-
燃放烟花爆竹是国内外在重大宗教和文化节日期间的传统习俗之一,如印度排灯节、法国巴士底日、英国盖伊·福克斯之夜、美国独立日等都要燃放烟花爆竹[1-2]. 我国在春节和元宵节期间烟花爆竹燃放量最大、时间最集中. 烟花爆竹的燃放为节日增添了喜庆气氛,也同时带来了很多负面的影响,如易引起火灾、产生噪声污染,并且向大气中排放了大量的气溶胶污染物等. 污染物在短时间内大量排放造成了空气质量急剧恶化,能见度降低[3],影响了人民群众的生产生活也会对人体健康造成危害[4-5],特别是对易感人群,引起哮喘和癌症等疾病[6-9]. 污染物中的水溶性离子会增加有毒有机物的溶解性[10],难以被生物降解的重金属可以使人体内的蛋白质和酶等失去活性,重金属在人体的某些器官中积累,造成慢性中毒[11-14]. 因此,近年来各地政府出台了一系列相应的禁限放规定,划定了禁燃区,比如北京市2017年规定五环路以内为禁止燃放烟花爆竹区域[15],《上海市烟花爆竹安全管理条例》规定2017年起禁止在外环线以内区域燃放烟花爆竹等. 针对秋冬季重污染事件频发的问题,2018年汾渭平原首次被纳入大气污染综合治理攻坚行动中,汾渭平原各城市加大了禁燃禁放的控制范围和管控力度. 2018年春节期间宝鸡市区全面禁止燃放烟花爆竹,2019年底规定在2020/1/1—2020/3/31期间,除市区为禁售禁燃区域之外,凤翔、岐山、扶风、眉县政府也将全域列入烟花爆竹禁燃禁放区域,而其余区县只将其县城建成区列入禁燃禁放区域. 但是各地主要针对主城区或主干道周边提出了禁限放措施,而对大多农村地区和城乡结合部没有禁限放要求,导致春节期间烟花爆竹的燃放量仍较大,对宝鸡市及周边地区空气质量仍存在较明显的影响.
尽管在2019年生态环保部通报的汾渭平原11个重点城市中宝鸡的空气质量综合排名第一,整体空气质量较好,但仍有一些空气污染事件发生,并且在全国169个城市中,宝鸡排名倒数第67位[16],情况不容乐观. 2014年徐衡等[17]分析了春节期间烟花爆竹对宝鸡市区颗粒物浓度的影响,张婷等[18]对2012年3月—2013年3月宝鸡市大气PM2.5中水溶性离子组分污染特征进行了分析,大多数以往研究主要集中在对宝鸡某个季节和近几年的常规污染物及某一次污染事件的研究分析[19-21],或者气象条件对宝鸡污染的影响等[22]. 随着近年来对空气污染问题的重视和“蓝天保卫战”的顺利实施,宝鸡市大气气溶胶污染的趋势和特征都较之以前发生了很大的变化.
本文选取2020年春节期间烟花爆竹燃放对空气质量的影响进行研究,获得了2020年春节采样期间大气颗粒物及其主要化学组分的浓度变化特征,对烟花爆竹中五种成分的化学组分进行了分析,评价了通过呼吸途径造成的人群健康风险(致癌风险和非致癌风险),从而为宝鸡市大气污染防治及制定有针对性的烟花爆竹禁限放等规定提供科学依据和数据支持.
烟花爆竹燃放事件对宝鸡市空气质量的影响及健康风险评估
Impact of fireworks displays events on air quality and health risk assessment in Baoji
-
摘要: 基于宝鸡市2020年春节期间高时间分辨率大气颗粒物及主要化学组分数据(包括PM10、PM2.5、水溶性离子和重金属元素等),针对燃放烟花爆竹对关键污染组分的影响及重金属呼吸暴露健康风险评价进行了分析. 结果表明,烟花爆竹燃放期和非燃放期PM2.5质量浓度均值分别为168.6 μg·m−3和125.4 μg·m−3. 其中浓度升高较为明显(增长倍数>1)的组分为Mg2+、Ba、K和K+,从非燃放期的71.1、16.7、980.0 ng·m−3和1.26 μg·m−3,升高至609.0、140.7、2907.6 ng·m−3和2.61 μg·m−3. 相较于非燃放期,燃放烟花爆竹期间SO2和NO2二次无机转化提高,酸性离子SO42−和NO3−含量更为丰富;二次无机离子在细颗粒物中的占比由非燃放期39.7%增高至燃放期45.0%. 相关性分析可以发现,Al、Mg2+、K+、K和Ba等组分燃放期相关性明显升高,但是有一部分组分(如Sb、Ca、As等)相关性却降低,这归因于烟花添加物质不同. 利用健康风险评估模型,发现重金属非致癌风险呈现出儿童>成年男性>成年女性,风险值均小于1,说明对人体健康影响较小;而重金属致癌风险呈现:成年男性>成年女性>儿童,多种重金属元素暴露的致癌风险在10−6—10−4之间,存在一定的致癌风险. 烟花爆竹燃放不仅会引起空气质量恶化,还会对人体造成一定的危害. 因此,烟花爆竹禁燃对改善城市空气质量至关重要.Abstract: Based on the measurements of atmospheric particulate matter and the major chemical components (including PM10, PM2.5, water-soluble ions, and heavy metal elements) during the Spring Festival in Baoji in 2020, the variations of major components, effects of fireworks, and the health risk evaluation of heavy metal respiratory exposure were analyzed with high temporal resolution data. The results showed that the average concentrations of PM2.5 were 168.6 μg·m−3 and 125.4 μg·m−3 during fireworks displays and non-fireworks period, respectively. The concentrations of Mg2+, Ba, K and K+ were increased significantly (growth multiple >1) from 71.1, 16.7, 980.0 ng·m−3 and 1.26 μg·m−3 during non-fireworks period, to 609.0, 140.7, 2907.6 ng·m−3 and 2.61 μg·m−3 during fireworks period. The secondary inorganic conversion of SO2 and NO2 increased during the firework period, and heightened contributions of SO42− and NO3− were observed. The proportion of secondary inorganic ions increased from 39.7% (non-fireworks period) to 45.0% (firework period) in fine particulate matter. The correlations among Al, Mg2+, K+, K, and Ba increased significantly during the firework period, while these for some components (e.g., Sb, Ca, As, etc.) decreased, which may be attributed to the material added. By using the health risk assessment model recommended by the US EPA, the non-carcinogenic risk of heavy metals elements showed that: child > adult male > adult female, and the risk values were less than 1, indicating the impact on human health was small. The carcinogenicity risk of heavy metal was as follows: adult male > adult female > children. The carcinogenic risk of exposure to multiple heavy metal elements was between 10−6 and 10−4 with a certain carcinogenic risk. Fireworks can not only cause air quality deterioration but also cause certain harm to health. Therefore, the establishment of strict measures to ban the fireworks is crucial to improving urban air quality.
-
Key words:
- Baoji /
- fireworks displays period /
- non-fireworks period /
- PM2.5 /
- health risks.
-
表 1 经呼吸途径进入人体的暴露参数
Table 1. Parameters of exposure that enter the human body through the respiratory route
参数
Parameters意义
Meanings单位
Units儿童
Children成年女性
Adult female成年男性
Adult maleC 重金属元素的浓度 mg·m−3 — — — InhR 呼吸速率 m3·d−1 7.6 14.5 18 EF 暴露频率 d·a−1 180 180 180 ED 持续暴露时间 a 6 24 24 BW 平均体重 kg 15 56.8 65 AT 非致癌物质平均暴露时间 d ED×365 ED×365 ED×365 AT 致癌物质平均暴露时间 d 70×365 70×365 70×365 表 2 通过呼吸途径进入人体的元素的反应参数
Table 2. Reaction parameters of elements that enter the human body through the respiratory pathway
元素
Element风险
Risk参考剂量/(mg·(kg·d)−1)
RfD经呼吸暴露的致癌斜率系数/((kg·d)·mg−1)
SFV 非致癌 7.0×10−6 Mn 1.4×10−5 Cu 4.6×10−4 Sb 4.0×10−4 Ba 2.0×10−1 Pb 4.3×10−4 Cr 致癌 2.9×10−5 56.0 Co 5.7×10−6 9.8 Ni 2.0×10−2 1.2 As 3.0×10−4 20.7 Cd 1×10−4 6.3 表 3 2020年燃放期两次升高过程颗粒物浓度的变化情况
Table 3. Changes in the concentration of particulate matter during the two-time increase in fireworks displays period in 2020
开始时间
Start time开始浓度/(μg·m−3)
Start concentration结束时间
End time结束浓度/(μg·m−3)
End concentration增幅/(μg·m−3)
Increase增加速率/(μg·(m3·h)−1)
Increase rate第一次
明显升高PM10 除夕16:00 60 初一02:00 220 160 16.0 PM2.5 除夕16:00 59 初一02:00 223 164 16.4 第二次
明显升高PM10 初一06:00 205 初一10:00 247 41 10.3 PM2.5 初一06:00 193 初一10:00 229 36 9.0 表 4 烟花爆竹各种成分类别的相关组分
Table 4. The relevant components of various composition categories of fireworks
烟花爆竹成分类别
Fireworks ingredient category作用
Function相关物质
Related substances相关组分
Related components可燃剂 为燃烧、爆炸提供所需的热量,同时还可以产生光或烟雾 易燃金属粉、硫化锑、木炭、硫磺、硅铁等无机物和淀粉、乳糖、纤维素等有机化合物[44] SO42−、Mg2+、Al、Si、Ca、
Fe、Ti、Sb氧化剂 为燃烧提供所需的氧,可燃剂会在氧化剂的作用下,更容易且剧烈的燃烧 一类是硝酸盐、高氯酸盐、过氧化物、氧化物等含氧物质,如KNO3、NH4NO3、KClO4、NH4ClO4、BaO2、PbO、KMnO4、MnO2等;另一类是不含氧的物质,如CCl4、C2Cl6等[45] Cl−、NO3−、NH4+、K+、
K、Pb、Mn、Ba着色剂 在燃烧、爆炸所产生的高温激发下化合物中的金属离子可以辐射出不同波长的可见光,使火焰着色 红光剂、绿光剂、黄光剂、蓝光剂一般分别以锶盐、钡盐、钠盐、铜化合物为主要原料;钾盐是紫色着色物;镁和铝则可以释放大量的白光[46] Mg2+、Al、K、K+、Cu、Ba 粘合剂 将各成分彼此粘合,保证烟火药本身有一定的黏度,使烟花爆竹成型,从而得到所需要的燃烧或爆炸效果 常用的粘合剂有天然树脂(例如虫胶、松香等)和合成树脂(例如酚醛树脂等)、糯米粉、面粉、糊精以及油类等有机物 — 产生其他特种效果的物质 根据要求和需要进行添加,如发出啸叫声、产生烟雾、提高火焰颜色的纯度等;钝感剂和稳定剂的加入在一定程度上削弱了燃烧的剧烈程度,降低烟火药的敏感度,从而延迟烟火药燃烧速度;还有防潮剂和防腐剂等 啸声剂(也称为笛声剂),通常指可燃物对苯二甲酸氢钾或者邻苯二甲酸氢钾,还可加入硝酸钾得到类似的啸声;烟雾剂常用的物质有萘、蒽、六氢乙烷、硅藻土等,砷化合物为禁用药物,但是烟雾类除外;含氯的有机物可以提高火焰颜色的纯度 Cl−、NO3−、K+、K、As 表 5 烟花爆竹燃放期与非燃放期各相关参数
Table 5. The relevant parameters of the fireworks displays period and the non-fireworks period
非燃放期
Non-fireworks period燃放期
Fireworks displays periodPM2.5/(μg·m−3) 125.4 168.6 SO2/(μg·m−3) 9.16 6.89 NO2/(μg·m−3) 31.89 18.32 SNA/PM2.5 39.7% 45.0% SOR 0.51 0.74 NOR 0.34 0.53 NH4+/SO42− 0.87 0.63 注:SNA为硫酸盐、硝酸盐、铵盐浓度之和. Note:SNA is the sum of sulfate, nitrate, and ammonium concentrations. 表 6 经呼吸暴露途径的重金属暴露剂量及非致癌风险
Table 6. Heavy metal exposure doses through respiratory exposure and non-carcinogenic risk
元素
Elements参考剂量/(mg·(kg·d)−1)
RfD日均暴露剂量ADD/(mg·(kg·d)−1) 非致癌风险HQ 儿童
Children成年女性
Adult female成年男性
Adult male儿童
Children成年女性
Adult female成年男性
Adult malePb 4.30×10−4 1.43×10−5 7.21×10−6 7.83×10−6 3.33×10−2 1.68×10−2 1.82×10−2 As 3.01×10−4 1.88×10−6 9.46×10−7 1.03×10−6 6.24×10−3 3.14×10−3 3.41×10−3 Co 5.70×10−6 5.57×10−7 2.81×10−7 3.04×10−7 9.77×10−2 4.92×10−2 5.34×10−2 Cr 2.90×10−5 3.73×10−7 1.88×10−7 2.04×10−7 1.29×10−2 6.48×10−3 7.03×10−3 Cd 1.00×10−4 1.08×10−6 5.42×10−7 5.88×10−7 1.08×10−2 5.42×10−3 5.88×10−3 Cu 4.56×10−4 1.47×10−5 7.40×10−6 8.03×10−6 3.22×10−2 1.62×10−2 1.76×10−2 Ni 2.00×10−2 3.51×10−6 1.77×10−6 1.92×10−6 1.75×10−4 8.84×10−5 9.59×10−5 Mn 1.40×10−5 5.44×10−6 2.74×10−6 2.97×10−6 3.89×10−1 1.96×10−1 2.12×10−1 Sb 4.00×10−4 3.33×10−6 1.68×10−6 1.82×10−6 8.33×10−3 4.20×10−3 4.55×10−3 V 7.00×10−6 1.85×10−7 9.34×10−8 1.01×10−7 2.65×10−2 1.33×10−2 1.45×10−2 Ba 2.00×10−1 3.51×10−5 1.77×10−5 1.92×10−5 1.76×10−4 8.85×10−5 9.61×10−5 综合 6.17×10−1 3.11×10−1 3.37×10−1 表 7 经呼吸暴露途径的重金属终生暴露剂量及致癌风险
Table 7. Lifetime exposure doses of heavy metals through respiratory exposure pathways and carcinogenic risks
元素
Elements致癌斜率系数/
((kg·d)·mg−1)
SF终生日均暴露剂量LADD/(mg·(kg·d)−1) 终生致癌风险ICR 儿童
Children成年女性
Adult female成年男性
Adult male儿童
Children成年女性
Adult female成年男性
Adult maleAs 20.7 1.61×10−7 4.85×10−7 5.13×10−7 3.33×10−6 1.00×10−5 1.06×10−5 Co 9.8 4.77×10−8 1.44×10−7 1.52×10−7 4.68×10−7 1.41×10−6 1.49×10−6 Cr 56 3.20×10−8 9.64×10−8 1.02×10−7 1.79×10−6 5.40×10−6 5.71×10−6 Cd 6.3 9.22×10−8 2.78×10−7 2.94×10−7 5.81×10−7 1.75×10−6 1.85×10−6 Ni 1.19 3.01×10−7 9.07×10−7 9.59×10−7 1.79×10−7 5.40×10−7 5.70×10−7 综合 6.35×10−6 1.91×10−5 2.02×10−5 -
[1] SINGH A, PANT P, POPE FD. Air quality during and after festivals: Aerosol concentrations, composition and health effects [J]. Atmospheric Research, 2019, 227: 220-232. doi: 10.1016/j.atmosres.2019.05.012 [2] PANG N N, GAO J, ZHAO P S, et al. The impact of fireworks control on air quality in four Northern Chinese Cities during the Spring Festival [J]. Atmospheric Environment, 2021, 244: 117958. doi: 10.1016/j.atmosenv.2020.117958 [3] 胡荣章, 刘红年, 张美根, 等. 南京地区大气灰霾的数值模拟 [J]. 环境科学学报, 2009, 29(4): 808-814. doi: 10.3321/j.issn:0253-2468.2009.04.021 HU R Z, LIU H N, ZHANG M G, et al. Simulation of brownish haze in urban areas of Nanjing [J]. Acta Scientiae Circumstantiae, 2009, 29(4): 808-814(in Chinese). doi: 10.3321/j.issn:0253-2468.2009.04.021
[4] JI D S, CUI Y, LI L, et al. Characterization and source identification of fine particulate matter in urban Beijing during the 2015 Spring Festival [J]. Science of the Total Environment, 2018, 628/629: 430-440. doi: 10.1016/j.scitotenv.2018.01.304 [5] YAO L, WANG D F, FU Q Y, et al. The effects of firework regulation on air quality and public health during the Chinese Spring Festival from 2013 to 2017 in a Chinese megacity [J]. Environment International, 2019, 126: 96-106. doi: 10.1016/j.envint.2019.01.037 [6] HU X, ZHANG Y, DING Z H, et al. Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China [J]. Atmospheric Environment, 2012, 57: 146-152. doi: 10.1016/j.atmosenv.2012.04.056 [7] CAO X Y, ZHANG X L, TONG D Q, et al. Review on physicochemical properties of pollutants released from fireworks: Environmental and health effects and prevention [J]. Environmental Reviews, 2018, 26(2): 133-155. doi: 10.1139/er-2017-0063 [8] ZENG X, XU X J, ZHENG X B, et al. Heavy metals in PM2.5 and in blood, and children's respiratory symptoms and asthma from an e-waste recycling area [J]. Environmental Pollution, 2016, 210: 346-353. doi: 10.1016/j.envpol.2016.01.025 [9] WU C, WANG G H, WANG J Y, et al. Chemical characteristics of haze particles in Xi'an during Chinese Spring Festival: Impact of fireworks burning [J]. Journal of Environmental Sciences, 2018, 71: 179-187. doi: 10.1016/j.jes.2018.04.008 [10] CHEN Y, HO K F, HO S S H, et al. Gaseous and particulate polycyclic aromatic hydrocarbons (PAHs) emissions from commercial restaurants in Hong Kong [J]. Journal of Environmental Monitoring, 2007, 9(12): 1402-1409. doi: 10.1039/b710259c [11] POPE C A 3rd, BURNETT R T, THUN M J, et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution [J]. JAMA, 2002, 287(9): 1132-1141. doi: 10.1001/jama.287.9.1132 [12] HUANG H, YING J, XU X Y, et al. In vitro bioaccessibility and health risk assessment of heavy metals in atmospheric particulate matters from three different functional areas of Shanghai, China [J]. Science of the Total Environment, 2018, 610/611: 546-554. doi: 10.1016/j.scitotenv.2017.08.074 [13] WANG S S, YU R L, SHEN H Z, et al. Chemical characteristics, sources, and formation mechanisms of PM2.5 before and during the Spring Festival in a coastal city in Southeast China [J]. Environmental Pollution, 2019, 251: 442-452. doi: 10.1016/j.envpol.2019.04.050 [14] LIU X T, ZHAI Y B, ZHU Y, et al. Mass concentration and health risk assessment of heavy metals in size-segregated airborne particulate matter in Changsha [J]. Science of the Total Environment, 2015, 517: 215-221. doi: 10.1016/j.scitotenv.2015.02.066 [15] 张章, 刘保献, 安欣欣, 等. 北京市传统春节假期空气质量特征研究 [J]. 中国环境科学, 2021, 41(1): 102-113. doi: 10.3969/j.issn.1000-6923.2021.01.012 ZHANG Z, LIU B X, AN X X, et al. A study on the air quality in Beijing during the Spring Festival [J]. China Environmental Science, 2021, 41(1): 102-113(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.01.012
[16] 真气网. 国内城市排序[EB/OL]. [2022-12-24]. https://www.zq12369.com/environment.php?year=2019&tab=rank&order=DESC&nowtype=Complexindex&type=YEAR#rank. [17] 徐衡, 董卫民. 浅析燃放烟花爆竹对宝鸡市区颗粒物浓度的影响 [J]. 价值工程, 2015, 34(29): 185-187. doi: 10.14018/j.cnki.cn13-1085/n.2015.29.071 XU H, DONG W M. Influence on the particulate matter concentration in Baoji downtown caused by setting off fireworks [J]. Value Engineering, 2015, 34(29): 185-187(in Chinese). doi: 10.14018/j.cnki.cn13-1085/n.2015.29.071
[18] 张婷, 曹军骥, 刘随心. 宝鸡市PM2.5中水溶性离子组分污染特征及来源分析 [J]. 地球环境学报, 2017, 8(1): 46-54. doi: 10.7515/JEE201701006 ZHANG T, CAO J J, LIU S X. Pollution characteristics and sources of water-soluble ions in PM2.5 in Baoji [J]. Journal of Earth Environment, 2017, 8(1): 46-54(in Chinese). doi: 10.7515/JEE201701006
[19] 杨雪玲, 邢莉, 王颖, 等. 宝鸡市冬季一次持续性重污染过程特征分析 [J]. 环境科学研究, 2020, 33(10): 2256-2264. doi: 10.13198/j.issn.1001-6929.2020.05.19 YANG X L, XING L, WANG Y, et al. Characteristics and mechanism of a heavy haze episode in Baoji City [J]. Research of Environmental Sciences, 2020, 33(10): 2256-2264(in Chinese). doi: 10.13198/j.issn.1001-6929.2020.05.19
[20] 朱筱娟, 徐衡, 罗汉翔. 2017年宝鸡市区环境空气质量状况分析 [J]. 低碳世界, 2018, 3(3): 11-12. doi: 10.3969/j.issn.2095-2066.2018.03.007 ZHU X J, XU H, LUO H X. Analysis of ambient air quality in Baoji City in 2017 [J]. Low Carbon World, 2018, 3(3): 11-12(in Chinese). doi: 10.3969/j.issn.2095-2066.2018.03.007
[21] 周变红, 冯瞧, 王锦, 等. 宝鸡市城郊冬季水溶性离子在不同等级污染天的特征及来源分析 [J]. 环境化学, 2021, 40(9): 2796-2808. doi: 10.7524/j.issn.0254-6108.2021020102 ZHOU B H, FENG Q, WANG J, et al. Characteristics and source analysis of water-soluble ions in Baoji urban and suburban areas on different levels of polluted days [J]. Environmental Chemistry, 2021, 40(9): 2796-2808(in Chinese). doi: 10.7524/j.issn.0254-6108.2021020102
[22] 韩洁, 徐迎春, 庞翻, 等. 近4年早春宝鸡市区气象条件对空气污染的影响 [J]. 陕西气象, 2020(1): 20-25. HAN J, XU Y C, PANG F, et al. Influence of meteorological conditions on air pollution in early spring in Baoji City in latest 4 years [J]. Journal of Shaanxi Meteorology, 2020(1): 20-25(in Chinese).
[23] TIAN M, WANG H B, YANG C, et al. Highly time-resolved characterization of water-soluble inorganic ions in PM2.5 in a humid and acidic mega city in Sichuan Basin, China [J]. Science of the Total Environment, 2017, 580: 224-234. doi: 10.1016/j.scitotenv.2016.12.048 [24] CHANG S Y, LEE C T, CHOU C K, et al. The continuous field measurements of soluble aerosol compositions at the Taipei Aerosol Supersite, Taiwan [J]. Atmospheric Environment, 2007, 41(9): 1936-1949. doi: 10.1016/j.atmosenv.2006.10.051 [25] 尹婷, 胡世祥, 姜雪娇, 等. 基于X射线荧光分析原理的大气重金属在线分析仪的维护与质控 [J]. 中国环境监测, 2017, 33(5): 75-81. doi: 10.19316/j.issn.1002-6002.2017.05.11 YIN T, HU S X, JIANG X J, et al. Maintenance and quality control on the atmospheric heavy metal analyzer based on X-ray fluorescence spectroscopy [J]. Environmental Monitoring in China, 2017, 33(5): 75-81(in Chinese). doi: 10.19316/j.issn.1002-6002.2017.05.11
[26] XU L L, CHEN X Q, CHEN J S, et al. Seasonal variations and chemical compositions of PM2.5 aerosol in the urban area of Fuzhou, China [J]. Atmospheric Research, 2012, 104/105: 264-272. doi: 10.1016/j.atmosres.2011.10.017 [27] YANG Y J, ZHOU R, YU Y, et al. Size-resolved aerosol water-soluble ions at a regional background station of Beijing, Tianjin, and Hebei, North China [J]. Journal of Environmental Sciences, 2017, 55: 146-156. doi: 10.1016/j.jes.2016.07.012 [28] YANG L M, WANG S B, DUAN S G, et al. Characteristics and formation mechanisms of secondary inorganic ions in PM2.5 during winter in a central city of China: Based on a high time resolution data [J]. Atmospheric Research, 2020, 233: 104696. doi: 10.1016/j.atmosres.2019.104696 [29] DE MIGUEL E, IRIBARREN I, CHACóN E, et al. Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain) [J]. Chemosphere, 2007, 66(3): 505-513. doi: 10.1016/j.chemosphere.2006.05.065 [30] 唐大镜, 常会云, 张莹, 等. 2017—2019年石家庄市PM2.5中重金属污染及健康风险评价 [J]. 现代预防医学, 2021, 48(7): 1177-1180,1197. TANG D J, CHANG H Y, ZHANG Y, et al. Pollution characteristics and health risk evaluation of heavy metal particles in PM2.5 in Shijiazhuang, 2017—2019 [J]. Modern Preventive Medicine, 2021, 48(7): 1177-1180,1197(in Chinese).
[31] USEPA. Risk assessment guidance for superfund: volume II. Environmental evaluation manual. Interim final[R]. Washington, DC. : Office of Emergency and Remedial Response, 1989. [32] 王珊珊. 厦门市大气PM2.5分布特征、来源解析及风险评价[D]. 泉州: 华侨大学, 2020. WANG S S. Distribution characteristic, source and risk assessment of atmospheric PM2.5 in Xiamen[D]. Quanzhou: Huaqiao University, 2020(in Chinese).
[33] 环境保护部. 中国人群暴露参数手册(成人卷)[M]. 北京: 中国环境出版社, 2013. Ministry of Environmental Protection. Exposure factors handbook of Chinese population (Adults Volume)[M]. Beijing: China Environmental Science Press, 2013(in Chinese).
[34] 王巍. 兰州市室内空气重金属污染水平与健康风险评价 [J]. 环境生态学, 2022, 4(Sup1): 76-82. WANG W. Pollution evaluation and health risk assessment of heavy metals from indoor air in Lanzhou City [J]. Environmental Ecology, 2022, 4(Sup1): 76-82(in Chinese).
[35] USEPA. Supplemental guidance for developing soil screening levels for superfund sites[R]. Washington, DC. : Office of Emergency and Remedial Response, 2001. [36] SHAH M H, SHAHEEN N. Seasonal behaviours in elemental composition of atmospheric aerosols collected in Islamabad, Pakistan [J]. Atmospheric Research, 2010, 95(2/3): 210-223. [37] 坑斌, 郭新彪, 孙利文. 2017年北京市怀柔区大气PM2.5中重金属污染特征及健康风险评价 [J]. 环境卫生学杂志, 2019, 9(2): 148-152. KENG B, GUO X B, SUN L W. Heavy metal pollution characteristics and health risk assessment of atmospheric PM2.5 in Huairou district of Beijing in 2017 [J]. Journal of Environmental Hygiene, 2019, 9(2): 148-152(in Chinese).
[38] 刘思序, 刘宝林, 吕林阳, 等. 长春市秋冬季大气PM2.5中重金属污染特征及健康风险评价 [J]. 长春师范大学学报, 2022, 41(2): 196-200. doi: 10.3969/j.issn.1008-178X.2022.02.036 LIU S X, LIU B L, LÜ L Y, et al. Pollution characteristics and health risk assessment of heavy metals in atmospheric PM2.5 during autumn and winter seasons in Changchun [J]. Journal of Changchun Normal University, 2022, 41(2): 196-200(in Chinese). doi: 10.3969/j.issn.1008-178X.2022.02.036
[39] 王伟, 孔少飞, 刘海彪, 等. 南京市春节前后大气PM2.5中重金属来源及健康风险评价 [J]. 中国环境科学, 2016, 36(7): 2186-2195. doi: 10.3969/j.issn.1000-6923.2016.07.041 WANG W, KONG S F, LIU H B, et al. Sources and risk assessment of heavy metals in PM2.5 around 2014 Spring Festival in Nanjing [J]. China Environmental Science, 2016, 36(7): 2186-2195(in Chinese). doi: 10.3969/j.issn.1000-6923.2016.07.041
[40] 朱焱涛. 西安市北郊大气细颗粒物重金属特征及健康风险评价研究[D]. 西安: 西安建筑科技大学, 2021. ZHU Y T. Heavy metal characteristics and health risk assessment of fine particulate matter in the northern suburb of Xi 'an City[D]. Xi'an: Xi'an University of Architecture and Technology, 2021(in Chinese).
[41] 徐红梅, 张婷, 刘随心. 春节期间燃放烟花对西安市PM2.5的影响 [J]. 地球环境学报, 2012, 3(5): 1037-1042. XU H M, ZHANG T, LIU S X. Impact of burning fireworks during Spring Festival to PM2.5 of Xi'an [J]. Journal of Earth Environment, 2012, 3(5): 1037-1042(in Chinese).
[42] LAI Y H, BRIMBLECOMBE P. Changes in air pollution and attitude to fireworks in Beijing [J]. Atmospheric Environment, 2020, 231: 117549. doi: 10.1016/j.atmosenv.2020.117549 [43] 胡清华, 陈晓秋, 张福旺, 等. 烟花爆竹燃放对福州大气PM2.5成分的影响 [J]. 环境科学与技术, 2019, 42(Sup2): 223-231. HU Q H, CHEN X Q, ZHANG F W, et al. Effects of fireworks on the composition of PM2.5 in Fuzhou [J]. Environmental Science & Technology, 2019, 42(Sup2): 223-231(in Chinese).
[44] 谢瑞加, 侯红霞, 陈永山. 烟花爆竹集中燃放的大气细颗粒物(PM2.5)成分图谱 [J]. 环境科学, 2018, 39(4): 1484-1492. XIE R J, HOU H X, CHEN Y S. Analysis of the composition of atmospheric fine particles(PM2.5) produced by burning fireworks [J]. Environmental Science, 2018, 39(4): 1484-1492(in Chinese).
[45] 韩林洁, 黄俊, 韩新宇, 等. 昆明市典型干季大气PM2.5中重金属污染特征与来源研究 [J]. 昆明理工大学学报(自然科学版), 2019, 44(2): 99-110. HAN L J, HUANG J, HAN X Y, et al. Characteristics and sources of heavy metals in atmospheric PM2.5 research during the dry season in Kunming [J]. Journal of Kunming University of Science and Technology (Natural Science), 2019, 44(2): 99-110(in Chinese).
[46] 邹强, 姚玉刚, 丁铭, 等. 春节烟花爆竹燃放期间苏州市区PM2.5中水溶性离子特征分析 [J]. 环境监测管理与技术, 2014, 26(2): 26-29,62. doi: 10.3969/j.issn.1006-2009.2014.02.009 ZOU Q, YAO Y G, DING M, et al. Characteristics of water-soluble ions bounded in PM2.5 during spring festival in Suzhou City [J]. The Administration and Technique of Environmental Monitoring, 2014, 26(2): 26-29,62(in Chinese). doi: 10.3969/j.issn.1006-2009.2014.02.009
[47] KONG S F, LI L, LI X X, et al. The impacts of firework burning at the Chinese Spring Festival on air quality: Insights of tracers, source evolution and aging processes [J]. Atmospheric Chemistry and Physics, 2015, 15(4): 2167-2184. doi: 10.5194/acp-15-2167-2015 [48] 张维, 李金娟, 张燕美, 等. 遵义PM2.5中二次水溶性无机离子分布特征与来源 [J]. 环境科学与技术, 2016, 39(5): 109-114. ZHANG W, LI J J, ZHANG Y M, et al. Distribution characteristics and sources of secondary water-soluble inorganic ions in PM2.5 in Zunyi City [J]. Environmental Science & Technology, 2016, 39(5): 109-114(in Chinese).
[49] 周变红, 冯瞧, 王锦, 等. 宝鸡市秋季清洁和污染时段水溶性离子污染特征及来源解析 [J]. 环境化学, 2022, 41(5): 1673-1683. doi: 10.7524/j.issn.0254-6108.2021102901 ZHOU B H, FENG Q, WANG J, et al. Characteristics and sources of water-soluble ion pollution during cleaning and pollution periods in Baoji City in autumn [J]. Environmental Chemistry, 2022, 41(5): 1673-1683(in Chinese). doi: 10.7524/j.issn.0254-6108.2021102901
[50] BROWN R J C, ASWEGEN S V, WEBB W R, et al. UK concentrations of chromium and chromium (VI), measured as water soluble chromium, in PM10 [J]. Atmospheric Environment, 2014, 99: 385-391. doi: 10.1016/j.atmosenv.2014.10.008 [51] 肖思晗, 蔡美君, 李香, 等. 厦门港大气PM2.5中重金属污染特征及健康风险评价 [J]. 环境科学, 2022, 43(7): 3404-3415. XIAO S H, CAI M J, LI X, et al. Characterization and health risk assessment of heavy metals in PM2.5 in Xiamen Port [J]. Environmental Science, 2022, 43(7): 3404-3415(in Chinese).