-
细胞毒性药物作为抗肿瘤治疗的重要手段之一,临床应用广泛. 长期从事细胞毒性药物准备工作的医护人员可能受到职业暴露危害主要有基因突变、生殖影响和致癌[1-3]. 国际癌症研究机构将10余种细胞毒性药物归类为1类致癌物与 2A 类疑似致癌物[4]. 目前有研究报道,细胞毒性药物职业暴露生殖毒性可能导致流产、暂时性或永久性不孕、早产、先天畸形和引起接触者子女学习障碍[5];长期职业暴露将增加患脱发、感染、器官毒性、骨髓毒性、粘膜溃疡、疲劳、出血和头痛的风险[6];此外,职业暴露个体的DNA损伤、染色体异常和癌症的发生率更高[7-8]. 根据国家卫生健康委发布的《静脉用药调配中心建设与管理指南》规定,细胞毒性药物必须在静脉药物调配中心 (Pharmacy Intravenous Admixture Services)中实行集中配置和供应. 工作人员每天参与的排药、混合调配和成品复核等工作,不可避免地接触各类细胞毒性药物,面临着很大的职业暴露风险. PIVAS工作环境物体表面上残留的细胞毒性药物主要是一些低分子量药物,皮肤接触和经皮吸收是其职业暴露的主要途径[9-11]. 因此对PIVAS工作环境,尤其是工作区域物体表面细胞毒性药物残留情况的评估和监测至关重要[12-13].
目前并没有统一的表面污染阈值水平,环境污染的代表药物一般是根据当地所在医院细胞毒性药物使用特性来决定的[14]. 我国目前评估细胞毒性药物残留情况所选取的目标药大多仅研究了环磷酰胺与阿糖胞苷两种药物,而对用量大、毒性大的药物,如吉西他滨、紫杉醇类药物等少有研究[15-17]. 近期有研究利用UPLC-MS/MS对我国10家医院PIVAS进行了环境污染评估和监测,发现其检测的两种药物(环磷酰胺和阿糖胞苷)污染最严重的区域是生物安全柜[15]. 擦拭取样已经广泛应用与环境监测[18-19],本研究采用UPLC-MS/MS,选取了5种使用频率高,性质差异大的细胞毒性药物作为研究对象,通过对生物安全柜及PIVAS内常用材质玻璃、不锈钢和PVC表面进行模拟污染,通过擦拭取样,建立了PIVAS生物安全柜、地面及工作区域其他物体表面上多种细胞毒性药物残留的测定方法,对评估PIVAS工作人员职业暴露风险具有重要意义.
超高效液相色谱-串联质谱法同时测定PIVAS工作环境中5种细胞毒性药物残留
Simultaneous determination of 5 cytotoxic drugs residues in PIVAS workplace ultra-performance liquid chromatography-tandem mass spectrometry
-
摘要: 建立超高效液相色谱-串联质谱技术同时测定医院静脉用药调配中心(PIVAS)工作环境中5种细胞毒性药物吉西他滨、环磷酰胺、表柔比星、依托泊苷及紫杉醇在玻璃、不锈钢和PVC材质表面残留含量的检测方法. 将2 cm×2 cm滤纸用100 μL 80%乙腈-0.1%甲酸溶液润湿后对10 cm×10 cm物表进行擦拭取样,擦拭样品用1 mL 20%乙腈含0.1%甲酸溶液重复提取2次,合并提取液离心后取上清液,以水-乙腈(0.1%甲酸)为流动相梯度洗脱,采用电喷雾电离源正离子模式和MRM模式检测. 结果表明,吉西他滨和环磷酰胺在0.1—800 ng·mL−1、表柔比星和依托泊苷在0.1—200 ng·mL−1、紫杉醇在0.2—200 ng·mL−1范围内线性关系良好,相关系数均大于0.999,方法的检出限为 0.2—1 pg·cm−2,定量限(LOQ)为0.6—3.2 pg·cm−2. 在玻璃、PVC和不锈钢3种材质上3个加标水平(200、1000、4000 ng·mL−1)的回收率为67.1%—108%,相对标准偏差(RSD)为0.8%—13.3%. 用本文建立的方法检测本中心PIVAS环境物体表面,发现5种细胞毒性药物可被不同程度检出,浓度范围为1.8—10898.8 pg·cm−2,PIVAS医务人员存在一定的细胞毒性药物职业暴露风险.
-
关键词:
- 静脉用药调配中心(PIVAS) /
- 细胞毒性药物 /
- 残留 /
- 超高效液相色谱-串联质谱(UPLC-MS/MS).
Abstract: An ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analytical method was established and validated for the simultaneous determination of 5 cytotoxic drugs on the surface of glass, stainless steel, and PVC in the working environment of the pharmacy intravenous admixture service (PIVAS). The 10 cm×10 cm surface was wiped and sampled by a 2 cm×2 cm filter paper moistened with 100 μL of 80% ACN (0.1% FA) solution. Then the sample of filter paper was extracted with 1 mL 20% acetonitrile containing 0.1% formic acid solution two times. The supernatant was taken after centrifugation of the combined extraction solution, then the supernatant was used directly quantitated by UPLC-MS/MS in MRM mode after gradient elution with water and ACN with -0.1% FA as mobile phase. The results showed that good linearity was observed for GEM and CTX from 0.1 ng·mL−1 to 800 ng·mL−1, EPI and VP-16 from 0.1 ng·mL−1 to 200 ng·mL−1, TAX from 0.2 ng·mL−1 to 200 ng·mL−1, with correlation coefficients larger than 0.999. The limits of detection (LODs) were 0.2—1 pg·cm−2 and limits of quantitation (LOQs) were 0.6—3.2 pg·cm−2. The average recoveries at three different spiked levels (200, 1000, 4000 ng·mL−1) ranged from 67.1% to 108%, with relative standard deviations (RSD) of 0.8%—13.3%. This method was used to detect the surface of the PIVAS environment, and it was found that five cytotoxic drugs could be detected with concentrations range from 1.8 pg·cm−2 to 10898.8 pg·cm−2, which indicated that unintended occupational exposure to antineoplastic drugs may occur in PIVAS. -
表 1 5种细胞毒性药物和内标的串联质谱参数
Table 1. Detection parameters of 5 cytotoxic drugs and internal standard with tandem mass spectrometry
化合物
Compounds保留时间/min
Retention time母离子
Precursor ion (m/z)子离子
Product ions (m/z)锥孔电压/V
Cone voltage碰撞能量/V
Collision energyGEM 0.42 264.3 112.0 72 23 APR 1.84 189.3 56.0 78 49 CTX 2.6 261.1 140.1 92 29 EPI 2.86 544.3 379.0 105 27 VP-16 3.19 589.3 229.1 116 20 TAX 3.61 876.4 308.2 60 28 表 2 5种细胞毒性药物和内标物的基质效应及回收率
Table 2. The matrix effect and recovery of 5 cytotoxic drugs and IS
化合物
Compounds浓度/(ng·mL−1)
Concentration基质效应/%
Matrix effect内标归一化的基质效应/%
IS-normalized matrix effect回收率/%
Recovery内标归一化的回收率/%
IS-normalized recoveryGEM 5 98.2±6.2 94.8±5.5 94.3±9.8 92.2±5.0 25 96.2±1.1 94.5±0.7 92.8±8.4 105.9±11.9 100 96.5±1.3 94.0±2.4 97.8±5.2 108.7±3.0 CTX 5 100.2±2.4 96.7±1.2 91.6±10.8 89.5±7.2 25 98.9±7.5 97.1±7.0 92.5±3.7 105.4±7.3 100 103.0±3.7 100.3±2.5 90.8±3.4 101.3±2.3 EPI 5 101.9±6.4 98.4±8.7 95.6±4.7 93.7±4.3 25 100.5±4.2 98.7±5.7 93.3±3.0 106.2±2.9 100 101.9±1.4 99.3±2.6 91.3±1.6 102.8±1.8 VP-16 5 98.6±11.2 95.0±8.5 101.3±5.6 99.3±8.0 25 96.0±7.0 94.2±6.1 95.2±9.2 108.3±8.0 100 101.4±2.1 98.8±2.7 95.9±2.9 109.3±3.5 TAX 5 101.0±10.0 97.7±12.9 87.6±7.6 85.6±2.1 25 91.5±8.3 89.9±9.8 87.0±10.7 98.9±10.1 100 99.6±6.4 97.1±6.8 89.2±6.2 99.2±7.1 APR 10 102.7±1.9 92.5±9.1 表 3 5种细胞毒性药物的线性方程、线性范围、相关系数、检出限与定量限
Table 3. Linear regression equation, R2, linear range, detection limit and quantitative limit of 5 cytotoxic drugs
化合物
Compounds线性回归方程
Regression equation线性范围/( ng·mL−1)
Linear rangeR2 LOD/ ( pg·cm−2) LOQ/ ( pg·cm−2) GEM y=0.186x+0.00628 0.1—800 0.9990 0.2 0.6 CTX y=0.0475x-0.00165 0.1—800 0.9996 0.2 0.6 EPI y=0.0099x+0.000765 0.1—200 0.9994 0.4 1.2 VP-16 y=0.0209x+0.00026 0.1—200 0.9996 0.4 1.2 TAX y=0.00189x+0.0000717 0.2—200 0.9994 1 3.2 表 4 不同材质物表上5种细胞毒性药物的回收率及相对标准偏差(n=6)
Table 4. Recovery and RSD of 5 cytotoxic drugs on different materials surfaces (n=6)
化合物
Compounds添加10 ng
Added添加50 ng
Added添加200ng
AddedRecovery/% RSD/% Recovery /% RSD/% Recovery /% RSD/% 玻璃表面
Glass surfaceGEM 86.4 4.9 104 4.5 84.9 4.3 CTX 108 1.9 106 2.7 98.0 2.4 EPI 98.5 7.1 93.0 4.8 97.0 6.6 VP-16 102 4.3 97.9 8.3 99.5 6.9 TAX 105 2.9 99.3 4.2 101 6.6 PVC 表面
PVC surfaceGEM 87.7 5.5 89.1 6.4 85.1 1.4 CTX 107 4.7 98.6 4.0 98.7 3.8 EPI 97.5 2.2 99.2 0.8 94.0 6.1 VP-16 96.7 3.1 95.1 0.8 92.1 4.8 TAX 93.1 13.3 101 6.8 97.6 5.1 不锈钢表面
Stainless steel surfaceGEM 89.0 4.7 88.8 6.3 87.2 9.7 CTX 85.7 4.5 101 1.5 97.9 3.6 EPI 68.3 3.8 67.1 1.3 69.4 7.7 VP-16 83.5 2.5 90.3 9.0 89.3 8.4 TAX 76.0 8.8 87.4 4.8 85.9 11.0 表 5 PIVAS工作区域5种细胞毒性药物残留情况
Table 5. Residues of 5 cytotoxic drugs in PIVAS working area
残留量/ (pg·cm−2 )
ResiduesGEM CTX EPI VP-16 TAX 准备区桌面
Preparation area -desktop13.6 34.3 — 1.8 24.8 准备区推车
Preparation area-trolley worktop69.0 83.0 — 37.8 69.0 准备区地面
Preparation area-floor9.1 64.7 — — 66.6 成品复核区桌面
Check area-desktop48.5 184.5 — 27.4 47.6 配置间推车
Clean room- trolley worktop339.3 594.3 — 14.9 47.8 传递窗
Delivery window95.1 246.4 — 12.8 23.4 传递窗门把手
Delivery window handles443.5 888.6 2.6 87.5 75.6 配置间门把手
Clean room- door handles443.0 689.9 — 127.5 60.2 配置间地面
Clean room-floor54.3 1463.6 — 24.1 32.7 生物安全柜台面
BSC workbench792.9 6391.9 1.9 292.3 349.0 生物安全柜侧壁
BSC side wall1552.7 3545.7 — 375.8 314.2 生物安全柜内侧玻璃
Inside the windscreen of BSC1013.4 10898.8 10.8 364.8 404.2 生物安全柜外侧玻璃
Outside the windscreen of BSC604.9 2253.2 — 85.1 102.7 生物安全柜外沿
Outer edge of BSC819.9 2650.8 1.6 1109.4 503.6 注: “ —” 表示无对应值. Note:“ —” Represented no corresponded value -
[1] SKOV T, MAARUP B, OLSEN J, et al. Leukaemia and reproductive outcome among nurses handling antineoplastic drugs [J]. British Journal of Industrial Medicine, 1992, 49(12): 855-861. [2] FRANSMAN W, ROELEVELD N, PEELEN S, et al. Nurses with dermal exposure to antineoplastic drugs: reproductive outcomes [J]. Epidemiology, 2007, 18(1): 112-119. doi: 10.1097/01.ede.0000246827.44093.c1 [3] SUSPIRO A, PRISTA J. Biomarkers of occupational exposure do anticancer agents: A minireview [J]. Toxicology Letters, 2011, 207(1): 42-52. doi: 10.1016/j.toxlet.2011.08.022 [4] National Toxicology Program. NTP 12th Report on Carcinogens[R]. Report on Carcinogens: Carcinogen Profiles, 2011, 12: 499. [5] CONNOR TH, LAWSON CC, POLOVICH M, et al. Reproductive health risks associated with occupational exposures to antineoplastic drugs in health care settings: a review of the evidence [J]. Journal of Occupational and Environmental Medicine, 2014, 56(9): 901-910. doi: 10.1097/JOM.0000000000000249 [6] FRANSMAN W, PEELEN S, HILHORST S, et al. A pooled analysis to study trends in exposure to antineoplastic drugs among nurses [J]. The Annals of Occupational Hygiene, 2007, 51(3): 231-239. [7] VIEGAS S, OLIVEIRA AC, CAROLINO E, et al. Occupational exposure to cytotoxic drugs: the importance of surface cleaning to prevent or minimise exposure [J]. Archives of Industrial Hygiene and Toxicology, 2018, 69(3): 238-249. doi: 10.2478/aiht-2018-69-3137 [8] HON C Y, TESCHKE K, CHU W, et al. Antineoplastic drug contamination of surfaces throughout the hospital medication system in Canadian hospitals [J]. Journal of Occupational and Environmental Hygiene, 2013, 10(7): 374-383. doi: 10.1080/15459624.2013.789743 [9] CONNOR TH, SESSINK PJ, HARRISON BR, et al. Surface contamination of chemotherapy drug vials and evaluation of new vial-cleaning techniques: results of three studies [J]. American Journal of Health-System Pharmacy, 2005, 62(5): 475-484. doi: 10.1093/ajhp/62.5.475 [10] MARIE P, CHRISTOPHE C, MANON R, et al. Environmental monitoring by surface sampling for cytotoxics: a review [J]. Environmental Monitoring and Assessment, 2017, 189(2): 52. doi: 10.1007/s10661-016-5762-9 [11] ACRAMEL A, CHOUQUET T, PLÉ A, et al. Development and validation of a liquid chromatography tandem mass spectrometry quantification method for 14 cytotoxic drugs in environmental samples [J]. Rapid Communications in Mass Spectrometry, 2020, 34(4): e8594. [12] 包健安, 沈国荣, 王人英, 等. 多中心PIVAS集中调配人员抗肿瘤药物职业暴露评估 [J]. 中国医院药学杂志, 2016, 36(9): 701-706. doi: 10.13286/j.cnki.chinhosppharmacyj.2016.09.01 BAO J A, SHEN G R, WANG R Y, et al. A multicenter investigation of occupational exposure risks in workers to antineoplastic drugs in pharmacy intravenous admixture services [J]. Chinese Journal of Hospital Pharmacy, 2016, 36(9): 701-706(in Chinese). doi: 10.13286/j.cnki.chinhosppharmacyj.2016.09.01
[13] 胡小刚, 张小华, 陈开杰, 等. 基于生物学指标评估我院PIVAS医务人员职业性接触抗肿瘤药物的风险 [J]. 中国药房, 2020, 31(18): 2283-2288. doi: 10.6039/j.issn.1001-0408.2020.18.19 HU X G, ZHANG X H, CHEN K J, et al. Evaluation of the risk of medical staff occupationally exposed to antineoplastic drugs in PIVAS of our hospital based on biological indicators [J]. China Pharmacy, 2020, 31(18): 2283-2288(in Chinese). doi: 10.6039/j.issn.1001-0408.2020.18.19
[14] ROSSIGNOL E, AMIAND M B, SORRIEUL J, et al. A fully validated simple new method for environmental monitoring by surface sampling for cytotoxics [J]. Journal of Pharmacological and Toxicological Methods, 2020, 101: 106652. doi: 10.1016/j.vascn.2019.106652 [15] 李芸, 沈国荣, 张晶晶, 等. 我国10家医院静脉药物调配中心抗肿瘤药物环境污染评估及工作人员防护措施效果比较 [J]. 中国医院药学杂志, 2021, 41(24): 2591-2596. doi: 10.13286/j.1001-5213.2021.24.17 LI Y, SHEN GR, ZHANG JJ, et al. Antineoplastic drug environmental pollution assessment and outcome comparisons of different staff protective measures in pharmacy intravenous admixture services at ten domestic hospitals [J]. Chinese Journal of Hospital Pharmacy, 2021, 41(24): 2591-2596(in Chinese). doi: 10.13286/j.1001-5213.2021.24.17
[16] 邹东岑, 徐帆. 4种细胞毒性药物对不同材质手套的穿透性研究 [J]. 华西药学杂志, 2019, 34(5): 475-480. doi: 10.13375/j.cnki.wcjps.2019.05.009 ZOU D C, XU F. Investigation on 4 cytotoxic drugs penetrating gloves made from different materials [J]. West China Journal of Pharmaceutical Sciences, 2019, 34(5): 475-480(in Chinese). doi: 10.13375/j.cnki.wcjps.2019.05.009
[17] 尹红梅. 某医院静脉用药调配中心工作人员抗肿瘤药物职业暴露评估研究 [J]. 中国当代医药, 2020, 27(18): 179-182. doi: 10.3969/j.issn.1674-4721.2020.18.052 YIN H M. Study of occupational exposure risk in workers to anticancer drugs in pharmacy intravenous admixture service of a hospital [J]. China Modern Medicine, 2020, 27(18): 179-182(in Chinese). doi: 10.3969/j.issn.1674-4721.2020.18.052
[18] NUSSBAUMER S, GEISER L, SADEGHIPOUR F, et al. Wipe sampling procedure coupled to LC-MS/MS analysis for the simultaneous determination of 10 cytotoxic drugs on different surfaces [J]. Analytical and Bioanalytical Chemistry, 2012, 402(8): 2499-2509. doi: 10.1007/s00216-011-5157-2 [19] TURCI R, SOTTANI C, SPAGNOLI G, et al. Biological and environmental monitoring of hospital personnel exposed to antineoplastic agents: a review of analytical methods [J]. Journal of Chromatography B, 2003, 789(2): 169-209. doi: 10.1016/S1570-0232(03)00100-4 [20] SUNG H, FERLAY J, SIEGEL RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA:a Cancer Journal for Clinicians, 2021, 71(3): 209-249. doi: 10.3322/caac.21660 [21] COX J, SPEED V, O'NEAL S, et al. Development and evaluation of a novel product to remove surface contamination of hazardous drugs [J]. Journal of Oncology Pharmacy Practice, 2017, 23(2): 103-115. doi: 10.1177/1078155215621151 [22] PORTILHA-CUNHA MF, ALVES A, SANTOS MSF. Cytostatics in indoor environment: an update of analytical methods [J]. Pharmaceuticals, 2021, 14(6): 574. doi: 10.3390/ph14060574 [23] Occupational Safety and Health Administration (OSHA). Evaluation Guidelines for Surface Sampling Methods; OSHA Salt Lake Technical Center: Salt Lake City, UT, USA, 2001. [24] COLOMBO M, JERONIMO M, ASTRAKIANAKIS G, et al. Wipe sampling method and evaluation of environmental variables for assessing surface contamination of 10 antineoplastic drugs by liquid chromatography/tandem mass spectrometry [J]. Annals of Work Exposures and Health, 2017, 61(8): 1003-1014. doi: 10.1093/annweh/wxx070 [25] JERONIMO M, COLOMBO M, ASTRAKIANAKIS G, et al. A surface wipe sampling and LC-MS/MS method for the simultaneous detection of six antineoplastic drugs commonly handled by healthcare workers [J]. Analytical and Bioanalytical Chemistry, 2015, 407(23): 7083-7092. doi: 10.1007/s00216-015-8868-y [26] KIFFMEYER T K, TUERK J, HAHN M, et al. Application and assessment of a regular environmental monitoring of the antineoplastic drug contamination level in pharmacies - the MEWIP project [J]. The Annals of Occupational Hygiene, 2013, 57(4): 444-455.