance and biological characteristics was found. From the perspective of size characteristics, small-size microplastics (1~50 μm) mainly accounted for 74.7%. The proportion of microplastics detected in viscera and shrimp shells was the highest, the microplastics in the muscle was relatively small (average 1.89 n/a), indicating that the muscle was relatively safe to eat alone. A total of 4 kinds of microplastics were detected, and fibrous and granular microplastics accounted for 75.8%. The highest proportion was white and transparent, accounting for 22 % and 20 % respectively. The source of microplastics in Penaeus vannamei of Zhangzhou could be from endogenous pollution. Closed or semi-closed aquaculture ponds promoted the accumulation of microplastics. The detection of microplastics indicated a potential risk to the quality and safety of seafood, and further toxicological studies were recommended to assess their human health.
-
Key words:
- Penaeus vannamei /
- microplastics /
- characteristics /
- mariculture /
- seafood safety /
- influencing factors
-
表 1 样品生物学指标
Table 1. Biological indicators of samples
样本 体长/
cm头长/
cm体宽/
cm体高/
cm湿重/
g壳/
g肌肉/
g内脏/
g虾1 14.6 5.9 1.3 2.2 23.1 5.8 11.6 64.5 虾2 13.9 5.2 1.2 1.9 20.1 3.8 10.3 0.7 虾3 13.8 5.1 1.1 1.9 20.0 3.3 10.1 0.7 虾4 14.8 5.7 1.4 2.1 23.4 2.7 11.5 1.1 虾5 13.7 4.9 0.9 1.8 19.9 3.8 9.9 0.6 虾6 14.5 5.8 1.2 2.1 22.8 2.1 11.3 0.9 虾7 14.2 5.2 1.0 2.1 22.2 2.7 11.1 0.8 虾8 14.1 5.2 1.0 2.0 22.1 2.1 11.0 0.8 虾9 14.7 5.7 1.3 2.0 23.4 2.7 11.6 1.1 表 2 微塑料尺寸器官分布表
Table 2. Distribution of microplastic size in different organs
尺寸特征/μm 内脏/个 肌肉/个 虾壳/个 >50 11 7 5 1~50 28 10 30 -
[1] ARDUSSO M, LOPEZ A, BUZZI N S, et al. Journal pre-proof covid-19 pandemic repercussions on plastic and antiviral polymeric textile causing pollution on beaches and coasts of south america[J]. Science of The Total Environment, 2020, 763: 144365. [2] THOMPSON RC, OLSEN Y, MITCHELL RP, et al. Lost at sea: where is all the plastic?[J]. Science, 2004, 304(5672): 838. [3] NAPPER I E, BAKIR A, ROWLAND S J, et al. Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics[J]. Marine Pollution Bulletin, 2015, 99(1-2): 178 − 185. [4] ANTHONY L A. Microplastics in the marine environment[J]. Marine Pollution Bulletin, 2011, 62: 1596 − 1605. [5] GRAHAM E R, THOMPSON J T. Deposit- and suspension-feeding sea cucumbers (echinodermata) ingest plastic fragments[J]. Journal of Experimental Marine Biology & Ecology, 2009, 368(1): 22 − 29. [6] MAZURAIS D, ERNANDE B, QUAZUGUEL P, et al. Evaluation of the impact of polyethylene microbeads ingestion in european sea bass (dicentrarchus labrax) larvae[J]. Marine Environmental Research, 2015, 112(DEC. PT. A): 78 − 85. [7] FIONA M, PHILLIP R C. Plastic contamination in the decapod crustacean nephrops norvegicus (linnaeus, 1758)[J]. Marine Pollution Bulletin, 2011, 62(6): 1207 − 1217. [8] WELDEN N A C, COWIE P R. Long-term microplastic retention causes reduced body condition in the langoustine, nephrops norvegicus[J]. Environmental Pollution, 2016, 218(nov.): 895 − 900. [9] WRIGHT S L, THOMPSON R C, GALLOWAY T S. The physical impacts of microplastics on marine organisms: a review[J]. Environmental Pollution, 2013, 178: 483 − 492. [10] BROWNE M A, DISSANAYAKE A, GALLOWAY T S, et al. Ingested microscopic plastic translocates to the circulatory system of the mussel, mytilus edulis (l)[J]. Environmental Science & Technology, 2008, 42(13): 5026 − 5031. [11] AHRENDT C, PEREZ-VENEGAS DJ, URBINA M, et al. Microplastic ingestion cause intestinal lesions in the intertidal fish girella laevifrons[J]. Marine pollution bulletin, 151(Feb. ), 2020: 110795.1 − 110795.6. [12] DELILAH L, ÅKE L, GÖRAN D. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition[J]. Science of the Total Environment(18), 2011(4): 038. doi: 10.1016/j.scitotenv [13] ROCHMAN C M, HOH E, KUROBE T, et al. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress[J]. Scientific Reports, 2013, 3: 3263. [14] WARDROP P, SHIMETA J, NUGEGODA D, et al. Chemical pollutants sorbed to ingested microbeads from personal care products accumulate in fish[J]. Environmental Science and Technology, 2016, 50(7): 4037 − 4044. [15] MARK A B, STEWART J N, TAMARA S G, et al. Microplastic Moves Pollutants and Additives to Worms, Reducing Functions Linked to Health and Biodiversity[J]. Current Biology, 2013, 23(2013): 2388 − 2392. [16] GUZZETTI E, SUREDA A, TEJADA S, et al. Microplastic in marine organism: environmental and toxicological effects[J]. Environmental Toxicology and Pharmacology, 2018, 64(12): 164 − 171. [17] NAIK R K, NAIK M M, D'COSTA P M, et al. Microplastics in ballast water as an emerging source and vector for harmful chemicals, antibiotics, metals, bacterial pathogens and hab species: a potential risk to the marine environment and human healt[J]. Marine Pollution Bulletin, 2019, 149: 110525. [18] CURREN E, LEAW C P, LIM P T, et al. Evidence of marine microplastics in commercially harvested seafood[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 562760. [19] SEVERINI F, BUZZI N S, LOPEZ A F, et al. Chemical composition and abundance of microplastics in the muscle of commercial shrimp pleoticus muelleri at an impacted coastal environment (southwestern atlantic)[J]. Marine Pollution Bulletin(Dec. Pt. A), 2020: 161. [20] DANIEL D B, ASHRAF P M, THOMAS S N. Abundance, characteristics and seasonal variation of microplastics in indian white shrimps (fenneropenaeus indicus) from coastal waters off cochin, kerala, india[J]. Science of The Total Environment, 2020, 737(11): 139839. [21] HOSSAIN M S , RAHMAN M S , UDDIN M N , et al. Microplastic contamination in penaeid shrimp from the northern bay of bengal[J]. Chemosphere, 2020, 238: 124688. [22] GURJAR U R, XAVIER M, NAYAK B B, et al. Microplastics in shrimps: a study from the trawling grounds of north eastern part of arabian sea[J]. Environmental Science and Pollution Research., 2021, 28: 48494 − 48504. [23] FAO. The State of World Fisheries and Aquaculture Food and Agriculture[J]. Organization of the United Nations, Rome, 2021. [24] 张伟权. 世界重要养殖品种——南美白对虾生物学简介[J]. 海洋科学, 1990(3): 69 − 73. [25] HIDALGO-RUZ V, GUTOW L, THOMPSON RC, et al. Microplastics in the marine environment: a review of the methods used for identification and quantification[J]. Environmental Science & Technology, 2012, 46(6): 3060 − 3075. [26] LEI S, HUIWEN C, PRABHU K, et al. Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems[J]. Environmental Pollution, 2018: 234. [27] ESTER CC, MARIA C, ANNA SM, et al. Spatial occurrence and effects of microplastic ingestion on the deep-water shrimp aristeus antennatus[J]. Marine Pollution Bulletin, 2018: 133. [28] SABOROWSKI R, KOREZ P, RIESBECK S, et al. Shrimp and microplastics: a case study with the atlantic ditch shrimp palaemon varians[J]. Ecotoxicology and Environmental Safety, 2022, 234: 113394. [29] LUSHER A, HOLLMAN P, MENDOZA-HILL J. Microplastics in fisheries and aquaculture: Status of knowledge on their occurrence and implications for aquatic organisms and food safety[J]. FAO Fisheries and Aquaculture Technical Paper, 2017, 615: 1 − 126. [30] HARA J, FRIAS J, NASH R. Quantification of microplastic ingestion by the decapod crustacean nephrops norvegicus from irish waters[J]. Marine Pollution Bulletin, 2020: 152. [31] YAN M, LI W, CHEN X, et al. A preliminary study of the association between colonization of microorganism on microplastics and intestinal microbiota in shrimp under natural conditions[J]. Journal of Hazardous Materials, 2020, 408: 124882. [32] WALKINSHAW C, LINDEQUE P K, THOMPSON R, et al. Microplastics and seafood: lower trophic organisms at highest risk of contamination[J]. Ecotoxicology and Environmental Safety, 2019, 190: 110066. [33] DEVRIESE L I , DMMD V , MAES T , et al. Microplastic contamination in brown shrimp (crangon crangon, linnaeus 1758) from coastal waters of the southern north sea and channel area[J]. Marine Pollution Bulletin, 2015, 98(1-2): 179 − 187. [34] WITTE B D, DEVRIESE L, BEKAERT K, et al. Quality assessment of the blue mussel (mytilus edulis): comparison between commercial and wild types[J]. Marine Pollution Bulletin, 2014, 85(1): 146 − 155. [35] GBA B, BU B, AM A., et al. Identification of microplastics in fish ponds and natural freshwater environments of the carpathian basin, europe[J]. Chemosphere, 2019, 216: 110 − 116. [36] NICOLAS C O, PAULA S, JOANA L F, et al. Amberstripe scad decapterus muroadsi (carangidae) fish ingest blue microplastics resembling their copepod prey along the coast of rapa nui (easter island) in the south pacific subtropical gyre[J]. Science of The Total Environment, 2017, 586: 430 − 437. [37] CHEN M , JIN M , TAO P , et al. Assessment of microplastics derived from mariculture in xiangshan bay, china[J]. Environmental Pollution, 2018, 242(PT. B): 1146 − 1156. [38] LOTTE K, CASADO-COY N., VALLE C, et al. Plastic debris accumulation in the seabed derived from coastal fish farming[J]. Environmental Pollution, 2019, 257: 113336. [39] WANG J, PENG J, TAN Z, et al. Microplastics in the surface sediments from the beijiang river littoral zone: composition, abundance, surface textures and interaction with heavy metals[J]. Chemosphere, 2017, 171: 248 − 258.