-
随着人民生活水平的提高和“乡村振兴”的大力推进,近年来我国农村生活污水排放量呈现出飞速增长的趋势,年排放量达到202万吨,如果不加治理任其排放,会对环境带来极大的污染。我国西北区域干旱和半干旱地区面积广大,河湖稀少,水资源贫乏,生活污水未得到有效的资源化利用。同时,西北地区农村居民居住较为分散,排水管网等设施的建立还不够完善,污水接入管网比例较低,大多生活污水直接排放,需要一种成本低、运维简单方便的处理工艺针对分散式居民生活污水进行适当的处理。目前针对农村生活污水的治理,大多还停留在照搬城市污水处理模式的层面,存在污水处理工艺复杂、基建和运维成本较高等问题[1]。
国外发达国家已针对分散式农村生活污水进行了大量的实验和研究。美国农村地区分散式污水处理技术包括传统土地处理系统[2]、生物膜系统、SBR系统、厌氧流化床系统、土地渗滤和人工湿地等,实际应用中多为2种或多种技术组合,以应对不同污水水质、水量情况[3-4]。欧美发达国家研发的高效藻类塘技术是一种具有自我净化能力的生态系统,其施工投资及运行费用少、便于管理和维护,适用于处理分散式生活污水,但处理效果易受环境影响[5]。日本研发的净化槽系统简单实用,发展已相当成熟,并根据不同应用场景开发出多种单元工艺的净化槽,包括生物转盘、接触、活性炭吸收和硝化液循环式活性污泥法[6]等工艺。澳大利亚的分散式生活污水处理技术FILTER(Filtration and Irrigated cropping for Land Treatment and Effluent Reuse)污水土壤处理系统,能够高效处理生活污水,出水可用于灌溉和地下水补充[7],但造价较高,推广应用受到限制[8]。
目前我国针对分散式农村生活污水的处理技术主要有以下类型:人工湿地[9]、土地处理[10]、稳定塘、净化沼气池及其他一体化小型污水处理装置。处理分散式农村生活污水,如果一味追求高标准的处理出水水质,需要大量的资金投入,这与我国农村实际经济状况等条件不符。如果将农村生活污水进行就地资源化,与农村水资源实际需求相结合,就能在开发农村生活污水处理模式与解决部分地区农村水资源短缺方面找到突破口。
农村的生活污水主要包括黑水和灰水,灰水产生量最大而污染程度较低,处理后可进行资源化回用。农村常见的厌氧沉淀池、沼气池等处理方式虽然造价低廉、施工简单,但是日常使用中存在处理效果不佳、异味明显的问题[11];膜生物反应器工艺处理效果较好,但是后期维护成本较高[12]。且现有的处理工艺较少针对生活灰水进行单独处理,未能形成有效的农村生活污水资源化利用模式[13]。
本研究设计一种多介质庭院生态处理技术,该技术将微生物代谢和滤料过滤吸附处理机理相结合,以农村居民生活灰水为处理对象,以农田灌溉回用为排放情景。处理装置主要由土壤层和多介质滤料层构成,上层土壤还可种植植物,美化庭院的同时加强污水处理效果。该技术有利于解决西北村镇污水治理率不高且非传统水源利用率普遍偏低的问题,实现良好的节水效果,还可将灰水中利于农作物生长的氮磷元素保留下来,在降低污水处理成本的同时实现资源化利用,带来一定的经济效益。技术针对单户型排水规模进行设计,装置具有模块化特点,可针对具体使用人数组合使用,有助于解决农村居民分散式生活污水难以统一收集处理、水质水量波动大以及缺少专业人员维护水处理设备的问题。
针对西北村镇生活灰水的多介质庭院生态处理技术
Multi-media ecological courtyard treatment technology for domestic grey water in villages and towns of Northwest China
-
摘要: 我国西北地区干旱缺水,作为非传统水源的生活灰水资源化利用率普遍偏低。针对我国西北村镇居民生活灰水的收集排放情况和水质特点,结合土壤和多介质滤料对水中污染物的去除效果,设计多介质庭院生态处理技术,将处理后居民生活灰水作为农田灌溉水进行利用。设计实验装置以内蒙古呼和浩特市某村居民生活灰水为进水,连续运行28 d,对处理效率进行研究。结果表明,装置对CODCr的去除率维持在65%左右,阴离子表面活性剂去除率维持在60%左右,SS去除率达到50%以上,并且灰水中的氮元素得到了保留,用于灌溉可为农作物增添肥效,论证了该技术在处理西北农村灰水方面的可行性。Abstract: As a non-traditional water source, the utilization rate of domestic gray water resources is generally low in northwest China due to drought and water shortage. According to the collection and discharge of domestic grey water and water quality characteristics in northwestern villages and towns in China, the multi-medium courtyard ecological treatment technology combing with the effect of soil and multi-media filter material on the removal of pollutants in water was designed. The treated domestic grey water was used as the farmland irrigation water. The experimental device was designed to take the domestic grey water of a village in Hohhot, Inner Mongolia as the inlet water. It operated continuously for 28 days to study the treatment efficiency. The results showed that the removal rate of CODCr was maintained at about 65%, and the removal rate of anionic surfactant was maintained at about 60%. The SS removal rate reached more than 50%, and the nitrogen element in the grey water was retained, which could increase the fertilizer efficiency of crops for irrigation. The experiment demonstrated the feasibility of the technology in the treatment of grey water in the villages and towns of Northwest China.
-
表 1 居民生活灰水水质
Table 1. Residential grey water quality
mg·L−1 检测指标 变化范围 COD 220~350 氨氮 18~25 SS 80~220 阴离子表面活性剂 12~15 pH 7.5~7.9 -
[1] 万玉山, 张平, 李定龙, 等. 农村生活污水处理模式的选择分析[J]. 农业科学与技术:英文版, 2011, 12(4): 597 − 599. [2] 周莉, 王倩, 李烨. 美国农村分散式污水治理的经验及启示[J/OL]. 农业资源与环境学报: 1-11. [2022-10-31]. DOI: 10.13254/j.jare.2022.0101. [3] CURNEEN S, GILL L. Upflow evapotranspiration system for the treatment of on-site wastewater effluent[J]. Water, 2015, 7(12): 2037 − 2059. doi: 10.3390/w7052037 [4] E ANDA J, LóPEZ-LóPEZ A, VILLEGAS-GARCíA E. High-strength domestic wastewater treatment and reuse with onsite passive methods[J]. Water (Basel), 2018, 10(2): 99. [5] DONNA L S, PETER J R. 15 years of research on wastewater treatment high rate algal ponds in New Zealand: discoveries and future directions[J]. New zealand journal of botany, 2020, 58(4): 334 − 357. doi: 10.1080/0028825X.2020.1756860 [6] PENG J, YINYAN C, TAO X, et al. Efficient nitrogen removal by simultaneous heterotrophic nitrifying-aerobic denitrifying bacterium in a purification tank bioreactor amended with two-stage dissolved oxygen control[J]. Bioresource technology, 2019, 281: 392 − 400. doi: 10.1016/j.biortech.2019.02.119 [7] SHAMSA K, MUHAMMAD S, HAMZA F G, et al. Towards sustainable wastewater management: A spatial multi-criteria framework to site the Land-FILTER system in a complex urban environment[J]. Journal of cleaner production, 2020, 266: 121987. doi: 10.1016/j.jclepro.2020.121987 [8] 王丽媛, 孙洁梅, 叶锴. 农村生活污水分散式处理现状与思考[J]. 四川环境, 2015, 34(2): 74 − 75. doi: 10.3969/j.issn.1001-3644.2015.02.014 [9] 王文明, 危建新, 戴铁华, 等. 人工湿地运行管理关键技术探讨[J]. 环境保护科学, 2014, 40(3): 24 − 28. doi: 10.3969/j.issn.1004-6216.2014.03.006 [10] 艾平, 张衍林, 袁巧霞. 农村生活污水分散式处理技术浅析[J]. 环境保护科学, 2008, 34(6): 8 − 10. doi: 10.3969/j.issn.1004-6216.2008.06.003 [11] 李文凯, 郑天龙, 刘俊新. 农村灰水收集-处理-回用系统现状及应用建议[J]. 工业水处理, 2022, 42(4): 1 − 6. doi: 10.19965/j.cnki.iwt.2021-0251 [12] 谭海威. 农村生活污水分散式处理系统与实用技术的思考[J]. 环境与发展, 2018, 30(7): 66 − 67. doi: 10.16647/j.cnki.cn15-1369/X.2018.07.037 [13] 李无双, 王洪阳, 潘淑君. 农村分散式生活污水现状与处理技术进展[J]. 天津农业科学, 2008(6): 75 − 77. doi: 10.3969/j.issn.1006-6500.2008.06.023 [14] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002: 100-124. [15] 武俊梅, 王荣, 徐栋, 等. 垂直流人工湿地不同填料长期运行效果研究[J]. 中国环境科学, 2010, 30(5): 633 − 638. [16] 陈翰, 马放, 李昂, 等. 低温条件下污水生物脱氮处理研究进展[J]. 中国给水排水, 2016, 32(8): 37 − 43. doi: 10.19853/j.zgjsps.1000-4602.2016.08.010 [17] 古腾, 吴勇, 王橚橦. 曝气生物滤池-模块化人工湿地组合工艺处理农村生活污水[J]. 环境工程, 2018, 36(1): 20 − 24. doi: 10.13205/j.hjgc.201801005 [18] 吴晓莺, 杜悦矜, 周林艳, 等. 模块化填料人工湿地处理农村生活污水[J]. 环境工程学报, 2019, 13(3): 664 − 671. doi: 10.12030/j.cjee.201809052 [19] 孙成斌. 什么形态的氮容易被作物吸收[J]. 化学教育, 2002(5): 3 − 4. doi: 10.3969/j.issn.1003-3807.2002.05.002 [20] 黄玉珠, 万红友. 污水土地处理技术的优势及其应用前景[J]. 环境科学导刊, 2008(6): 71 − 75. doi: 10.3969/j.issn.1673-9655.2008.06.021 [21] 郝晓地, 杨振理, 李季. 疫情背景下污水中的表面活性剂对污水处理效果的影响与机理[J]. 环境工程学报, 2021, 15(6): 1831 − 1839. doi: 10.12030/j.cjee.202101102 [22] KUMAR M A, KUMAR P. Fate of linear alkylbenzene sulfonates in the environment: A review[J]. International biodeterioration & biodegradation, 2009, 63(8): 981 − 987. [23] 任刚, 崔福义, 林涛, 等. 常规混凝沉淀工艺对阴离子表面活性剂的去除研究[J]. 给水排水, 2004, 30(7): 1 − 6. doi: 10.3969/j.issn.1002-8471.2004.07.001 [24] 郭伟, 李培军, 尹炜, 等. 阴离子表面活性剂(LAS)在人工快滤系统中的去除[J]. 辽宁工程技术大学学报(自然科学版), 2006, 25(2): 283 − 285. doi: 10.3969/j.issn.1008-0562.2006.02.038 [25] 郭俊元, 周禺伶, 江世林, 等. 多级土壤渗漏系统处理农村生活污水[J]. 中国环境科学, 2018, 38(9): 3380 − 3390. doi: 10.3969/j.issn.1000-6923.2018.09.023