-
非法药物的滥用影响着人类健康、社会安定与国家经济,如今有170多个国家和地区存在着非法药物滥用的问题,全球非法药物的制造、贩卖和滥用问题日趋严重[1]. 因此,预防非法药物的使用,及时掌握区域非法药物的种类及消费量,精准追踪溯源,压缩违法犯罪活动空间,已经成为各国需要面临的共同问题. 最初关于非法药物的滥用情况是通过问卷调查、犯罪统计等传统社会调查方法获得的,但是这些调查方法具有一定的主观性与滞后性,可能导致非法药物消费情况的不正确评估. 2001年Daughton[2]提出一种污水流行病学的概念来评估非法药物的消费情况,即通过收集污水管道、泵站或者污水处理厂(WWTPs)进水处废水样品,测定污水中药物残留及其代谢物的浓度,结合WWTPs日处理量、服务区人口及药物排泄率等参数推算出WWTPs服务区域内非法药物的消费量. 与传统社会调查方法相比,污水流行病学能够在一定程度上克服主观因素影响,实时、客观地量化不同时间和地区的药物消费情况和人群使用趋势.
2005年Zuccato等[3]首次将这种概念应用于实际,通过收集意大利河流和WWTPs的水样以测定可卡因的含量. 结果发现, 1000名年轻人平均每天使用至少(27±5)剂的可卡因,远超官方报道的数字,随后基于污水流行病学的污水分析法作为一种客观、准确、有效的监测方法,在各国得到了广泛的运用[3-7]. 非法药物进入人体后以母体原型或者代谢产物的形式排泄,这些非法药物具有难降解特性,可以通过排水管网汇入WWTPs,但是污水中成分复杂,会对非法药物及其代谢物的测定产生干扰,且污水中大部分目标药物残留物(drug target residues,DTRs)的浓度极低,因此,污水样品的前处理显得尤为重要. 绝大部分报道都采用固相萃取(solid-phase-extraction,SPE)作为污水的前处理方式[8-9],如果SPE条件不同,对非法药物的萃取回收率也会不同,所以选定合适的SPE条件对污水中非法药物的测定至关重要.
国外的一些研究发现,重大节日如音乐节等期间污水中非法药物的负荷量较正常周呈现出增加的趋势[9-10]. Jiang等[11]发现,中国台湾垦丁地区青年节期间非法药物的浓度明显高于旅游淡季,而关于内地典型旅游城市重大节假日期间非法药物的滥用量鲜有报道. 本研究采用污水分析法对中国典型旅游城市桂林市某污水处理厂的重大节假日与日常生活期间进水废水中常见非法药物甲基苯丙胺和氯胺酮及其代谢物的浓度进行检测,并通过反推模型推算不同时期的甲基苯丙胺与氯胺酮的滥用量. 同时运用SPE技术比较前处理条件(Oasis HLB 和Oasis MCX 两种SPE柱)对模拟样品中甲基苯丙胺和氯胺酮及其代谢物的萃取回收率,选定最适合桂林市污水中甲基苯丙胺(METH)和氯胺酮(KET)及其代谢物苯丙胺(AMP)和去甲氯胺酮(NK)前处理的方法. 从而为桂林市该区域非法药物的滥用与测定信息提供初步数据,以期为毒品滥用监测及禁毒工作提供科学依据.
基于污水流行病学评估旅游城市非法药物的滥用情况
Assessment of illicit drug abuse in tourist cities based on wastewater-based epidemiology
-
摘要: 基于污水流行病学法已经在各国广泛应用于评估非法药物的消费情况. 本研究利用SPE-HPLC-MS技术,比较了前处理条件(Oasis MCX和Oasis HLB固相萃取柱)对模拟样品中甲基苯丙胺(METH)与氯胺酮(KET)及其主要代谢产物苯丙胺(AMP)和去甲氯胺酮(NK)的萃取回收率,结果发现Oasis MCX固相萃取柱更适合METH与KET及其代谢产物的萃取. 萃取方法优化后,利用污水流行病学法对桂林市重大节假日(国庆假期)和日常生活中METH和KET滥用情况进行了研究,通过分析METH和KET及其代谢物在某污水处理厂进水浓度,反算了其在该处理厂服务区域的消费量. 研究结果表明,METH的代谢产物苯丙胺(AMP)与METH的浓度比值、KET与其代谢产物去甲氯胺酮(NK)的浓度比值都超过理论代谢范围,可能存在METH和KET直接向污水管网恶意倾倒或排放的现象. 重大节假日期间METH和KET的千人日均消费量分别为(55.11±94.22)mg·d−1和(173.82±1.83)mg·d−1,而日常生活期间的千人日均消费量分别为(9.79±4.25)mg·d−1和(10.50±1.05)mg·d−1. 重大节假日期间测定的非法药物消费量都显著高于非节假日期间,说明桂林市该区域的非法药物使用着存在节假日效应.Abstract: Wastewater-based epidemiology has been widely used in various countries to assess the consumption of illicit drugs. In this study, SPE-HPLC-MS technology was used to compare the extraction recoveries of methamphetamine (METH), ketamine (KET) and their main metabolites amphetamine (AMP) and norketamine (NK) in simulated samples under different pretreatment conditions (Oasis MCX and Oasis HLB solid phase extraction columns). The results showed that Oasis MCX solid phase extraction column was more suitable for the extraction of METH, KET and their main metabolites. After optimization of extraction method, the abuse of METH and KET in major holiday(National Day) and daily life in Guilin city was investigated. The consumption of METH and KET in the service area of the plant was calculated by measuring the concentration of METH, KET and their metabolites in the influent of that plant. The results showed that the concentration ratio of the metabolite METH, amphetamine (AMP) to METH and the concentration ratio of KET to its metabolite, norketamine (NK), exceeded the theoretical metabolic range. There may be malicious dumping or discharge of METH and KET directly into the sewer network in the investigated area. The average daily consumption of METH and KET per thousand people during major holidays was (55.11±94.22) mg·d−1 and (173.82±1.83) mg·d−1, respectively. However, the average daily consumption per thousand people during daily life was (9.79±4.25) mg·d−1 and (10.50±1.05) mg·d−1. The concentrations and consumption of illegal drugs measured during major holidays were significantly higher than those during non-holidays, indicating that there was holiday effect on the use of illegal drugs in the region of Guilin.
-
Key words:
- illegal drugs /
- sewage analysis /
- solid phase extraction /
- consumption
-
表 1 优化后的毒品及其代谢物的质谱参数
Table 1. Optimized MS parameters of drugs and their metabolites
化合物
Compound name母离子
Precursor ion子离子
Product ion碎裂电压/V
Fragmentor碰撞能量/eV
Collision energyMETH 150.1 91.1 85 17 65.1 45 METH-D5 155.2 92 17 7 91 7 AMP 136.1 119.1 58 5 91.1 13 AMP-D5 141.1 124.2 58 5 93.1 13 KET 238.1 125 98 25 89.1 65 KET-D4 242.1 129.1 98 25 92.1 69 NK 224.1 207.1 88 10 125 22 NK-D4 228.1 211.1 83 10 129.1 22 表 2 不同SPE柱条件下目标物的线性范围、回归方程、相关系数、检出限和定量限
Table 2. Linear ranges, regression equation, correlation coefficients, limits of detection(LOD), and limits of quantitation(LOQ) of DTRs under different SPE column conditions
分析物
Analyte线性范围/(ng·L−1)
Linear range回归方程
Regression equationR2 检出限/(ng·L−1)
LOD定量限/(ng·L−1)
LOQMCX METH 1—500 y = 0.0565x + 0.8173 0.9963 0.72 2.36 AMP 1—500 y = 0.0505x + 0.6301 0.9977 0.94 2.74 KET 1—500 y = 0.0344x + 0.404 0.9970 0.65 1.91 NK 1—500 y = 0.0291x + 0.4297 0.9944 1.22 3.60 HLB METH 1—500 y = 0.0377x + 0.98 0.9916 1.35 4.17 AMP 1—500 y = 0.031x + 1.0509 0.9859 1.43 4.32 KET 1—500 y = 0.0218x + 0.3735 0.9950 0.76 2.18 NK 1—500 y = 0.0196x + 0.3346 0.9911 0.94 2.89 表 3 不同SPE柱条件下目标物的回收率、基质效应和精密度
Table 3. Recovery, matrix effect and precision of the DTRs under different SPE column conditions
回收率/%
Recovery(n=7)基质效应/%
Matrix effects精密度/%
RSD分析物
Analyte日内
Intraday日间
Interday10 ng·L−1 50 ng·L−1 400 ng·L−1 10 ng·L−1 50 ng·L−1 400 ng·L−1 10 ng·L−1 50 ng·L−1 400 ng·L−1 10 ng·L−1 50 ng·L−1 400 ng·L−1 MCX METH 105.41 105.92 103.51 75.24 98.43 102.43 3.54 2.91 3.16 6.42 5.33 5.58 AMP 97.16 103.04 98.27 87.52 104.92 89.59 4.16 2.36 4.04 6.24 5.04 5.25 KET 104.63 96.12 105.31 72.36 106.36 110.54 2.48 4.87 3.55 8.68 4.82 7.03 NK 81.44 92.33 103.64 122.43 124.61 101.92 2.13 3.32 2.73 9.75 8.13 8.62 HLB METH 95.72 109.52 93.18 61.38 125.41 112.43 5.82 4.90 5.36 5.53 6.49 6.24 AMP 95.15 99.84 102.42 130.54 101.47 95.60 4.03 6.93 6.35 6.14 7.33 7.90 KET 64.45 81.32 72.03 64.46 105.53 88.74 5.00 4.24 6.84 8.18 8.62 9.04 NK 68.86 73.54 80.01 103.60 115.51 105.27 5.09 4.16 6.08 9.06 9.70 8.43 -
[1] LIU Y, LIN D Y, WU B L, et al. Ketamine abuse potential and use disorder [J]. Brain Research Bulletin, 2016, 126: 68-73. doi: 10.1016/j.brainresbull.2016.05.016 [2] DAUGHTON C G, TERNES T A. Pharmaceuticals and personal care products in the environment: Agents of subtle change? [J]. Environmental Health Perspectives, 1999, 107(Suppl 6): 907-938. doi: 10.1289/ehp.99107s6907 [3] ZUCCATO E, CHIABRANDO C, CASTIGLIONI S, et al. Cocaine in surface waters: A new evidence-based tool to monitor community drug abuse [J]. Environmental Health:a Global Access Science Source, 2005, 4: 14. [4] CHIAIA A C, BANTA-GREEN C, FIELD J. Eliminating solid phase extraction with large-volume injection LC/MS/MS: Analysis of illicit and legal drugs and human urine indicators in US wastewaters [J]. Environmental Science & Technology, 2008, 42(23): 8841-8848. [5] METCALFE C, TINDALE K, LI H X, et al. Illicit drugs in Canadian municipal wastewater and estimates of community drug use [J]. Environmental Pollution, 2010, 158(10): 3179-3185. doi: 10.1016/j.envpol.2010.07.002 [6] LAI F Y, BRUNO R, LEUNG H W, et al. Estimating daily and diurnal variations of illicit drug use in Hong Kong: A pilot study of using wastewater analysis in an Asian metropolitan city [J]. Forensic Science International, 2013, 233(1/2/3): 126-132. [7] DU P, LI K Y, LI J, et al. Methamphetamine and ketamine use in major Chinese cities, a nationwide reconnaissance through sewage-based epidemiology [J]. Water Research, 2015, 84: 76-84. doi: 10.1016/j.watres.2015.07.025 [8] KRIZMAN-MATASIC I, KOSTANJEVECKI P, AHEL M, et al. Simultaneous analysis of opioid analgesics and their metabolites in municipal wastewaters and river water by liquid chromatography-tandem mass spectrometry [J]. Journal of Chromatography A, 2018, 1533: 102-111. doi: 10.1016/j.chroma.2017.12.025 [9] BIJLSMA L, CELMA A, CASTIGLIONI S, et al. Monitoring psychoactive substance use at six European festivals through wastewater and pooled urine analysis [J]. Science of the Total Environment, 2020, 725: 138376. doi: 10.1016/j.scitotenv.2020.138376 [10] BENAGLIA L, UDRISARD R, BANNWARTH A, et al. Testing wastewater from a music festival in Switzerland to assess illicit drug use [J]. Forensic Science International, 2020, 309: 110148. doi: 10.1016/j.forsciint.2020.110148 [11] JIANG J J, LEE C L, FANG M D, et al. Impacts of emerging contaminants on surrounding aquatic environment from a youth festival [J]. Environmental Science & Technology, 2015, 49(2): 792-799. [12] DAGLIOGLU N, GUZEL E Y, KILERCIOGLU S. Assessment of illicit drugs in wastewater and estimation of drugs of abuse in Adana Province, Turkey [J]. Forensic Science International, 2019, 294: 132-139. doi: 10.1016/j.forsciint.2018.11.012 [13] JIN H B, YANG D, HAO Y B, et al. Estimation of the psychoactive substances consumption within 12 wastewater treatment plants service areas in a certain city of Guangxi, China applying wastewater-based epidemiology [J]. Science of the Total Environment, 2021, 778: 146370. doi: 10.1016/j.scitotenv.2021.146370 [14] LIU S Y, YU W J, WANG Y R, et al. Tracing consumption patterns of stimulants, opioids, and ketamine in China by wastewater-based epidemiology [J]. Environmental Science and Pollution Research International, 2021, 28(13): 16754-16766. doi: 10.1007/s11356-020-12035-w [15] ZHANG X H, HUANG R H, LI P, et al. Temporal profile of illicit drug consumption in Guangzhou, China monitored by wastewater-based epidemiology [J]. Environmental Science and Pollution Research International, 2019, 26(23): 23593-23602. doi: 10.1007/s11356-019-05575-3 [16] 刘春叶, 王喆, 冯佳铭, 等. 污水流行病学调查辽宁和吉林两省甲基苯丙胺滥用量和流行率 [J]. 环境化学, 2018, 37(8): 1763-1769. doi: 10.7524/j.issn.0254-6108.2017121802 LIU C Y, WANG Z, FENG J M, et al. Methamphetamine consumption and prevalence in Liaoning and Jilin Provinces investigated by sewage epidemiology [J]. Environmental Chemistry, 2018, 37(8): 1763-1769(in Chinese). doi: 10.7524/j.issn.0254-6108.2017121802
[17] ZHENG Q D, REN Y, WANG Z, et al. Assessing patterns of illicit drug use in a Chinese City by analyzing daily wastewater samples over a one-year period [J]. Journal of Hazardous Materials, 2021, 417: 125999. doi: 10.1016/j.jhazmat.2021.125999 [18] 陈培培, 杜鹏, 周子雷, 等. 污水中新精神活性物质的分析方法优化及验证 [J]. 环境科学, 2018, 39(8): 3736-3743. doi: 10.13227/j.hjkx.201712251 CHEN P P, DU P, ZHOU Z L, et al. Optimization and validation of the analytical method to detect new psychoactive substances in wastewater [J]. Environmental Science, 2018, 39(8): 3736-3743(in Chinese). doi: 10.13227/j.hjkx.201712251
[19] BIJLSMA L, SANCHO J V, PITARCH E, et al. Simultaneous ultra-high-pressure liquid chromatography-tandem mass spectrometry determination of amphetamine and amphetamine-like stimulants, cocaine and its metabolites, and a Cannabis metabolite in surface water and urban wastewater [J]. Journal of Chromatography A, 2009, 1216(15): 3078-3089. doi: 10.1016/j.chroma.2009.01.067 [20] PACHECO FERREIRA A, . Estimaciones del consumo de drogas ilícitas derivadas del análisis de Aguas residuales: Una revisión crítica[J]. Revista De La Universidad Industrial De Santander Salud, 2019: 69-80. [21] ZUCCATO E, CHIABRANDO C, CASTIGLIONI S, et al. Estimating community drug abuse by wastewater analysis [J]. Environmental Health Perspectives, 2008, 116(8): 1027-1032. doi: 10.1289/ehp.11022 [22] KHAN U, NICELL J A. Sewer epidemiology mass balances for assessing the illicit use of methamphetamine, amphetamine and tetrahydrocannabinol [J]. Science of the Total Environment, 2012, 421/422: 144-162. doi: 10.1016/j.scitotenv.2012.01.020 [23] 王喆. 基于市政污水分析监测城市甲基苯丙胺滥用长期趋势[D]. 大连: 大连海事大学, 2019. WANG Z. Long-term monitoring of urban methamphetamine abuse based on municipal wastewater analysis[D]. Dalian: Dalian Maritime University, 2019(in Chinese).
[24] BAKER D R, BARRON L, KASPRZYK-HORDERN B. Illicit and pharmaceutical drug consumption estimated via wastewater analysis. Part A: Chemical analysis and drug use estimates [J]. The Science of the Total Environment, 2014, 487: 629-641. doi: 10.1016/j.scitotenv.2013.11.107 [25] XU Z Q, DU P, LI K Y, et al. Tracing methamphetamine and amphetamine sources in wastewater and receiving waters via concentration and enantiomeric profiling [J]. Science of the Total Environment, 2017, 601/602: 159-166. doi: 10.1016/j.scitotenv.2017.05.045 [26] MOORE K A, SKLEROV J, LEVINE B, et al. Urine concentrations of ketamine and norketamine following illegal consumption [J]. Journal of Analytical Toxicology, 2001, 25(7): 583-588. doi: 10.1093/jat/25.7.583 [27] 巫美桥红, 莫世鹏. 临桂区: 推进智慧禁毒 实现精确防控[N]. 广西日报, 2021-05-17(9). [28] 姚远. 东北典型城市甲基苯丙胺节假日滥用规律研究[D]. 大连: 大连海事大学, 2019. YAO Y. Methamphetamine use pattern in holidays at A typical city of northeast China[D]. Dalian: Dalian Maritime University, 2019(in Chinese).
[29] DU P, ZHENG Q D, THOMAS K V, et al. A revised excretion factor for estimating ketamine consumption by wastewater-based epidemiology - Utilising wastewater and seizure data [J]. Environment International, 2020, 138: 105645. doi: 10.1016/j.envint.2020.105645