-
臭氧(O3)常温下呈淡蓝色,具有强氧化性. 平流层的臭氧可通过吸收紫外线,降低紫外线对植物的伤害;对流层的臭氧增加则会污染空气[1],是近地面重要的大气污染物. 近地面O3主要由人为源和天然源排放的挥发性有机物(VOCs)和氮氧化物(NOX)等污染物通过光化学反应生成[2]. 近地面臭氧会影响生态系统及危害人类健康,进而影响全球气候变化[3]. 因此,对近地面臭氧的分析与研究具有重要的意义.
近几年,我国环境空气中以O3为首要污染物的天数逐年递增[4],已成为我国大气污染治理存在的主要问题之一,其变化特征和形成机理是近年来研究环境空气污染状况的方向和重点,是污染防控措施的前提和基础[4]. 我国大气污染过程是一个复合型污染,在不同地区,不同影响因素,表现出不同的变化特征. 例如京津冀、成渝各季节O3浓度值均呈现相似规律夏季>春季>秋季>冬季的变化特征[5-6];长三角地区呈现春夏高,秋冬低的季节变化特征[7];珠三角地区则呈现出秋季高,春季次之,夏、冬低的特点[8]. 林文鹏等[9]研究分析我国2019 年243 个城市共计1215 个站点的臭氧浓度数据,表明中我国大部分城市臭氧高发期主要集中在夏季6、7 月份,春末秋初次之,冬季基本不发生污染的变化特征,与海南省现有研究呈相反的特征[10-11]. 目前海南省大气臭氧污染研究,主要集中在海口市和三亚市等重点城市,对非重点城市研究较少.
文昌市位于海南省东北角,紧邻海口市,与雷州半岛隔海相望,是海南省受珠三角地区污染传输影响最先到达的区域. 本文以2017—2021 年文昌市O3浓度变化趋势与前体物氮氧化物浓度及风速、风向、温度、相对湿度等气象因子进行关联性分析,同时对2019 年9 月底和2021 年1 月上旬两次典型O3污染过程的输送路径及潜在源区进行分析,为了解我国南部区域臭氧传输机理以及为文昌市大气污染防治工作提供科学帮助.
文昌市臭氧污染特征、输送路径及潜在源区分析
Characteristics, transport routes and potential sources of ozone pollution in Wenchang
-
摘要: 通过对2017—2021 年文昌市O3和气象观测数据的分析,利用后向轨迹聚类和潜在源区等分析方法,研究了该文昌市O3污染特征. 研究结果发现,2017—2021 年文昌市O3总体优良,O3日最大8 h滑动平均值在18—212 μg·m−3之间,超过160 μg·m−3的超标天多发生在9 月—次年1 月. 与国内多数城市不同,文昌市O3浓度与平均气温、相对湿度、平均风速、降水量为负相关关系;O3浓度与风向变化关系密切;夏季以偏南风为主,受外来污染传输影响较小,O3浓度较低;秋冬季主导风向为东北风,O3浓度较高,受内陆区域的污染传输影响明显增多. 文昌市O3超标的天气形势主要表现为台风外围和冷高压南下两种. 经聚类分析表明文昌市O3污染主要潜在源区为珠三角地区.Abstract: Based on the analysis of O3 and meteorological observation data in Wenchang City from 2017 to 2021, the characteristics of O3 pollution in Wenchang City were studied by using the methods of potential source areas and backward trajectory clustering models. The results showed that: (1) O3 in Wenchang City is generally excellent from 2017 to 2021 and the daily maximum 8-hour average O3 concentrations between 18 μg·m-3 and 212 μg·m−3; and the days exceeding the standard of 160 μg·m−3 mostly occurred from September to January of the following year. (2) Unlike most cities in China, the O3 concentration in Wenchang was negatively correlated with negative correlation with mean temperature,relative humidity, mean wind speed and precipitation, and was closely related to wind direction; in summer, it was mainly southerly wind, which was less affected by external pollution transmission, and the O3 concentration was low.in autumn and winter, the dominant wind direction was the northeast wind, and the concentration of O3 was higher, whichwas obviously affected by the pollution transmission in inland areas. (3) The weather situation of O3 over-standard in Wenchang was mainly manifested in the periphery of the typhoon and the southward movement of the cold high. Cluster analysis showed that the main potential source of O3 pollution in Wenchang was Pearl River Delta.
-
Key words:
- Wenchang /
- ozone /
- pollution /
- weather patterns /
- potential sources
-
表 1 气象因子与O3-8 h浓度的相关系数
Table 1. The correlation coefficient between meteorological factors and O3-8h concentration
季节
Season平均气温/℃
Mean temperature相对湿度/%
Relative humidity平均风速/(m·s−1)
Mean wind speed降水量/mm
Precipitation春季 −0.308** 0.102** −0.228** 0.004 夏季 −0.014 0.045** 0.020* −0.001 秋季 −0.269** −0.203** 0.118** −0.050** 冬季 −0.067** −0.241** −0.012 −0.01 全年 −0.235** −0.092** −0.047** −0.021** ** 在0.01级别(双尾),相关性显著. ** At 0.01 level (two-tailed) , the correlation was significant.
* 在0.05级别(双尾),相关性显著. * At 0.05 level (two-tailed) , the correlation was significant.表 2 文昌市后向轨迹聚类统计结果
Table 2. Clustering statistical results of backward trajectory of Wenchang City
聚类
Clustering聚类轨迹占
所有轨迹/%
Cluster trajectories
accounted for all
trajectories到达受体点对应
O3小时平均浓度/(μg·m−3)
Reaching the receptor site
corresponds to the hourly
average concentration of O3超标轨迹占
总超标轨迹/%
Out-of-standard track
accounted for the total
out-of-standard track超标轨迹对应
O3小时平均浓度/
(μg·m−3)
The over-standard trajectory
corresponds to the hourly
average concentration of O32019 年9 月20—29 日 1 15.42 106±35 11.9 137±19 2 27.92 120±34 27 149±17 3 17.92 154±46 22.2 174±26 4 9.17 150±22 14.3 159±12 5 29.58 111±41 24.6 154±18 2021 年1 月4—6 日 1 30.56 126±41 84.6 161±23 2 20.83 98±13 7.7 118±0 3 25 89±16 7.7 119±0 4 16.67 74±12 0 0 5 6.94 90±1 0 0 -
[1] 杨洋, 秦本念. 环境空气中臭氧的污染防治对策研究 [J]. 皮革制作与环保科技, 2021, 2(16): 70-71. YANG Y, QIN B N. Study on prevention and control countermeasures of ozone pollution in ambient air [J]. Leather Manufacture and Environmental Technology, 2021, 2(16): 70-71(in Chinese).
[2] 陈金媛, 郑凯允, 朱俊, 等. 湖州市近地面臭氧污染特征及一次污染过程分析 [J]. 浙江工业大学学报, 2021, 49(6): 683-690. CHEN J Y, ZHENG K Y, ZHU J, et al. Analysis on the characteristics of near-surface ozone pollution and a pollution process in Huzhou [J]. Journal of Zhejiang University of Technology, 2021, 49(6): 683-690(in Chinese).
[3] 张秀丽, 陶士康, 董韶妮, 等. 臭氧污染特征及影响因素研究 [J]. 环境科学与管理, 2022, 47(2): 47-50,66. ZHANG X L, TAO S K, DONG S N, et al. Study on characteristics and influencing factors of ozone in Yantai [J]. Environmental Science and Management, 2022, 47(2): 47-50,66(in Chinese).
[4] 王琰, 杨倩倩. 2019—2020年泰安城区臭氧污染特征分析[J]. 黑龙江环境通报, 2022, 35(1): 12-14, 21. WANG Y, YANG Q Q. Analysis of O3 pollution characteristics in Tai'an urban area from 2019 to 2020[J]. Heilongjiang Environmental Journal, 2022, 35(1): 12-14, 21(in Chinese). (6): 683-690.
[5] 崔梦瑞. 京津冀地区臭氧时空分布特征与影响因素分析[D]. 重庆: 重庆交通大学, 2020. CUI M R. Analysis of the characteristics and influencing factors of ozone temporal and spatial distribution in Beijing-Tianjin-Hebei[D]. Chongqing: Chongqing Jiaotong University, 2020(in Chinese).
[6] 张青, 宫正宇, 孟晓艳, 等. 成渝地区臭氧污染特征分析[J]. 环境科学与技术, 2017, 40(增刊1): 9-11. ZHANG Q, GONG Z Y, MENG X Y, et al. Analysis of ozone pollution in Chengdu-Chongqing region[J]. Environmental Science & Technology, 2017, 40(Sup 1): 9-11 (in Chinese).
[7] 孙睿, 张红, 汪水兵, 等. 长三角区域典型城市臭氧时空分布及其与气象因素相关性研究 [J]. 大气与环境光学学报, 2021, 16(6): 483-494. SUN R, ZHANG H, WANG S B, et al. Temporal and spatial distribution of ozone in typical cities of Yangtze River Delta region and its correlation with meteorological factors [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(6): 483-494(in Chinese).
[8] 赵伟, 高博, 卢清, 等. 2006—2019年珠三角地区臭氧污染趋势 [J]. 环境科学, 2021, 42(1): 97-105. ZHAO W, GAO B, LU Q, et al. Ozone pollution trend in the Pearl River Delta region during 2006-2019 [J]. Environmental Science, 2021, 42(1): 97-105(in Chinese).
[9] 林文鹏, 郭欣瞳. 中国城市群臭氧时空分布特征分析 [J]. 中国环境科学, 2022, 42(6): 2481-2494. LIN W P, GUO X T. Spatial and temporal distribution characteristics of ozone in Urban agglomerations in China [J]. China Environmental Science, 2022, 42(6): 2481-2494(in Chinese).
[10] 徐文帅, 邢巧, 孟鑫鑫, 等. 海口市臭氧污染特征 [J]. 中国环境监测, 2017, 33(4): 186-193. XU W S, XING Q, MENG X X, et al. Characteristics of ozone pollution in Haikou [J]. Environmental Monitoring in China, 2017, 33(4): 186-193(in Chinese).
[11] 谢文晶, 邢巧, 徐文帅, 等. 三亚市臭氧污染特征、输送路径及潜在源区分析 [J]. 中国环境监测, 2022, 38(3): 83-95. XIE W J, XING Q, XU W S, et al. Characteristics, transport routes and potential sources of ozone pollution in Sanya [J]. Environmental Monitoring in China, 2022, 38(3): 83-95(in Chinese).
[12] DRAXLER R. An overview of the HYSPLIT_4 modelling system for trajectories, dispersion, and deposition [J]. Australian Meteorological Magazine, 1998, 47(4): 295-308. [13] ARA BEGUM B, KIM E, JEONG C H, et al. Evaluation of the potential source contribution function using the 2002 Quebec forest fire episode [J]. Atmospheric Environment, 2005, 39(20): 3719-3724. doi: 10.1016/j.atmosenv.2005.03.008 [14] POLISSAR A V, HOPKE P K, HARRIS J M. Source regions for atmospheric aerosol measured at Barrow, Alaska [J]. Environmental Science & Technology, 2001, 35(21): 4214-4226. [15] WANG Y Q, ZHANG X Y, ARIMOTO R. The contribution from distant dust sources to the atmospheric particulate matter loadings at XiAn, China during spring [J]. Science of the Total Environment, 2006, 368(2/3): 875-883. [16] SHARMA A, MANDAL T K, SHARMA S K, et al. Relationships of surface ozone with its precursors, particulate matter and meteorology over Delhi [J]. Journal of Atmospheric Chemistry, 2017, 74(4): 451-474. doi: 10.1007/s10874-016-9351-7 [17] HSU Y K, HOLSEN T M, HOPKE P K. Comparison of hybrid receptor models to locate PCB sources in Chicago [J]. Atmospheric Environment, 2003, 37(4): 545-562. doi: 10.1016/S1352-2310(02)00886-5 [18] 李刚, 王海林, 伯鑫, 等. 2017年冬季沧州市一次重污染过程PM2.5污染特征及成因 [J]. 环境化学, 2022, 41(8): 2551-2560. doi: 10.7524/j.issn.0254-6108.2021042204 LI G, WANG H L, BO X, et al. PM2.5 pollution characterization and cause analysis of a heavy pollution event in winter 2017, Cangzhou City [J]. Environmental Chemistry, 2022, 41(8): 2551-2560(in Chinese). doi: 10.7524/j.issn.0254-6108.2021042204
[19] 刘玉红. 中国臭氧污染时空分布特征及影响因素研究[D]. 大连: 大连理工大学, 2021. LIU Y H. Research on the spatiotemporal distribution characteristics and influencing factors of ozone pollution in China[D]. Dalian: Dalian University of Technology, 2021 (in Chinese).
[20] 沈瑞珊, 王琼, 熊险平. 沧州近地面臭氧浓度与气象条件关系 [J]. 环境科学导刊, 2020, 39(5): 50-59. doi: 10.13623/j.cnki.hkdk.2020.05.019 SHEN R S, WANG Q, XIONG X P. Correlation between near-surface ozone concentration and meteorological conditions in Cangzhou [J]. Environmental Science Survey, 2020, 39(5): 50-59(in Chinese). doi: 10.13623/j.cnki.hkdk.2020.05.019
[21] 王文婧, 吴婷, 严云志, 等. 芜湖市臭氧污染现状及其影响因素分析 [J]. 青岛理工大学学报, 2022, 43(1): 85-92. doi: 10.3969/j.issn.1673-4602.2022.01.013 WANG W J, WU T, YAN Y Z, et al. Analysis of ozone pollution and its influencing factors in Wuhu City [J]. Journal of Qingdao University of Technology, 2022, 43(1): 85-92(in Chinese). doi: 10.3969/j.issn.1673-4602.2022.01.013
[22] 杨允凌, 郝巨飞, 杨丽娜, 等. 一次连续臭氧污染过程的气象条件分析 [J]. 干旱气象, 2020, 38(3): 448-456. YANG Y L, HAO J F, YANG L N, et al. Analysis of meteorological conditions of a continuous ozone pollution process in Xingtai of Hebei Province [J]. Journal of Arid Meteorology, 2020, 38(3): 448-456(in Chinese).
[23] 符传博, 徐文帅, 丹利, 等. 前体物与气象因子对海南省臭氧污染的影响 [J]. 环境科学与技术, 2020, 43(7): 45-50. doi: 10.19672/j.cnki.1003-6504.2020.07.007 FU C B, XU W S, DAN L, et al. Impacts of precursors and meteorological factors on ozone pollution in Hainan Province [J]. Environmental Science & Technology, 2020, 43(7): 45-50(in Chinese). doi: 10.19672/j.cnki.1003-6504.2020.07.007
[24] 郭燕燕. 河北省臭氧污染特征及影响因素分析[D]. 石家庄: 河北师范大学, 2021. GUO Y Y. Analysis of characteristics and influencing factors of ozone pollution in Hebei Province[D]. Shijiazhuang: Hebei Normal University, 2021 (in Chinese).
[25] 兰梦迪. 宜春市臭氧污染特征及其影响因素分析 [J]. 河南科技, 2022, 41(9): 114-118. doi: 10.19968/j.cnki.hnkj.1003-5168.2022.09.025 LAN M D. Analysis of ozone pollution characteristics and influencing factors in Yichun city [J]. Henan Science and Technology, 2022, 41(9): 114-118(in Chinese). doi: 10.19968/j.cnki.hnkj.1003-5168.2022.09.025
[26] 赵玉敏. 盐城市大丰区臭氧污染特征及影响因素分析[J]. 绿色科技, 2021, 23(12): 117-119. ZHAO Y M. Analysis of ozone pollution characteristics and influencing factors in Dafeng District of Yancheng City[J]. Journal of Green Science and Technology, 2021, 23(12): 117-119 (in Chinese). Science and Technology, 2021, 23(12): 117-119(in Chinese).
[27] 杨云芸, 胡燕, 肖童觉, 等. 湖南省长株潭城市群臭氧分布特征研究及分析 [J]. 灾害学, 2021, 36(2): 97-103. doi: 10.3969/j.issn.1000-811X.2021.02.017 YANG Y Y, HU Y, XIAO T J, et al. Distribution characteristics of ozone in Chang-Zhu-Tan urban agglomeration of Hunan Province [J]. Journal of Catastrophology, 2021, 36(2): 97-103(in Chinese). doi: 10.3969/j.issn.1000-811X.2021.02.017
[28] 刘怡卉. 我国臭氧污染现状及管控措施建议 [J]. 山东化工, 2021, 50(1): 253-254. doi: 10.3969/j.issn.1008-021X.2021.01.112 LIU Y H. Present situation of ozone pollution in China and suggestions on control measures [J]. Shandong Chemical Industry, 2021, 50(1): 253-254(in Chinese). doi: 10.3969/j.issn.1008-021X.2021.01.112