-
自2013年和2018年国务院分别印发了《大气污染防治行动计划》(大气十条)和《打赢蓝天保卫战三年行动计划》以来,我国多区域大气污染状况得到很明显的改善,全国优良天数呈现增长趋势,重污染天数显著减少,空气质量逐渐好转. 但大气颗粒物在多个区域,尤其是北方地区,仍作为首要污染物并处于较高的污染水平,较多地区颗粒物(PM2.5、PM10)年均浓度未达到国家二级标准,大气颗粒物仍为大气首要污染问题[1]. 水溶性离子是大气颗粒物的重要组成部分,主要包括Cl−、K+、Na+、
${\rm{SO}}_4^{2-} $ 、${\rm{NO}}_3^{-} $ 、${\rm{NH}}_4^{+} $ 等离子,其中${\rm{SO}}_4^{2-} $ 、${\rm{NO}}_3^{-} $ 、${\rm{NH}}_4^{+} $ 一般被称为SNA,SNA不仅是水溶性离子重要组成部分,同时也影响着臭氧的形成[2]. 有研究报道,水溶性离子在PM2.5中的占比可高达50%以上,对颗粒物的浓度水平起到了关键影响[3-4];同时水溶性离子能够影响大气降水的酸度[5],降低地区的大气能见度,也会直接或间接地影响全球辐射平衡和分布[6];而且也会对人体健康造成影响,引发人体心血管系统、免疫系统等一系列健康问题[7-10].近年来,有学者对大气颗粒物中水溶性离子的污染特征和来源解析进行了相关研究,但大都集中于京津冀[11-13]、长三角[14-16]、武汉[17-18]等经济较为发达的地区. 对西北地区的研究则主要集中在西安、兰州等[19-21]. 对水溶性离子的研究内容多集中于其浓度水平、季节时空变化、污染特征及来源解析等. 有学者对保定市PM2.5中水溶性离子进行来源解析,发现主要来源为生物质燃烧、化石燃料燃烧及扬尘源及二次源[22];Wang等对唐山郊区的PM2.5研究发现,冬季PM2.5浓度明显高于夏季,这主要与冬季燃煤供暖有关[23];孟红旗等研究了供暖前后对颗粒物中水溶性离子的影响发现,相较于供暖日前,供暖日后Cl−、
${\rm{NO}}_3^{-} $ 、TWSI(total water soluble ion,总水溶性离子浓度)、Na+、Ca2+、${\rm{NH}}_4^{+} $ 浓度均出现显著上升情况[24]. 因此研究水溶性离子污染特征,对于了解采暖季及非采暖季大气污染差异及其来源具有一定意义.张掖市是甘肃省重要的旅游中心城市和商贸流通枢纽、甘肃省农副产品加工和能源基地之一. 同时也是国家西部重要的生态安全屏障. 2018年至2020年,张掖市3年全年空气质量优良天数占比分别为84.1%、92.6%和93.4%,空气质量优良天数逐年增加并趋于稳定,空气质量正在逐年稳步转好. 大气颗粒物浓度年均虽然达标,但存在较大的时空分布差异,部分地区(高台县、临泽县、山丹县)PM10浓度超标;NO2近年来呈逐年上升态势. 近3年,张掖市的首要污染物主要是PM10、PM2.5和O3,2020出现频次分别为38.5%、19.6%和41.9%,全年颗粒物(PM10和PM2.5)作为首要污染物的频次共为58.1%. 因此,了解大气颗粒物的组成特征和来源对于张掖市大气污染防控和治理工作具有重要的指导意义. 目前关于张掖市大气颗粒物中水溶性离子污染特征及其来源等大气污染成因相关研究未见公开报道,本文的张掖市大气颗粒物中水溶性离子的污染特征及来源解析研究结果,可为张掖市大气颗粒物污染防治、大气污染管控和空气质量持续改善提供科学依据.
张掖市大气颗粒物水溶性离子污染特征、来源
Characteristics and source apportionment of water-soluble ion as well as countermeasures for atmospheric particulate matter in Zhangye City
-
摘要: 张掖市大气颗粒物中水溶性离子污染特征及其来源相关研究未见公开报道,文章基于2020年秋季至2021年夏季间采集的张掖市大气颗粒物(PM2.5、PM10)样本(每种粒径100个以上有效样本),对其中8种主要水溶性离子(Cl−、
${\rm{SO}}_4^{2-}$ 、${\rm{NO}}_3^{-} $ 、Na+、${\rm{NH}}_4^{+} $ 、K+、Mg2+、Ca2+)进行分析研究,并利用PMF模型对其来源进行了定量解析. 结果显示,SNA(${\rm{NH}}_4^{+} $ 、${\rm{NO}}_3^{-} $ 和${\rm{SO}}_4^{2-}$ )在PM2.5和PM10的水溶性离子中年均占比分别达到63.96%和57.50%,表明大气中存在较高程度的气态前体物排放及大气光化学反应;其中${\rm{NH}}_4^{+} $ 冬季离子浓度和占比均为四季中最高,推测张掖市冬季存在较高的因取暖导致的非农业如电力、工业等化石燃料燃烧氨的排放;大气酸碱度分析表明大气中PM10和PM2.5均呈碱性,推测与较高水平的Mg2+、Ca2+、${\rm{NH}}_4^{+} $ 阳离子浓度相关;SOR和NOR值显示大气中SO2和NO2的二次氧化程度较高,同时也进一步表明一次排放是影响张掖市水溶性离子浓度水平的主控因素;${\rm{NO}}_3^{-} $ 与${\rm{SO}}_4^{2-}$ 浓度比值为均小于1,表明固定源相较于移动源对大气颗粒物中二次离子贡献更大. 张掖市颗粒物中水溶性离子源解析结果显示,PM2.5:二次转化源(47.1%)>扬尘源(23.0%)>燃煤燃烧源(17.7%)>生物质燃烧源(12.2%);PM10:二次转化源(42.7%)>扬尘源(28.4%)>燃煤燃烧源(17.6%)>生物质燃烧源(11.3%). 建议张掖市应首先加强工业点源前体物排放管控,进而加强各类扬尘源(主要包括建筑、道路、堆场和自然扬尘)、生物质燃烧源、燃煤源、机动车尾气源的管控,同时对PM2.5和O3的共同前体物(NOx和VOCs)进行科学减排以达到PM2.5和O3的协同管控.Abstract: There is little information available on what the pollution characteristics and sources of water-soluble ion in atmospheric particulate matter in Zhangye City. In this paper, a field campaign was conducted to collect the atmospheric particulate matter (PM2.5, PM10) samples in Zhangye City from the period of 2020 autumn to 2021 summer ( more than 100 valid samples for each particle size), The eight kinds of water-soluble ions of samples including Cl−,${\rm{SO}}_4^{2-} $ ,${\rm{NO}}_3^{-} $ , Na+,${\rm{NH}}_4^{+} $ , K+, Mg2+, Ca2+ were analyzed, and their sources were quantitatively identified based on the PMF model. The results show that the annual average proportion of SNA (${\rm{NH}}_4^{+} $ ,${\rm{NO}}_3^{-} $ and${\rm{SO}}_4^{2-} $ ) in the water-soluble ions of PM2.5 and PM10 reached 63.96% and 57.50%, respectively, indicating that the strong atmospheric photochemical reactions were significantly occurred in term of the high precursor emissions in Zhangye City. The highest concentration and proportion of${\rm{NH}}_4^{+} $ ions in atmospheric particulate matter are found in winter, inferring there were the heavy non-agricultural ammonia emissions caused by heating such as electricity, industry and other fossil fuel combustion. Both PM10 and PM2.5 are alkaline, which is deduced to be related to higher cation levels including Mg2+, Ca2+,${\rm{NH}}_4^{+} $ ; The values of SOR and NOR show that the secondary oxidation of SO2 and NO2 in the atmosphere was higher, indicating that the primary emission is the major impact factor to contribute the concentration level of water-soluble ions in Zhangye City; While that the ratio of${\rm{NO}}_3^{-} $ to${\rm{SO}}_4^{2-} $ is less than 1, showing that the emission contribution of stationary source to secondary ions in atmospheric particulate matter is greater than that of mobile source. The source apportionment results of water-soluble ion in particulate matter reveal that the contributions of various emission source of water-soluble ion are as follows from larger to small: PM2.5: secondary formation source (47.1%) > dust source (23.0%) > coal combustion source (17.7%) > biomass combustion source (12.2%); PM10: secondary formation source (42.7%) > dust source (28.4%) > coal combustion source (17.6%) > biomass combustion source(11.3%) in atmospheric particulate matter of Zhangye City, suggesting that the priority countermeasure of atmospheric pollution mitigation in Zhangye City should be firstly taken to cut the gaseous precursor emissions from industrial point source, and then reduce various dust source (such as buildings, roads, storage yards and natural dust etc.), follows are the biomass combustion sources, coal combustion sources, and vehicle exhaust sources. Moreover, to cutting down the common precursors (NOx and VOCs) for both PM2.5 and O3 are significantly to be pay attention to achieve the coordinated control of PM2.5 and O3. -
-
[1] 王文兴, 柴发合, 任阵海, 等. 新中国成立70年来我国大气污染防治历程、成就与经验 [J]. 环境科学研究, 2019, 32(10): 1621-1635. doi: 10.13198/j.issn.1001-6929.2019.09.15 WANG W X, CHAI F H, REN Z H, et al. Process, achievements and experience of air pollution control in China since the founding of the People's republic of China 70 years ago [J]. Research of Environmental Sciences, 2019, 32(10): 1621-1635(in Chinese). doi: 10.13198/j.issn.1001-6929.2019.09.15
[2] 李红, 彭良, 毕方, 等. 我国PM2.5与臭氧污染协同控制策略研究 [J]. 环境科学研究, 2019, 32(10): 1763-1778. LI H, PENG L, BI F, et al. Strategy of coordinated control of PM2.5 and ozone in China [J]. Research of Environmental Sciences, 2019, 32(10): 1763-1778(in Chinese).
[3] YIN L Q, NIU Z C, CHEN X Q, et al. Characteristics of water-soluble inorganic ions in PM2.5 and PM 2.5-10 in the coastal urban agglomeration along the Western Taiwan Strait Region, China [J]. Environmental Science and Pollution Research International, 2014, 21(7): 5141-5156. doi: 10.1007/s11356-013-2134-7 [4] BOUGIATIOTI A, ZARMPAS P, KOULOURI E, et al. Organic, elemental and water-soluble organic carbon in size segregated aerosols, in the marine boundary layer of the Eastern Mediterranean [J]. Atmospheric Environment, 2013, 64: 251-262. doi: 10.1016/j.atmosenv.2012.09.071 [5] 孙韧, 张文具, 董海燕, 等. 天津市PM10和PM2.5中水溶性离子化学特征及来源分析 [J]. 中国环境监测, 2014, 30(2): 145-150. doi: 10.3969/j.issn.1002-6002.2014.02.029 SUN R, ZHANG W J, DONG H Y, et al. Chemical character and source analysis of water-soluble irons in PM10 and PM2.5 in Tianjin City [J]. Environmental Monitoring in China, 2014, 30(2): 145-150(in Chinese). doi: 10.3969/j.issn.1002-6002.2014.02.029
[6] 郭照冰, 包春晓, 陈天蕾, 等. 北京奥运期间气溶胶中水溶性无机离子浓度特征及来源解析 [J]. 大气科学学报, 2011, 34(6): 683-687. doi: 10.3969/j.issn.1674-7097.2011.06.006 GUO Z B, BAO C X, CHEN T L, et al. Mass concentration characteristics and source apportionment of water-soluble inorganic ions in aerosol in Beijing during 2008 Beijing Olympic Games [J]. Transactions of Atmospheric Sciences, 2011, 34(6): 683-687(in Chinese). doi: 10.3969/j.issn.1674-7097.2011.06.006
[7] ZHAO C, NIU M Y, SONG S Y, et al. Serum metabolomics analysis of mice that received repeated airway exposure to a water-soluble PM2.5 extract [J]. Ecotoxicology and Environmental Safety, 2019, 168: 102-109. doi: 10.1016/j.ecoenv.2018.10.068 [8] WU H Y, WANG D, SHI H, et al. PM2.5 and water-soluble components induce airway fibrosis through TGF-β1/Smad3 signaling pathway in asthmatic rats [J]. Molecular Immunology, 2021, 137: 1-10. doi: 10.1016/j.molimm.2021.06.005 [9] SHKIRKOVA K, LAMORIE-FOOTE K, CONNOR M, et al. Effects of ambient particulate matter on vascular tissue: A review [J]. Journal of Toxicology and Environmental Health, Part B, 2020, 23(7): 319-350. doi: 10.1080/10937404.2020.1822971 [10] NIU Y, CHEN R J, XIA Y J, et al. Fine particulate matter constituents and stress hormones in the hypothalamus-pituitary-adrenal axis [J]. Environment International, 2018, 119: 186-192. doi: 10.1016/j.envint.2018.06.027 [11] HU G Y, ZHANG Y M, SUN J Y, et al. Variability, formation and acidity of water-soluble ions in PM2.5 in Beijing based on the semi-continuous observations [J]. Atmospheric Research, 2014, 145/146: 1-11. doi: 10.1016/j.atmosres.2014.03.014 [12] DAO X, WANG Z, LV Y B, et al. Chemical characteristics of water-soluble ions in particulate matter in three metropolitan areas in the North China Plain [J]. PLoS One, 2014, 9(12): e113831. doi: 10.1371/journal.pone.0113831 [13] CHEN J, QIU S S, SHANG J, et al. Impact of relative humidity and water soluble constituents of PM2.5 on visibility impairment in Beijing, China [J]. Aerosol and Air Quality Research, 2014, 14(1): 260-268. doi: 10.4209/aaqr.2012.12.0360 [14] ZHANG X Y, ZHAO X, JI G X, et al. Seasonal variations and source apportionment of water-soluble inorganic ions in PM2.5 in Nanjing, a megacity in southeastern China [J]. Journal of Atmospheric Chemistry, 2019, 76(1): 73-88. doi: 10.1007/s10874-019-09388-z [15] WANG G H, WANG H, YU Y J, et al. Chemical characterization of water-soluble components of PM10 and PM2.5 atmospheric aerosols in five locations of Nanjing, China [J]. Atmospheric Environment, 2003, 37(21): 2893-2902. doi: 10.1016/S1352-2310(03)00271-1 [16] 王心培, 王格慧, 谢郁宁, 等. 长三角背景点夏季大气PM2.5中水溶性无机离子污染特征及来源解析 [J]. 环境科学研究, 2020, 33(6): 1366-1375. WANG X P, WANG G H, XIE Y N, et al. Chemical characterization and source apportionment of water-soluble inorganic ions of summertime atmospheric PM2.5 in background of Yangtze River Delta region [J]. Research of Environmental Sciences, 2020, 33(6): 1366-1375(in Chinese).
[17] HUANG T, CHEN J, ZHAO W T, et al. Seasonal variations and correlation analysis of water-soluble inorganic ions in PM2.5 in Wuhan, 2013 [J]. Atmosphere, 2016, 7(4): 49. doi: 10.3390/atmos7040049 [18] 程渊, 吴建会, 毕晓辉, 等. 武汉市大气PM2.5中水溶性离子污染特征及来源 [J]. 环境科学学报, 2019, 39(1): 189-196. CHENG Y, WU J H, BI X H, et al. Characteristics and source apportionment of water-soluble ions in ambient PM2.5 in Wuhan, China [J]. Acta Scientiae Circumstantiae, 2019, 39(1): 189-196(in Chinese).
[19] 杨素霞, 曹军骥, 沈振兴, 等. 西安冬、夏季PM2.5中水溶性无机离子的变化特征 [J]. 环境化学, 2012, 31(8): 1179-1188. YANG S X, CAO J J, SHEN Z X, et al. Variations of water-soluble ions in PM2.5 at Xi'an between summer and winter [J]. Environmental Chemistry, 2012, 31(8): 1179-1188(in Chinese).
[20] 王亚男. 兰州市大气细颗粒物PM2.5的化学组成及来源分析[D]. 兰州: 兰州大学, 2017. WANG Y N. Chemical characterization and source apportionment of PM2.5 in Lanzhou, China[D]. Lanzhou: Lanzhou University, 2017(in Chinese).
[21] 代志光, 张承中, 李勇, 等. 西安夏季PM2.5中碳组分与水溶性无机离子特征分析 [J]. 环境工程学报, 2014, 8(10): 4366-4372. DAI Z G, ZHANG C Z, LI Y, et al. Analysis of carbon components and water-soluble inorganic ions in PM2.5 of Xi'an during summer [J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4366-4372(in Chinese).
[22] 武志宏, 孙爽, 武高峰, 等. 保定市PM2.5中水溶性离子污染特征及来源分析 [J]. 环境化学, 2021, 40(5): 1421-1430. doi: 10.7524/j.issn.0254-6108.2019120901 WU Z H, SUN S, WU G F, et al. The pollution pattern and source analysis of water-soluble ions of PM2.5 in Baoding City [J]. Environmental Chemistry, 2021, 40(5): 1421-1430(in Chinese). doi: 10.7524/j.issn.0254-6108.2019120901
[23] WANG B Q, TANG Z Z, CAI N N, et al. The characteristics and sources apportionment of water-soluble ions of PM2.5 in suburb Tangshan, China [J]. Urban Climate, 2021, 35: 100742. doi: 10.1016/j.uclim.2020.100742 [24] 孟红旗, 张家兴, 韩桥, 等. 冬季供暖对城市大气PM2.5水溶性组成及污染源解析的影响 [J]. 环境化学, 2021, 40(9): 2768-2779. doi: 10.7524/j.issn.0254-6108.2021020402 MENG H Q, ZHANG J X, HAN Q, et al. Impacts of municipal heat supply in winter on water-soluble ions and sources identification of atmospheric PM2.5 [J]. Environmental Chemistry, 2021, 40(9): 2768-2779(in Chinese). doi: 10.7524/j.issn.0254-6108.2021020402
[25] 张贞理, 唐冠宁, 蔡俊峰, 等. 离子色谱法同时测定大气可吸入颗粒物PM10中14种水溶性离子 [J]. 分析试验室, 2014, 33(1): 39-42. ZHANG Z L, TANG G N, CAI J F, et al. Simultaneous determination of water soluble ions in PM10 by ion chromatography [J]. Chinese Journal of Analysis Laboratory, 2014, 33(1): 39-42(in Chinese).
[26] 陈曦, 郑磊, 王国英, 等. 离子色谱研究亚微米细颗粒物中水溶性离子含量水平和污染评价 [J]. 环境化学, 2019, 38(3): 704-707. CHEN X, ZHENG L, WANG G Y, et al. Assessment of pollution and contents of water-soluble ions in airborne submicrometer particles using ion chromatography [J]. Environmental Chemistry, 2019, 38(3): 704-707(in Chinese).
[27] 刘永强, 于泓. 离子色谱法在离子液体阴阳离子分析中的应用 [J]. 分析测试学报, 2015, 34(6): 734-743. doi: 10.3969/j.issn.1004-4957.2015.06.018 LIU Y Q, YU H. Applications of ion chromatography in analysis of ionic liquid anions and cations [J]. Journal of Instrumental Analysis, 2015, 34(6): 734-743(in Chinese). doi: 10.3969/j.issn.1004-4957.2015.06.018
[28] 苏业旺, 刘威杰, 毛瑶, 等. 华中地区夏季PM2.5中水溶性离子污染特征及来源分析 [J]. 环境科学, 2022, 43(2): 619-628. SU Y W, LIU W J, MAO Y, et al. Characteristics and source analysis of water-soluble inorganic pollution in PM2.5 during summer in central China [J]. Environmental Science, 2022, 43(2): 619-628(in Chinese).
[29] 赵鹏, 解静芳, 王淑楠, 等. 太原市采暖季PM2.5中水溶性无机离子污染特征及来源解析 [J]. 环境化学, 2021, 40(11): 3482-3490. doi: 10.7524/j.issn.0254-6108.2020070907 ZHAO P, XIE J F, WANG S N, et al. Pollution characteristics and source apportionment of water-soluble inorganic ions in PM2.5 in Taiyuan City during the heating period [J]. Environmental Chemistry, 2021, 40(11): 3482-3490(in Chinese). doi: 10.7524/j.issn.0254-6108.2020070907
[30] 任娇, 尹诗杰, 郭淑芬. 太原市大气PM2.5中水溶性离子的季节污染特征及来源分析 [J]. 环境科学学报, 2020, 40(9): 3120-3130. REN J, YIN S J, GUO S F. Seasonal variation and source analysis of water-soluble ions in PM2.5 in Taiyuan [J]. Acta Scientiae Circumstantiae, 2020, 40(9): 3120-3130(in Chinese).
[31] PAATERO P, TAPPER U. Analysis of different modes of factor analysis as least squares fit problems [J]. Chemometrics and Intelligent Laboratory Systems, 1993, 18(2): 183-194. doi: 10.1016/0169-7439(93)80055-M [32] 邱晨晨, 宫海星, 于兴娜, 等. 南京江北新区PM2.5中水溶性离子的季节特征和来源解析 [J]. 环境科学学报, 2021, 41(5): 1718-1726. QIU C C, GONG H X, YU X N, et al. Seasonal characteristics and source apportionment of water-soluble ions in PM2.5 of Nanjing Jiangbei New Area [J]. Acta Scientiae Circumstantiae, 2021, 41(5): 1718-1726(in Chinese).
[33] PAN Y P, GU M N, HE Y X, et al. Revisiting the concentration observations and source apportionment of atmospheric ammonia [J]. Advances in Atmospheric Sciences, 2020, 37(9): 933-938. doi: 10.1007/s00376-020-2111-2 [34] 王郁, 吴玲燕, 李磊. 深圳市城区大气颗粒物及主要水溶性无机离子的污染特征 [J]. 环境科学学报, 2020, 40(3): 792-802. WANG Y, WU L Y, LI L. Characteristics of atmospheric particle matters and major water-soluble inorganic ions in an urban area of Shenzhen [J]. Acta Scientiae Circumstantiae, 2020, 40(3): 792-802(in Chinese).
[35] 李欣悦, 张凯山, 武文琪, 等. 成都市城区大气细颗粒物水溶性离子污染特征 [J]. 中国环境科学, 2021, 41(1): 91-101. doi: 10.3969/j.issn.1000-6923.2021.01.011 LI X Y, ZHANG K S, WU W Q, et al. Characterization of water-soluble ions pollution of atmospheric fine particles in Chengdu City [J]. China Environmental Science, 2021, 41(1): 91-101(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.01.011
[36] 张敬巧, 罗达通, 王少博, 等. 聊城市秋季PM2.5中水溶性离子污染特征及来源解析 [J]. 环境工程技术学报, 2021, 11(4): 617-623. doi: 10.12153/j.issn.1674-991X.20200228 ZHANG J Q, LUO D T, WANG S B, et al. Pollution characteristics and source analysis of water-soluble ions in PM2.5 during autumn in Liaocheng City [J]. Journal of Environmental Engineering Technology, 2021, 11(4): 617-623(in Chinese). doi: 10.12153/j.issn.1674-991X.20200228
[37] 张勇, 陈荣祥, 陈卓, 等. 遵义市PM2.5中水溶性离子的污染特征及来源解析 [J]. 地球与环境, 2020, 48(5): 552-557. ZHANG Y, CHEN R X, CHEN Z, et al. Pollution characteristics and source apportionment of water-soluble ions in PM2.5 in the Zunyi City [J]. Earth and Environment, 2020, 48(5): 552-557(in Chinese).
[38] 闫霞霞. 关中地区秋冬季PM10与PM2.5中水溶性离子污染特征及来源解析[D]. 西安: 西安建筑科技大学, 2020. YAN X X. Pollution charateristics and source analysis of water-soluble ion in PM10 and PM2.5in Guanzhong area at autumn and winter[D]. Xi'an: Xi'an University of Architecture and Technology, 2020(in Chinese).
[39] 吕青, 包云轩, 陈粲, 等. 昆山市不同污染条件下PM2.5水溶性离子时间变化特征及其源解析 [J]. 环境科学学报, 2021, 41(2): 354-363. LÜ Q, BAO Y X, CHEN C, et al. Temporal variations and source apportionment of water-soluble inorganic ions of PM2.5 observed in Kunshan under different pollution conditions [J]. Acta Scientiae Circumstantiae, 2021, 41(2): 354-363(in Chinese).
[40] 吕哲. 石家庄市PM2.5水溶性离子化学特征与来源解析[D]. 抚州: 东华理工大学, 2019. LYU Z. Chemical characteristics and source apportionment of water-soluble ions in PM2.5 in Shijiazhuang[D]. Fuzhou: East China Institute of Technology, 2019(in Chinese).
[41] 李泱, 常莉敏, 吕沛诚, 等. 兰州市大气臭氧生成的敏感性分析及其前体物减排对策建议 [J]. 环境科学学报, 2021, 41(5): 1628-1639. doi: 10.13671/j.hjkxxb.2020.0460 LI Y, CHANG L M, LÜ P C, et al. Sensitivity analysis of atmospheric ozone formation and its precursors emission reduction countermeasures in Lanzhou City [J]. Acta Scientiae Circumstantiae, 2021, 41(5): 1628-1639(in Chinese). doi: 10.13671/j.hjkxxb.2020.0460
[42] 李子璇. 兰州市大气颗粒物人工干预措施情景模拟及对策建议[D]. 兰州: 兰州大学, 2021. LI Z X. Scenario simulation of artificial intervention measures, countermeasures and suggestions for atmospheric particulate matter in Lanzhou City, China[D]. Lanzhou: Lanzhou University, 2021(in Chinese).
[43] XING J, WANG S X, ZHAO B, et al. Quantifying nonlinear multiregional contributions to ozone and fine particles using an updated response surface modeling technique [J]. Environmental Science & Technology, 2017, 51(20): 11788-11798.