-
随着工业化的发展,采矿、工业和农业生产等人为活动逐渐成为环境水体中重金属的主要来源[1]. 例如,电镀、制革、燃煤等工业活动会产生大量含铬废水,燃煤和焚烧污泥排放大量含镉废水,酸性电池、含铅汽油的普遍使用导致含铅废水的增多[1-2]等. 废水中的重金属具有毒性大、无法降解的特点,能够通过食物链被水生生物富集,再由食物摄入的途径进入人体,造成发育迟缓、内分泌紊乱、神经系统异常、癌症等严重危害[3-4]. 水中重金属的去除方法主要有物理法和化学法两类. 物理法是利用膜孔截留、静电作用和其他作用将重金属离子从污水中浓缩并分离出来,不发生化学反应,具有操作简单、灵活、不受污水规模影响等优点,但材料回收和膜再生等问题是限制物理法大规模应用的因素[5]. 化学法的原理是通过投加化学药剂使水中的重金属离子改变形态或降低毒性,适用于重金属浓度较高的废水,包括化学沉淀法、电解法、氧化还原法、气浮法等. 然而,由于耗费电能、使用大量化学品、产生大量污泥等等缺点,化学法的成本较高[6]. 吸附法能兼顾处理效果和成本效益,对高低浓度的重金属污染物都适用,且基本不产生二次污染,具有多方面的优势[6-7].
传统吸附剂(活性炭等)受处理效率和成本等因素的限制,难以满足废水处理的需要[8],近年来新型吸附剂的设计开发成为研究热点. 这些材料可分为低成本吸附剂、生物吸附剂、无机纳米材料和合成多孔材料四类[9-10]. 需要注意的是,对天然材料或传统吸附材料改性处理得到的多孔材料属于低成本吸附剂的范畴. 合成多孔材料是由人工设计并合成的吸附剂,既具有疏松、多孔的结构特性,又能根据应用水体进行灵活的结构调控,增加吸附位点. 废水中的重金属离子被截留在合成多孔吸附剂表面,然后进入颗粒内的孔道并扩散,最终与吸附活性位点发生结合[11]. 合成多孔材料对重金属的吸附容量和选择性远胜于其他材料,有极大的发展空间. 为指导高效、高选择性吸附剂的设计合成,通过理论模拟和实验结合,确定吸附剂和重金属离子之间的相互作用机制,是此类研究中的关键步骤. 常用的实验方法是对吸附前后的吸附剂进行表征和对比(如FT-IR和XPS),理论模拟是对吸附过程进行DFT计算,其重点在于针对不同研究目的选择合适的计算、分析方法.
本文介绍了近年来典型合成多孔材料的开发和对重金属吸附的应用进展,并对这些新材料未来的研究方向进行了展望. 另外,总结了DFT计算的四个常用功能,并列举文献实例说明具体分析方法,为此类理论模拟研究提供参考和帮助.
合成多孔材料吸附水中重金属的研究进展
Research progress on adsorption of heavy metals in water by synthetic porous materials
-
摘要: 重金属吸附新材料的开发是废水处理技术的一大挑战,合成多孔材料由于高吸附容量、高选择性和结构调控的灵活性受到关注. 本文以无机介孔材料、金属有机框架和多孔有机聚合物为代表,介绍了合成多孔材料作为重金属吸附剂研究的最新成果,包括新材料的制备、结构调控的方法和吸附效果. 与常用的确定吸附机理的研究方法如傅里叶变换红外光谱(FT-IR)、X射线光电子能谱(XPS)等相比,基于密度泛函理论(density functional theory,DFT)的计算可以更清晰地阐述吸附位点与材料中的官能团或原子之间的关系,己成为当前深入探究吸附机理和解释实验结果的重要手段. 本文列举了DFT计算中常用的代表性功能的原理和应用于合成多孔吸附材料研究中的文献实例,包括结构优化、计算结合能、分析吸附剂电子特性、研究分子间相互作用,以期为类似的新材料开发和吸附机理研究提供参考.Abstract: The development of new materials for heavy metal adsorption is a major challenge for wastewater treatment technology. Synthetic porous materials have attracted much attention due to their high adsorption capacity, high selectivity, and flexibility of structural regulation. Represented by inorganic mesoporous materials, metal-organic frameworks and porous organic polymers, the latest achievements in the research of synthetic porous materials as heavy metal adsorbents are introduced in this paper, including the preparation of new materials, methods of structure regulation and adsorption effects. Compared with the commonly used research methods to determine the adsorption mechanism, such as Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), etc., the calculation based on density functional theory (DFT) can be more efficient. Clearly expounding the relationship between adsorption sites and functional groups or atoms in materials has become an important means for in-depth exploration of adsorption mechanisms and interpretation of experimental results. This paper lists the principles of representative functions commonly used in DFT calculations and literature examples applied to the study of synthetic porous adsorbents, including structure optimization, calculation of binding energies, analysis of adsorbent electronic properties, and study of intermolecular interactions. Provide reference for new material development and adsorption mechanism research.
-
Key words:
- porous material /
- heavy metal adsorption /
- structural regulation /
- DFT calculation.
-
表 1 合成多孔材料对重金属的吸附性能比较
Table 1. Comparison of the adsorption properties of synthetic porous materials for heavy metals
类型
Type吸附剂
AdsorbentsBET比表面积/
(m2·g−1)
Specific surface
area重金属
Heavy metals最佳pH
Optimum pH吸附容量/
(mg·g−1)
Adsorption
capacity循环效果
Reusability参考文献
Ref.无机介
孔材料介孔二氧化硅(HMBA改性) 552 Cu(Ⅱ) 5.2 182 8次,>90% [14] Pb(Ⅱ) 3.5 173 无机介
孔材料PVP-SBA-15 378 Cu(Ⅱ) 5 128 — [15] Pb(Ⅱ) 175 Ni(Ⅱ) 72 CKIT-6-100-5 23 Co(Ⅱ) 5 156 — [16] Ni(Ⅱ) 149 CST-100-5 0.66 Co(Ⅱ) 141 Ni(Ⅱ) 130 金属有
机框架UiO-66-DMTD — Hg(Ⅱ) 3 671 10次,85.4% [17] UiO-66-EDTMPA 131 Pb(Ⅱ) 5.5 559 5次,73.92% [18] Cd(Ⅱ) 271 5次,70.28% Cu(Ⅱ) 211 5次,66.56% UiO-66-EDA — Pb(Ⅱ) 6 244 4次,84% [19] Cd(Ⅱ) 217 4次,76% Cu(Ⅱ) 208 4次,67% UiO-66-AT 887 Pb(Ⅱ) 5—5.5 246 4次,>90% [20] UiO-67-AT 920 Pb(Ⅱ) 367 4次,>90% Ni0.6Fe2.4O4-UiO-66-PEI 22 Pb(Ⅱ) 5.5 273 5次,92.32% [21] Cr(Ⅵ) 3 429 5次,99.79% MIL-101-NH2 455 Fe(Ⅲ) 3 195 6次,初次的88.1% [22] Cu(Ⅱ) 5 57 6次,初次的78.8% Pb(Ⅱ) 5 228 6次,初次的76.9% ZIF-8 937 Pb(Ⅱ) 5.1 1120 — [23] Cu(Ⅱ) 455 ZIF-67 1289 Pb(Ⅱ) 5.2 1348 Cu(Ⅱ) 618 多孔
有机
聚合物COF-SH 40.4 Pb(Ⅱ) 5-6 239 — [24] COF-SH 235 Hg(Ⅱ) 7 1283 10次,>97% [25] COF-BTA-DHBZ 816 Cr(Ⅵ) 1 384 — [26] CMP-2a 118 Pb(Ⅱ) ≥4 63 — [27] CMP-3a 168 93 5次,>80% PTIA 139 Ni(Ⅱ) 6 290 4次,初次的74.6% [28] Cu(Ⅱ) 324 4次,初次的80.2% Cr(Ⅲ) 179 4次,初次的75.0% Zn(Ⅱ) 204 4次,初次的81.4% SMP 517 Hg(Ⅱ) 1 596 4次,>98% [29] POP-SH 1061 Hg(Ⅱ) — 1216 4次,>90% [30] 4AS-MBP 167 Hg(Ⅱ) 5 312 5次,92.13% [31] FC-POP-CH2TETA-H 599 Pb(Ⅱ) 2—8 1134 6次,>90% [32] FC-POP-CH2TETA-E 413 561 6次,>90% 络合构型
Complexes结合能/(kcal·mol−1)
Binding energyNBO部分电荷
NBO partial chargeCd(II)电子构型
Cd(Ⅱ) electron configuration配体
LigandCd(Ⅱ) G1.0-Cd(II)-1 −224.53 0.81 1.19 5s0.84d9.995p0.026p0.01 G1.0-Cd(II)-2 −260.79 0.36 1.64 5s0.364d9.986p0.02 G1.0-Cd(II)-3 −271.73 0.35 1.65 5s0.354d9.995p0.016p0.01 G1.0-Cd(II)-4 −280.36 0.30 1,70 5s0.294d9.996p0.02 G1.0-Cd(II)-5 −291.85 0.29 1.71 5s0.294d9.986p0.02 G1.0-Cd(II)-6 −300.12 0.33 1.67 5s0.324d9.995p0.016p0.01 -
[1] ALI H, KHAN E, ILAHI I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation [J]. Journal of Chemistry, 2019, 2019: 6730305. [2] VAREDA J P, VALENTE A J M, DURÃES L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review [J]. Journal of Environmental Management, 2019, 246: 101-118. doi: 10.1016/j.jenvman.2019.05.126 [3] 刘金燕, 刘立华, 薛建荣, 等. 重金属废水吸附处理的研究进展 [J]. 环境化学, 2018, 37(9): 2016-2024. doi: 10.7524/j.issn.0254-6108.2017110105 LIU J Y, LIU L H, XUE J R, et al. Research progress on treatment of heavy metal wastewater by adsorption [J]. Environmental Chemistry, 2018, 37(9): 2016-2024(in Chinese). doi: 10.7524/j.issn.0254-6108.2017110105
[4] SALL M L, DIAW A, GNINGUE-SALL D, et al. Toxic heavy metals: Impact on the environment and human health, and treatment with conducting organic polymers, a review [J]. Environmental Science and Pollution Research International, 2020, 27(24): 29927-29942. doi: 10.1007/s11356-020-09354-3 [5] ZHU Y, FAN W H, ZHOU T T, et al. Removal of chelated heavy metals from aqueous solution: A review of current methods and mechanisms [J]. Science of the Total Environment, 2019, 678: 253-266. doi: 10.1016/j.scitotenv.2019.04.416 [6] VARDHAN K H, KUMAR P S, PANDA R C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives [J]. Journal of Molecular Liquids, 2019, 290: 111197. doi: 10.1016/j.molliq.2019.111197 [7] AZIMI A, AZARI A, REZAKAZEMI M, et al. Removal of heavy metals from industrial wastewaters: A review [J]. ChemBioEng Reviews, 2017, 4(1): 37-59. doi: 10.1002/cben.201600010 [8] CRINI G, LICHTFOUSE E, WILSON L D, et al. Conventional and non-conventional adsorbents for wastewater treatment [J]. Environmental Chemistry Letters, 2019, 17(1): 195-213. doi: 10.1007/s10311-018-0786-8 [9] SARMA G K, SEN GUPTA S, BHATTACHARYYA K G. Nanomaterials as versatile adsorbents for heavy metal ions in water: A review [J]. Environmental Science and Pollution Research International, 2019, 26(7): 6245-6278. doi: 10.1007/s11356-018-04093-y [10] AYANGBENRO A S, BABALOLA O O. A new strategy for heavy metal polluted environments: A review of microbial biosorbents [J]. International Journal of Environmental Research and Public Health, 2017, 14(1): 94. doi: 10.3390/ijerph14010094 [11] BARAKAT M A. New trends in removing heavy metals from industrial wastewater [J]. Arabian Journal of Chemistry, 2011, 4(4): 361-377. doi: 10.1016/j.arabjc.2010.07.019 [12] 周雯, 佟珊珊. 新型吸附材料分离和富集贵金属的研究进展 [J]. 应用化学, 2021, 38(8): 897-910. ZHOU W, TONG S S. Research progress on novel adsorbent materials for separation and enrichment of noble metals [J]. Chinese Journal of Applied Chemistry, 2021, 38(8): 897-910(in Chinese).
[13] WU Z X, ZHAO D Y. Ordered mesoporous materials as adsorbents [J]. Chemical Communications (Cambridge, England), 2011, 47(12): 3332-3338. doi: 10.1039/c0cc04909c [14] AWUAL M R, RAHMAN I M M, YAITA T, et al. pH dependent Cu(II) and Pd(II) ions detection and removal from aqueous media by an efficient mesoporous adsorbent [J]. Chemical Engineering Journal, 2014, 236: 100-109. doi: 10.1016/j.cej.2013.09.083 [15] BETIHA M A, MOUSTAFA Y M, EL-SHAHAT M F, et al. Polyvinylpyrrolidone-Aminopropyl-SBA-15 schiff Base hybrid for efficient removal of divalent heavy metal cations from wastewater [J]. Journal of Hazardous Materials, 2020, 397: 122675. doi: 10.1016/j.jhazmat.2020.122675 [16] MARCINIAK M, GOSCIANSKA J, FRANKOWSKI M, et al. Optimal synthesis of oxidized mesoporous carbons for the adsorption of heavy metal ions [J]. Journal of Molecular Liquids, 2019, 276: 630-637. doi: 10.1016/j.molliq.2018.12.042 [17] FU L K, WANG S X, LIN G, et al. Post-functionalization of UiO-66-NH2 by 2, 5-Dimercapto-1, 3, 4-thiadiazole for the high efficient removal of Hg(II) in water [J]. Journal of Hazardous Materials, 2019, 368: 42-51. doi: 10.1016/j.jhazmat.2019.01.025 [18] YAN Y H, CHU Y T, KHAN M A, et al. Facile immobilization of ethylenediamine tetramethylene-phosphonic acid into UiO-66 for toxic divalent heavy metal ions removal: An experimental and theoretical exploration [J]. Science of the Total Environment, 2022, 806: 150652. doi: 10.1016/j.scitotenv.2021.150652 [19] AHMADIJOKANI F, TAJAHMADI S, BAHI A, et al. Ethylenediamine-functionalized Zr-based MOF for efficient removal of heavy metal ions from water [J]. Chemosphere, 2021, 264: 128466. doi: 10.1016/j.chemosphere.2020.128466 [20] MORCOS G S, IBRAHIM A A, EL-SAYED M M H, et al. High performance functionalized UiO metal organic frameworks for the efficient and selective adsorption of Pb (II) ions in concentrated multi-ion systems [J]. Journal of Environmental Chemical Engineering, 2021, 9(3): 105191. doi: 10.1016/j.jece.2021.105191 [21] WANG C, XIONG C, HE Y L, et al. Facile preparation of magnetic Zr-MOF for adsorption of Pb(II) and Cr(VI) from water: Adsorption characteristics and mechanisms [J]. Chemical Engineering Journal, 2021, 415: 128923. doi: 10.1016/j.cej.2021.128923 [22] LV S W, LIU J M, LI C Y, et al. A novel and universal metal-organic frameworks sensing platform for selective detection and efficient removal of heavy metal ions [J]. Chemical Engineering Journal, 2019, 375: 122111. doi: 10.1016/j.cej.2019.122111 [23] HUANG Y, ZENG X F, GUO L L, et al. Heavy metal ion removal of wastewater by zeolite-imidazolate frameworks [J]. Separation and Purification Technology, 2018, 194: 462-469. doi: 10.1016/j.seppur.2017.11.068 [24] CAO Y, HU X, ZHU C Q, et al. Sulfhydryl functionalized covalent organic framework as an efficient adsorbent for selective Pb (II) removal [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 600: 125004. doi: 10.1016/j.colsurfa.2020.125004 [25] MA Z Y, LIU F Y, LIU N S, et al. Facile synthesis of sulfhydryl modified covalent organic frameworks for high efficient Hg(II) removal from water [J]. Journal of Hazardous Materials, 2021, 405: 124190. doi: 10.1016/j.jhazmat.2020.124190 [26] CUI F Z, LIANG R R, QI Q Y, et al. Efficient removal of Cr(VI) from aqueous solutions by a dual-pore covalent organic framework [J]. Advanced Sustainable Systems, 2019, 3(4): 1800150. doi: 10.1002/adsu.201800150 [27] QIAO X X, LIU G F, WANG J T, et al. Highly efficient and selective removal of lead ions from aqueous solutions by conjugated microporous polymers with functionalized heterogeneous pores [J]. Crystal Growth & Design, 2020, 20(1): 337-344. [28] WANG Q, LI R, OUYANG X, et al. A novel indole-based conjugated microporous polymer for highly effective removal of heavy metals from aqueous solution via double cation-π interactions [J]. RSC Advances, 2019, 9(69): 40531-40535. doi: 10.1039/C9RA07970J [29] XU D, WU W D, QI H J, et al. Sulfur rich microporous polymer enables rapid and efficient removal of mercury(II) from water [J]. Chemosphere, 2018, 196: 174-181. doi: 10.1016/j.chemosphere.2017.12.186 [30] AGUILA B, SUN Q, PERMAN J A, et al. Efficient mercury capture using functionalized porous organic polymer [J]. Advanced Materials, 2017, 29(31): 1700665. doi: 10.1002/adma.201700665 [31] RYU J, LEE M Y, SONG M, et al. Highly selective removal of Hg(II) ions from aqueous solution using thiol-modified porous polyaminal-networked polymer [J]. Separation and Purification Technology, 2020, 250: 117120. doi: 10.1016/j.seppur.2020.117120 [32] ZHAO K Q, KONG L K, YANG W W, et al. Hooped amino-group chains in porous organic polymers for enhancing heavy metal ion removal [J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44751-44757. [33] LI H, CHEN X P, SHEN D Q, et al. Functionalized silica nanoparticles: Classification, synthetic approaches and recent advances in adsorption applications [J]. Nanoscale, 2021, 13(38): 15998-16016. doi: 10.1039/D1NR04048K [34] GANG D, UDDIN AHMAD Z, LIAN Q Y, et al. A review of adsorptive remediation of environmental pollutants from aqueous phase by ordered mesoporous carbon [J]. Chemical Engineering Journal, 2021, 403: 126286. doi: 10.1016/j.cej.2020.126286 [35] RU J, WANG X M, WANG F B, et al. UiO series of metal-organic frameworks composites as advanced sorbents for the removal of heavy metal ions: Synthesis, applications and adsorption mechanism [J]. Ecotoxicology and Environmental Safety, 2021, 208: 111577. doi: 10.1016/j.ecoenv.2020.111577 [36] KOBIELSKA P A, HOWARTH A J, FARHA O K, et al. Metal-organic frameworks for heavy metal removal from water [J]. Coordination Chemistry Reviews, 2018, 358: 92-107. doi: 10.1016/j.ccr.2017.12.010 [37] WEN J, FANG Y, ZENG G M. Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal-organic frameworks: A review of studies from the last decade [J]. Chemosphere, 2018, 201: 627-643. doi: 10.1016/j.chemosphere.2018.03.047 [38] FENG M B, ZHANG P, ZHOU H C, et al. Water-stable metal-organic frameworks for aqueous removal of heavy metals and radionuclides: A review [J]. Chemosphere, 2018, 209: 783-800. doi: 10.1016/j.chemosphere.2018.06.114 [39] PENG Y G, HUANG H L, ZHANG Y X, et al. A versatile MOF-based trap for heavy metal ion capture and dispersion [J]. Nature Communications, 2018, 9: 187. doi: 10.1038/s41467-017-02600-2 [40] LEE J S M, COOPER A I. Advances in conjugated microporous polymers [J]. Chemical Reviews, 2020, 120(4): 2171-2214. doi: 10.1021/acs.chemrev.9b00399 [41] MODAK A, BHANJA P, SELVARAJ M, et al. Functionalized porous organic materials as efficient media for the adsorptive removal of Hg(ii) ions [J]. Environmental Science:Nano, 2020, 7(10): 2887-2923. doi: 10.1039/D0EN00714E [42] LV S W, LIU J M, WANG Z H, et al. Recent advances on porous organic frameworks for the adsorptive removal of hazardous materials [J]. Journal of Environmental Sciences, 2019, 80: 169-185. doi: 10.1016/j.jes.2018.12.010 [43] JIANG Y Z, LIU C Y, HUANG A S. EDTA-functionalized covalent organic framework for the removal of heavy-metal ions [J]. ACS Applied Materials & Interfaces, 2019, 11(35): 32186-32191. [44] KHAKBAZ M, GHAEMI A, MIR MOHAMAD SADEGHI G. Synthesis methods of microporous organic polymeric adsorbents: A review [J]. Polymer Chemistry, 2021, 12(48): 6962-6997. doi: 10.1039/D1PY01145F [45] SHENG X, SHI H, YANG L M, et al. Rationally designed conjugated microporous polymers for contaminants adsorption [J]. Science of the Total Environment, 2021, 750: 141683. doi: 10.1016/j.scitotenv.2020.141683 [46] AL-MAHAYNI H, WANG X, HARVEY J P, et al. Experimental methods in chemical engineering: Density functional theory [J]. The Canadian Journal of Chemical Engineering, 2021, 99(9): 1885-1911. doi: 10.1002/cjce.24127 [47] HE Y, LIU Q Q, HU J, et al. Efficient removal of Pb(II) by amine functionalized porous organic polymer through post-synthetic modification [J]. Separation and Purification Technology, 2017, 180: 142-148. doi: 10.1016/j.seppur.2017.01.026 [48] HE Y, LIU Q Q, LIU F, et al. Porous organic polymer bifunctionalized with triazine and thiophene groups as a novel adsorbent for removing Cu (II) [J]. Microporous and Mesoporous Materials, 2016, 233: 10-15. doi: 10.1016/j.micromeso.2016.06.024 [49] YANG R X, WANG T T, DENG W Q. Extraordinary capability for water treatment achieved by a perfluorous conjugated microporous polymer [J]. Scientific Reports, 2015, 5: 10155. doi: 10.1038/srep10155 [50] SHAO P H, LIANG D H, YANG L M, et al. Evaluating the adsorptivity of organo-functionalized silica nanoparticles towards heavy metals: Quantitative comparison and mechanistic insight [J]. Journal of Hazardous Materials, 2020, 387: 121676. doi: 10.1016/j.jhazmat.2019.121676 [51] HALDER S, MONDAL J, ORTEGA-CASTRO J, et al. A Ni-based MOF for selective detection and removal of Hg2+ in aqueous medium: A facile strategy [J]. Dalton Transactions (Cambridge, England:2003), 2017, 46(6): 1943-1950. doi: 10.1039/C6DT04722J [52] LI J, DUAN Q Y, WU Z, et al. Few-layered metal-organic framework nanosheets as a highly selective and efficient scavenger for heavy metal pollution treatment [J]. Chemical Engineering Journal, 2020, 383: 123189. doi: 10.1016/j.cej.2019.123189 [53] GENG S Y, LIU J, WANG C, et al. Experimental analysis and theoretical studies by density functional theory of aminopropyl-modified ordered mesoporous carbon [J]. Applied Surface Science, 2015, 351: 911-919. doi: 10.1016/j.apsusc.2015.06.034 [54] WEI D L, ZHANG A R, AI Y J, et al. Adsorption properties of hydrated Cr3+ ions on schiff-base covalent organic frameworks: A DFT study [J]. Chemistry - an Asian Journal, 2020, 15(7): 1140-1146. doi: 10.1002/asia.201901686 [55] XU T, ZHOU L, HE Y, et al. Covalent organic framework with triazine and hydroxyl bifunctional groups for efficient removal of lead(Ⅱ) ions [J]. Industrial & Engineering Chemistry Research, 2019, 58(42): 19642-19648. [56] WANG C, LIN G, XI Y H, et al. Development of mercaptosuccinic anchored MOF through one-step preparation to enhance adsorption capacity and selectivity for Hg(II) and Pb(Ⅱ) [J]. Journal of Molecular Liquids, 2020, 317: 113896. doi: 10.1016/j.molliq.2020.113896 [57] REN B, WANG K, ZHANG B S, et al. Adsorption behavior of PAMAM dendrimers functionalized silica for Cd(II) from aqueous solution: Experimental and theoretical calculation [J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 101: 80-91. doi: 10.1016/j.jtice.2019.04.037 [58] ESRAFILI L, SAFARIFARD V, TAHMASEBI E, et al. Functional group effect of isoreticular metal-organic frameworks on heavy metal ion adsorption [J]. New Journal of Chemistry, 2018, 42(11): 8864-8873. doi: 10.1039/C8NJ01150H [59] 卢天, 陈飞武. 原子电荷计算方法的对比 [J]. 物理化学学报, 2012, 28(1): 1-18. doi: 10.3866/PKU.WHXB2012281 LU T, CHEN F W. Comparison of computational methods for atomic charges [J]. Acta Physico-Chimica Sinica, 2012, 28(1): 1-18(in Chinese). doi: 10.3866/PKU.WHXB2012281
[60] BOTO R A, CONTRERAS-GARCÍA J, TIERNY J, et al. Interpretation of the reduced density gradient [J]. Molecular Physics, 2016, 114(7/8): 1406-1414. [61] WEINHOLD F, LANDIS C R, GLENDENING E D. What is NBO analysis and how is it useful? [J]. International Reviews in Physical Chemistry, 2016, 35(3): 399-440. doi: 10.1080/0144235X.2016.1192262