[1] ARDUSSO M, LOPEZ A, BUZZI N S, et al. Journal pre-proof covid-19 pandemic repercussions on plastic and antiviral polymeric textile causing pollution on beaches and coasts of south america[J]. Science of The Total Environment, 2020, 763: 144365.
[2] THOMPSON RC, OLSEN Y, MITCHELL RP, et al. Lost at sea: where is all the plastic?[J]. Science, 2004, 304(5672): 838.
[3] NAPPER I E, BAKIR A, ROWLAND S J, et al. Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics[J]. Marine Pollution Bulletin, 2015, 99(1-2): 178 − 185.
[4] ANTHONY L A. Microplastics in the marine environment[J]. Marine Pollution Bulletin, 2011, 62: 1596 − 1605.
[5] GRAHAM E R, THOMPSON J T. Deposit- and suspension-feeding sea cucumbers (echinodermata) ingest plastic fragments[J]. Journal of Experimental Marine Biology & Ecology, 2009, 368(1): 22 − 29.
[6] MAZURAIS D, ERNANDE B, QUAZUGUEL P, et al. Evaluation of the impact of polyethylene microbeads ingestion in european sea bass (dicentrarchus labrax) larvae[J]. Marine Environmental Research, 2015, 112(DEC. PT. A): 78 − 85.
[7] FIONA M, PHILLIP R C. Plastic contamination in the decapod crustacean nephrops norvegicus (linnaeus, 1758)[J]. Marine Pollution Bulletin, 2011, 62(6): 1207 − 1217.
[8] WELDEN N A C, COWIE P R. Long-term microplastic retention causes reduced body condition in the langoustine, nephrops norvegicus[J]. Environmental Pollution, 2016, 218(nov.): 895 − 900.
[9] WRIGHT S L, THOMPSON R C, GALLOWAY T S. The physical impacts of microplastics on marine organisms: a review[J]. Environmental Pollution, 2013, 178: 483 − 492.
[10] BROWNE M A, DISSANAYAKE A, GALLOWAY T S, et al. Ingested microscopic plastic translocates to the circulatory system of the mussel, mytilus edulis (l)[J]. Environmental Science & Technology, 2008, 42(13): 5026 − 5031.
[11] AHRENDT C, PEREZ-VENEGAS DJ, URBINA M, et al. Microplastic ingestion cause intestinal lesions in the intertidal fish girella laevifrons[J]. Marine pollution bulletin, 151(Feb. ), 2020: 110795.1 − 110795.6.
[12] DELILAH L, ÅKE L, GÖRAN D. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition[J]. Science of the Total Environment(18), 2011(4): 038. doi: 10.1016/j.scitotenv
[13] ROCHMAN C M, HOH E, KUROBE T, et al. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress[J]. Scientific Reports, 2013, 3: 3263.
[14] WARDROP P, SHIMETA J, NUGEGODA D, et al. Chemical pollutants sorbed to ingested microbeads from personal care products accumulate in fish[J]. Environmental Science and Technology, 2016, 50(7): 4037 − 4044.
[15] MARK A B, STEWART J N, TAMARA S G, et al. Microplastic Moves Pollutants and Additives to Worms, Reducing Functions Linked to Health and Biodiversity[J]. Current Biology, 2013, 23(2013): 2388 − 2392.
[16] GUZZETTI E, SUREDA A, TEJADA S, et al. Microplastic in marine organism: environmental and toxicological effects[J]. Environmental Toxicology and Pharmacology, 2018, 64(12): 164 − 171.
[17] NAIK R K, NAIK M M, D'COSTA P M, et al. Microplastics in ballast water as an emerging source and vector for harmful chemicals, antibiotics, metals, bacterial pathogens and hab species: a potential risk to the marine environment and human healt[J]. Marine Pollution Bulletin, 2019, 149: 110525.
[18] CURREN E, LEAW C P, LIM P T, et al. Evidence of marine microplastics in commercially harvested seafood[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 562760.
[19] SEVERINI F, BUZZI N S, LOPEZ A F, et al. Chemical composition and abundance of microplastics in the muscle of commercial shrimp pleoticus muelleri at an impacted coastal environment (southwestern atlantic)[J]. Marine Pollution Bulletin(Dec. Pt. A), 2020: 161.
[20] DANIEL D B, ASHRAF P M, THOMAS S N. Abundance, characteristics and seasonal variation of microplastics in indian white shrimps (fenneropenaeus indicus) from coastal waters off cochin, kerala, india[J]. Science of The Total Environment, 2020, 737(11): 139839.
[21] HOSSAIN M S , RAHMAN M S , UDDIN M N , et al. Microplastic contamination in penaeid shrimp from the northern bay of bengal[J]. Chemosphere, 2020, 238: 124688.
[22] GURJAR U R, XAVIER M, NAYAK B B, et al. Microplastics in shrimps: a study from the trawling grounds of north eastern part of arabian sea[J]. Environmental Science and Pollution Research., 2021, 28: 48494 − 48504.
[23] FAO. The State of World Fisheries and Aquaculture Food and Agriculture[J]. Organization of the United Nations, Rome, 2021.
[24] 张伟权. 世界重要养殖品种——南美白对虾生物学简介[J]. 海洋科学, 1990(3): 69 − 73.
[25] HIDALGO-RUZ V, GUTOW L, THOMPSON RC, et al. Microplastics in the marine environment: a review of the methods used for identification and quantification[J]. Environmental Science & Technology, 2012, 46(6): 3060 − 3075.
[26] LEI S, HUIWEN C, PRABHU K, et al. Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems[J]. Environmental Pollution, 2018: 234.
[27] ESTER CC, MARIA C, ANNA SM, et al. Spatial occurrence and effects of microplastic ingestion on the deep-water shrimp aristeus antennatus[J]. Marine Pollution Bulletin, 2018: 133.
[28] SABOROWSKI R, KOREZ P, RIESBECK S, et al. Shrimp and microplastics: a case study with the atlantic ditch shrimp palaemon varians[J]. Ecotoxicology and Environmental Safety, 2022, 234: 113394.
[29] LUSHER A, HOLLMAN P, MENDOZA-HILL J. Microplastics in fisheries and aquaculture: Status of knowledge on their occurrence and implications for aquatic organisms and food safety[J]. FAO Fisheries and Aquaculture Technical Paper, 2017, 615: 1 − 126.
[30] HARA J, FRIAS J, NASH R. Quantification of microplastic ingestion by the decapod crustacean nephrops norvegicus from irish waters[J]. Marine Pollution Bulletin, 2020: 152.
[31] YAN M, LI W, CHEN X, et al. A preliminary study of the association between colonization of microorganism on microplastics and intestinal microbiota in shrimp under natural conditions[J]. Journal of Hazardous Materials, 2020, 408: 124882.
[32] WALKINSHAW C, LINDEQUE P K, THOMPSON R, et al. Microplastics and seafood: lower trophic organisms at highest risk of contamination[J]. Ecotoxicology and Environmental Safety, 2019, 190: 110066.
[33] DEVRIESE L I , DMMD V , MAES T , et al. Microplastic contamination in brown shrimp (crangon crangon, linnaeus 1758) from coastal waters of the southern north sea and channel area[J]. Marine Pollution Bulletin, 2015, 98(1-2): 179 − 187.
[34] WITTE B D, DEVRIESE L, BEKAERT K, et al. Quality assessment of the blue mussel (mytilus edulis): comparison between commercial and wild types[J]. Marine Pollution Bulletin, 2014, 85(1): 146 − 155.
[35] GBA B, BU B, AM A., et al. Identification of microplastics in fish ponds and natural freshwater environments of the carpathian basin, europe[J]. Chemosphere, 2019, 216: 110 − 116.
[36] NICOLAS C O, PAULA S, JOANA L F, et al. Amberstripe scad decapterus muroadsi (carangidae) fish ingest blue microplastics resembling their copepod prey along the coast of rapa nui (easter island) in the south pacific subtropical gyre[J]. Science of The Total Environment, 2017, 586: 430 − 437.
[37] CHEN M , JIN M , TAO P , et al. Assessment of microplastics derived from mariculture in xiangshan bay, china[J]. Environmental Pollution, 2018, 242(PT. B): 1146 − 1156.
[38] LOTTE K, CASADO-COY N., VALLE C, et al. Plastic debris accumulation in the seabed derived from coastal fish farming[J]. Environmental Pollution, 2019, 257: 113336.
[39] WANG J, PENG J, TAN Z, et al. Microplastics in the surface sediments from the beijiang river littoral zone: composition, abundance, surface textures and interaction with heavy metals[J]. Chemosphere, 2017, 171: 248 − 258.