-
碳酸酐酶(CA)是一种普遍存在的含锌金属酶,其主要功能是催化CO2的水合反应,反应式如下所示:CO2+H2O↔HCO3−+H+,它是目前已知的催化最快的酶之一[1]. 由于游离CA在高温、强酸或强碱溶剂和化学杂质等条件下容易失活,限制了其大规模的工业应用. 因此,采用分子修饰[2]、定向进化[3]、酶固定化[4]等策略来提高其稳定性和活性. 在上述方法中,酶固定化因其操作简单、方便的特点而被广泛应用.
通过选择良好的载体和合适的固定化方法对游离CA进行固定是降低催化剂成本、提高稳定性和可重复使用性的有效途径[5]. 基于固定化CA的生物催化剂因其低耗能和高效率被认为是转化CO2的环境友好的候选方法. 固定化CA主要通过酶促反应吸收[6],CO2矿化生成金属碳酸盐[7]和多酶级联反应[8]来进行CO2转化. 吸收是目前应用最为广泛的CO2捕集技术之一[6]. 然而,吸收溶剂具有再生所需能量高、吸收速率慢和稳定性低等缺点[9]. CA作为促进剂可以提高CO2吸收反应速率,从而降低反应器尺寸和成本. 在某些情况下,CA还用于促进酶催化的CO2转化. CA参与的多酶级联反应用于生产甲酸盐和甲醇等高价值产品[7].
无论CA是以何种方式转化CO2,CO2转化实验始终以烟气为基础,而烟气中具有高温和其他化合物(NOx和SOx等)[10]. 这些可能会影响CA的活性和稳定性,进而减缓CA转化CO2实际工业应用中的反应速率.
碳酸酐酶的固定化及其在二氧化碳转化中的应用
Immobilization of carbonic anhydrase and its application in carbon dioxide conversion
-
摘要: 碳酸酐酶(CA)作为生物系统中典型的含锌金属酶,可高效催化CO2的可逆水合反应. 为了提高CA在实际工业应用中的利用率,本文介绍了传统固定化方法和新型固定化方法(交联酶聚集体和纳米花),阐述了CA催化CO2的水合机理,总结了固定化CA矿化CO2生成CaCO3;CA促进单一溶剂(纯水、碳酸盐溶剂和醇胺溶剂)和混合溶剂吸收、解吸CO2;固定化多酶级联(碳酸酐酶、甲酸脱氢酶、甲醛脱氢酶、乙醇脱氢酶和谷氨酸脱氢酶)催化CO2生产甲酸和甲醇的过程,以及其实际工业应用的最新进展. 未来的研究方向应集中于从转基因生物中提取大量CA,进一步研究CAs相关基因的生理作用和代谢途径,制备高性能的载体和研发先进的固定化方法.Abstract: Carbonic anhydrase (CA), as a typical zinc-containing metalloenzyme in biological systems, which can efficiently catalyze the reversible hydration of CO2. In order to improve the utilization of CA in practical industrial applications, traditional immobilization methods and novel immobilization methods (cross-linked enzyme aggregates and nanoflowers) are introduced in this paper, and the mechanism of CA-catalyzed CO2 hydration is described. The process of immobilized CA mineralizing CO2 to generate CaCO3 is expounded. The procedure of CA to promote the absorption and desorption of CO2 in single solvent (pure water, carbonate solvent and alcohol amine solvent) and mixed solvent is summarized. The procedure of immobilized multi-enzyme cascades (carbonic anhydrase, formate dehydrogenase, formaldehyde dehydrogenase, alcohol dehydrogenase, and glutamate dehydrogenase) catalyzing CO2 to produce formic acid and methanol, and the latest progress in its practical industrial application are reviewed. Future research directions should focus on extracting large amounts of CA from transgenic organisms, further studying the physiological roles and metabolic pathways of CAs-related genes, as well as preparing high-performance carriers and developing advanced immobilization methods.
-
Key words:
- carbonic anhydrase /
- immobilization /
- carbon dioxide conversion.
-
表 1 CA固定化方法优缺点
Table 1. Advantages and disadvantages of CA immobilization methods
表 2 CA在二氧化碳捕集中的矿化性能
Table 2. Mineralization performance of CA in carbon dioxide capture
碳酸酐酶种类
Types of carbonic anhydrase矿化特性
Mineralization propertiesCaCO3晶相
CaCO3 crystal phase参考文献
Reference牛CA(bCA) 固定化细胞比游离细胞的CaCO3产量增加了1.35倍;固定化细胞和游离细胞的CaCO3 相对产量在10个循环后分别为53.46%和22.15% 球霰石和方解石 [35] bCA 17 μg固定化CA产生12 mg CaCO3 方解石 [29] CA CA@ZIF-8获得的CaCO3的产量是游离 CA的22倍 球霰石 [40] 硫化氢碳酸酐酶(SazCA) 固定化CA转化CO2形成碳酸钙的时间比游离CA缩短了33% 球霰石和方解石 [19] SazCA 工程菌株矿化CO2产生的CaCO3质量(241 mg)高于细胞内表达菌株(173 mg) — [38] 周质水生弧菌CA
(hmCA)固定化CA将填充床反应器中的CO2捕集速率提高了80% — [36] CA PVA/CS@CANF膜转化CO2产生的CaCO3 量是游离CA的9倍 — [22] bCA 添加EPC的系统与含有25 mmol·L−1 NaHCO3和不含碳源的对照相比,分别使微藻生长加速了134%和231% — [32] bCA 与(22.7±0.5)mg·L−1·d−1的自然生长速率相比,游离CA和CA-GA珠粒分别将微球藻的生长速率提高到(37±3)mg·L−1·d−1和(40±1)mg·L−1·d−1 — [34] Sulfurihydrogenibium yellowstonense CA(SyCA) 固定化粗CA的CaCO3总产量是游离CA的5.8倍 — [11] CA 固定化CA产生的CaCO3质量是空白实验的5倍 — [31] bCA CA@ZIF-8和PVA/CS/CA@ZIF-8水凝胶膜获得的CaCO3产量分别为游离CA的
20倍和32.6倍.球霰石和方解石 [41] Mesorhizobium loti CA(MICA) 具有固定化全细胞生物催化剂的系统可在3.5 min内有效地将CO2
100%转化为CaCO3— [39] 表 3 CA在二氧化碳吸收中的催化性能
Table 3. Catalytic performance of CA in carbon dioxide absorption
吸收剂成分
Absorbent ingredients温度
Temperature催化特性
Catalytic properties参考文献
References100 mg的固定化CA(固载量为2 mg·g−1)+H2O 30 ℃ 反应进行30 min,CO2吸收量Gv=1.858×10−4 L [31] CA-m-PVDF复合膜+0.25 m·s−1 H2O 25 ℃ CA-m-PVDF复合膜CO2通量值为2.5×10−3 mol·m−2·s−1 [43] 0.05 g·L−1 CA/ZIF-L-1+20 mL 1 mol·L−1 MDEA 40 ℃ MDEA中的CO2吸收率提高了2.5倍 [44] CA/ZIF-8+MDEA 40 ℃ CO2吸收到含有不同粒径的ZIF-8的MDEA溶液中,MDEA溶液的吸收率增加到2.4倍 [45] 10 mg MNP-CA纳米凝胶+100 mL 1 mol·L−1 MDEA 30 ℃ 反应3 h后,MNP-CA纳米凝胶的CO2吸收率为不含CA时的170% [46] 0.3 kg m−3工业级碳酸酐酶(NovoCA)+2—3 mol·L−1 K2CO3(碳酸盐转化度0—40%) 25 ℃和40 ℃ 当加入的酶浓度低于0.018 kg·m−3时,Kcat/Km值介于0.50×102 L·mol−1·s−1和0.39×103 L·mol−1·s−1之间 [49] 0.2×10−2—1.5×10−2 kg NovoCA·m−3 Fe3O4纳米颗粒固定化CA+0.5 mol·L−1 Na2CO3/NaHCO3缓冲液(pH=9.6) 25 ℃和40 ℃ 固定化CA的Kcat/Km值介于4.87—8.06 L·mol−1·s−1之间 [10] 0.2×10−2—1.5×10−2 kg NovoCA·m−3 Fe3O4纳米颗粒固定化CA+10%wt K2CO3溶液(碳酸盐转化度0—40%) 25 ℃ 固定化CA的Kcat/Km值介于3.24—6.73 L·mol−1·s−1之间 [10] 嗜热细菌的全细胞固定(INPN-SspCA)+0.5 mol·L−1 Na2CO3/NaHCO3 25 ℃ INPN-SspCA的Kcat/Km值介于9.94×10−1—
3.09 L·mol−1·s−1之间[48] 2 g·L−1 CA+20% wt K2CO3 40 ℃ 与未添加CA相比,CO2总传质系数(KG)提高了约5倍 [50] 0.22 g·L−1 CA+30% wt K2CO3(pH~11—12) 50 ℃ CA的Kcat/Km值为5.3×108 L·mol−1·s−1 [52] 0.2% wt CA+30% MDEA/15% K2CO3 17—50 ℃ 添加CA显著增加了MDEA和K2CO3的液侧传质膜
系数[17] 0.2% wt CA+30% wt MEA + 7.5% wt PZ+15% wt K2CO3 30 ℃ 含有CA/Zn-Im: HFS的混合溶剂(21.65% wt)在
20 min内CO2的吸收量高于纯混合溶剂(13.75% wt)[51] 0.2% wt CA+30% wt MEA +7.5% wt PZ+15% wt K2CO3 90 ℃ 含有CA/Zn-Im: HFS的混合溶剂比纯混合溶剂的CO2相对解吸率高1.57倍. [51] -
[1] SUPURAN C T. Structure and function of carbonic anhydrases [J]. The Biochemical Journal, 2016, 473(14): 2023-2032. doi: 10.1042/BCJ20160115 [2] WEST D. Structural modification of human Carbonic anhydrase II (HCAII) and its impact on catalysis[D]. University of Florida, 2012 [3] ALVIZO O, NGUYEN L J, SAVILE C K, et al. Directed evolution of an ultrastable carbonic anhydrase for highly efficient carbon capture from flue gas [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(46): 16436-16441. doi: 10.1073/pnas.1411461111 [4] LEE C H, JANG E K, YEON Y J, et al. Stabilization of Bovine carbonic anhydrase II through rational site-specific immobilization [J]. Biochemical Engineering Journal, 2018, 138: 29-36. doi: 10.1016/j.bej.2018.06.019 [5] CUI J D, JIA S R. Optimization protocols and improved strategies of cross-linked enzyme aggregates technology: Current development and future challenges [J]. Critical Reviews in Biotechnology, 2015, 35(1): 15-28. doi: 10.3109/07388551.2013.795516 [6] MOLINA-FERNÁNDEZ C, LUIS P. Immobilization of carbonic anhydrase for CO2 capture and its industrial implementation: A review [J]. Journal of CO2 Utilization, 2021, 47: 101475. doi: 10.1016/j.jcou.2021.101475 [7] REN S Z, CHEN R X, WU Z F, et al. Enzymatic characteristics of immobilized carbonic anhydrase and its applications in CO2 conversion [J]. Colloids and Surfaces B:Biointerfaces, 2021, 204: 111779. doi: 10.1016/j.colsurfb.2021.111779 [8] 梁珊, 宗敏华, 娄文勇. 酶法催化二氧化碳制备高附加值化学品研究进展 [J]. 化学学报, 2019, 77(11): 1099-1114. doi: 10.6023/A19060240 LIANG S, ZONG M H, LOU W Y. Recent advances in enzymatic catalysis for preparation of high value-added chemicals from carbon dioxide [J]. Acta Chimica Sinica, 2019, 77(11): 1099-1114(in Chinese). doi: 10.6023/A19060240
[9] OCHEDI F O, YU J L, YU H, et al. Carbon dioxide capture using liquid absorption methods: A review [J]. Environmental Chemistry Letters, 2021, 19(1): 77-109. doi: 10.1007/s10311-020-01093-8 [10] PEIRCE S, RUSSO M E, PERFETTO R, et al. Kinetic characterization of carbonic anhydrase immobilized on magnetic nanoparticles as biocatalyst for CO2 capture [J]. Biochemical Engineering Journal, 2018, 138: 1-11. doi: 10.1016/j.bej.2018.06.017 [11] EFFENDI S S W, CHIU C Y, CHANG Y K, et al. Crosslinked on novel nanofibers with thermophilic carbonic anhydrase for carbon dioxide sequestration [J]. International Journal of Biological Macromolecules, 2020, 152: 930-938. doi: 10.1016/j.ijbiomac.2019.11.234 [12] CHAFIK A, EL HASSANI K, ESSAMADI A, et al. Efficient sequestration of carbon dioxide into calcium carbonate using a novel carbonic anhydrase purified from liver of camel (Camelus dromedarius) [J]. Journal of CO2 Utilization, 2020, 42: 101310. doi: 10.1016/j.jcou.2020.101310 [13] MOREL F M M, LAM P J, SAITO M A. Trace metal substitution in marine phytoplankton [J]. Annual Review of Earth and Planetary Sciences, 2020, 48: 491-517. doi: 10.1146/annurev-earth-053018-060108 [14] JENSEN E L, MABERLY S C, GONTERO B. Insights on the functions and ecophysiological relevance of the diverse carbonic anhydrases in microalgae [J]. International Journal of Molecular Sciences, 2020, 21(8): 2922. doi: 10.3390/ijms21082922 [15] BOSE H, SATYANARAYANA T. Utility of thermo-alkali-stable γ-CA from polyextremophilic bacterium Aeribacillus pallidus TSHB1 in biomimetic sequestration of CO2 and as a virtual peroxidase [J]. Environmental Science and Pollution Research International, 2017, 24(11): 10869-10884. doi: 10.1007/s11356-017-8739-5 [16] GÜZEL-AKDEMIR Ö, CARRADORI S, GRANDE R, et al. Development of thiazolidinones as fungal carbonic anhydrase inhibitors [J]. International Journal of Molecular Sciences, 2020, 21(8): 2960. doi: 10.3390/ijms21082960 [17] GLADIS A, GUNDERSEN M T, FOSBØL P L, et al. Influence of temperature and solvent concentration on the kinetics of the enzyme carbonic anhydrase in carbon capture technology [J]. Chemical Engineering Journal, 2017, 309: 772-786. doi: 10.1016/j.cej.2016.10.056 [18] HOU J, LI X K, KACZMAREK M B, et al. Accelerated CO2 hydration with thermostable Sulfurihydrogenibium azorense carbonic anhydrase-chitin binding domain fusion protein immobilised on chitin support [J]. International Journal of Molecular Sciences, 2019, 20(6): 1494. doi: 10.3390/ijms20061494 [19] HSIEH C J, CHENG J C, HU C J, et al. Entrapment of the fastest known carbonic anhydrase with biomimetic silica and its application for CO2 sequestration [J]. Polymers, 2021, 13(15): 2452. doi: 10.3390/polym13152452 [20] 温欢. 碳酸酐酶杂化纳米花及其PVA/CS凝胶酶膜在CO2转化中应用的基础研究[D]. 天津: 天津科技大学, 2020. WEN H. Basic research on the application of carbonic anhydrase hybrid nanoflower and its PVA/CS hydrogels enzyme membrane in CO2 conversion[D]. Tianjin: Tianjin University of Science & Technology, 2020(in Chinese).
[21] WU Z H, NAN Y, ZHAO Y, et al. Immobilization of carbonic anhydrase for facilitated CO2 capture and separation [J]. Chinese Journal of Chemical Engineering, 2020, 28(11): 2817-2831. doi: 10.1016/j.cjche.2020.06.002 [22] WEN H, ZHANG L, DU Y J, et al. Bimetal based inorganic-carbonic anhydrase hybrid hydrogel membrane for CO2 capture [J]. Journal of CO2 Utilization, 2020, 39: 101171. doi: 10.1016/j.jcou.2020.101171 [23] REN S Z, JIANG S H, YAN X Y, et al. Challenges and opportunities: Porous supports in carbonic anhydrase immobilization [J]. Journal of CO2 Utilization, 2020, 42: 101305. doi: 10.1016/j.jcou.2020.101305 [24] YING Q, CHEN H, SHAO P J, et al. Core-shell magnetic ZIF-8@Fe3O4-carbonic anhydrase biocatalyst for promoting CO2 absorption into MDEA solution [J]. Journal of CO2 Utilization, 2021, 49: 101565. doi: 10.1016/j.jcou.2021.101565 [25] PEIRCE S, RUSSO M E, ISTICATO R, et al. Structure and activity of magnetic cross-linked enzyme aggregates of bovine carbonic anhydrase as promoters of enzymatic CO2 capture [J]. Biochemical Engineering Journal, 2017, 127: 188-195. doi: 10.1016/j.bej.2017.08.014 [26] 冯慧, 韩娟, 黄文睿, 等. 纳米花型酶-无机杂化固定化酶研究进展 [J]. 化学通报, 2021, 84(12): 1263-1273. doi: 10.14159/j.cnki.0441-3776.2021.12.004 FENG H, HAN J, HUANG W R, et al. Research progress in nanoflower enzyme-inorganic hybrid immobilized enzyme [J]. Chemistry, 2021, 84(12): 1263-1273(in Chinese). doi: 10.14159/j.cnki.0441-3776.2021.12.004
[27] SHAO P J, CHEN H, YING Q, et al. Structure-activity relationship of carbonic anhydrase enzyme immobilized on various silica-based mesoporous molecular sieves for CO2 absorption into a potassium carbonate solution [J]. Energy & Fuels, 2020, 34(2): 2089-2096. [28] ZHANG S H, LU Y Q, YE X H. Catalytic behavior of carbonic anhydrase enzyme immobilized onto nonporous silica nanoparticles for enhancing CO2 absorption into a carbonate solution [J]. International Journal of Greenhouse Gas Control, 2013, 13: 17-25. doi: 10.1016/j.ijggc.2012.12.010 [29] SHAMNA I, KWAN JEONG S, MARGANDAN B. Covalent immobilization of carbonic anhydrase on amine functionalized alumino-siloxane aerogel beads for biomimetic sequestration of CO2 [J]. Journal of Industrial and Engineering Chemistry, 2021, 100: 288-295. doi: 10.1016/j.jiec.2021.05.010 [30] SUN J, WANG C H, WANG Y Z, et al. Immobilization of carbonic anhydrase on polyethylenimine/dopamine codeposited membranes [J]. Journal of Applied Polymer Science, 2019, 136(29): 47784. doi: 10.1002/app.47784 [31] CHANG S, HE Y, LI Y X, et al. Study on the immobilization of carbonic anhydrases on geopolymer microspheres for CO2 capture [J]. Journal of Cleaner Production, 2021, 316: 128163. doi: 10.1016/j.jclepro.2021.128163 [32] JUN S H, YANG J S, JEON H, et al. Stabilized and immobilized carbonic anhydrase on electrospun nanofibers for enzymatic CO2 conversion and utilization in expedited microalgal growth [J]. Environmental Science & Technology, 2020, 54(2): 1223-1231. [33] GE J, LEI J D, ZARE R N. Protein–inorganic hybrid nanoflowers [J]. Nature Nanotechnology, 2012, 7(7): 428-432. doi: 10.1038/nnano.2012.80 [34] XU X Y, KENTISH S E, MARTIN G J O. Direct air capture of CO2 by microalgae with buoyant beads encapsulating carbonic anhydrase [J]. ACS Sustainable Chemistry & Engineering, 2021, 9(29): 9698-9706. [35] SHARMA T, KUMAR A. Bioprocess development for efficient conversion of CO2 into calcium carbonate using keratin microparticles immobilized Corynebacterium flavescens [J]. Process Biochemistry, 2021, 100: 171-177. doi: 10.1016/j.procbio.2020.10.009 [36] MOON H, KIM S, JO B H, et al. Immobilization of genetically engineered whole-cell biocatalysts with periplasmic carbonic anhydrase in polyurethane foam for enzymatic CO2 capture and utilization [J]. Journal of CO2 Utilization, 2020, 39: 101172. doi: 10.1016/j.jcou.2020.101172 [37] 刘亚茹. 细胞表面展示碳酸酐酶及其酶学性质研究[D]. 天津: 天津大学, 2020. LIU Y R. Cell surface display of carbonic anhydrase and its enzymology properties[D]. Tianjin: Tianjin University, 2020(in Chinese).
[38] ZHU Y Z, LIU Y R, AI M M, et al. Surface display of carbonic anhydrase on Escherichia coli for CO2 capture and mineralization [J]. Synthetic and Systems Biotechnology, 2021, 7(1): 460-473. [39] TAN S I, HAN Y L, YU Y J, et al. Efficient carbon dioxide sequestration by using recombinant carbonic anhydrase [J]. Process Biochemistry, 2018, 73: 38-46. doi: 10.1016/j.procbio.2018.08.017 [40] REN S Z, FENG Y X, WEN H, et al. Immobilized carbonic anhydrase on mesoporous cruciate flower-like metal organic framework for promoting CO2 sequestration [J]. International Journal of Biological Macromolecules, 2018, 117: 189-198. doi: 10.1016/j.ijbiomac.2018.05.173 [41] REN S Z, LI C H, TAN Z L, et al. Carbonic Anhydrase@ZIF-8 hydrogel composite membrane with improved recycling and stability for efficient CO2 capture [J]. Journal of Agricultural and Food Chemistry, 2019, 67(12): 3372-3379. doi: 10.1021/acs.jafc.8b06182 [42] 于洋, 刘琦, 吕静, 等. 碳酸酐酶固定及在二氧化碳捕集应用研究进展 [J]. 洁净煤技术, 2021, 27(2): 69-78. doi: 10.13226/j.issn.1006-6772.CCUS20100903 YU Y, LIU Q, LYU J, et al. Research progress on the immobilization of carbonic anhydrase and its application in carbon dioxide capture [J]. Clean Coal Technology, 2021, 27(2): 69-78(in Chinese). doi: 10.13226/j.issn.1006-6772.CCUS20100903
[43] XU Y L, LIN Y Q, CHEW N G P, et al. Biocatalytic PVDF composite hollow fiber membranes for CO2 removal in gas-liquid membrane contactor [J]. Journal of Membrane Science, 2019, 572: 532-544. doi: 10.1016/j.memsci.2018.11.043 [44] ZHANG S H, DU M E, SHAO P J, et al. Carbonic anhydrase enzyme-MOFs composite with a superior catalytic performance to promote CO2 absorption into tertiary amine solution [J]. Environmental Science & Technology, 2018, 52(21): 12708-12716. [45] DU M E, CHEN H, YE J X, et al. One-pot synthesis of efficient carbonic anhydrase-zeolitic imidazolate framework-8 composite for enhancing CO2 absorption [J]. Journal of CO2 Utilization, 2020, 40: 101211. doi: 10.1016/j.jcou.2020.101211 [46] XU W N, WANG Z Y, CHEN G, et al. Accelerating CO2 absorption in aqueous amine solutions at high temperature with carbonic anhydrase in magnetic nanogels [J]. Catalysis Letters, 2018, 148(7): 1827-1833. doi: 10.1007/s10562-018-2401-9 [47] 费潇瑶. 碳酸酐酶的固定化及其CO2的捕集性能[D]. 大连: 大连理工大学, 2018. FEI X Y. Immobilization of carbonic anhydrase and the performance in CO2 capture[D]. Dalian: Dalian University of Technology, 2018(in Chinese).
[48] FABBRICINO S, PRETE S D, RUSSO M E, et al. In vivo immobilized carbonic anhydrase and its effect on the enhancement of CO2 absorption rate [J]. Journal of Biotechnology, 2021, 336: 41-49. doi: 10.1016/j.jbiotec.2021.06.016 [49] PEIRCE S, PERFETTO R, RUSSO M E, et al. Characterization of technical grade carbonic anhydrase as biocatalyst for CO2 capture in potassium carbonate solutions [J]. Greenhouse Gases:Science and Technology, 2018, 8(2): 279-291. doi: 10.1002/ghg.1738 [50] QI G J, LIU K, HOUSE A L, et al. Laboratory to bench-scale evaluation of an integrated CO2 capture system using a thermostable carbonic anhydrase promoted K2CO3 solvent with low temperature vacuum stripping [J]. Applied Energy, 2018, 209: 180-189. doi: 10.1016/j.apenergy.2017.10.083 [51] SAHOO P C, KUMAR M, SINGH A, et al. Accelerated CO2 capture in hybrid solvent using co-immobilized enzyme/complex on a hetero-functionalized support [J]. Journal of CO2 Utilization, 2017, 21: 77-81. doi: 10.1016/j.jcou.2017.06.019 [52] HU G P, SMITH K H, NICHOLAS N J, et al. Enzymatic carbon dioxide capture using a thermally stable carbonic anhydrase as a promoter in potassium carbonate solvents [J]. Chemical Engineering Journal, 2017, 307: 49-55. doi: 10.1016/j.cej.2016.08.064 [53] REN S Z, WANG Z Y, BILAL M, et al. Co-immobilization multienzyme nanoreactor with co-factor regeneration for conversion of CO2 [J]. International Journal of Biological Macromolecules, 2020, 155: 110-118. doi: 10.1016/j.ijbiomac.2020.03.177 [54] WANG Y Z, LI M F, ZHAO Z P, et al. Effect of carbonic anhydrase on enzymatic conversion of CO2 to formic acid and optimization of reaction conditions [J]. Journal of Molecular Catalysis B:Enzymatic, 2015, 116: 89-94. doi: 10.1016/j.molcatb.2015.03.014 [55] CHAI M, RAZAVI BAZAZ S, DAIYAN R, et al. Biocatalytic micromixer coated with enzyme-MOF thin film for CO2 conversion to formic acid [J]. Chemical Engineering Journal, 2021, 426: 130856. doi: 10.1016/j.cej.2021.130856 [56] ZHAI T T, WANG C H, GU F J, et al. Dopamine/polyethylenimine-modified silica for enzyme immobilization and strengthening of enzymatic CO2 conversion [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(40): 15250-15257. [57] ZHANG X N, SHAO W X, CHEN B Q, et al. Cross-linking of carbonic anhydrase and formate dehydrogenase based on amino acid specific recognition: Conversion of carbon dioxide to formic acid [J]. Enzyme and Microbial Technology, 2021, 146: 109763. doi: 10.1016/j.enzmictec.2021.109763 [58] BENÍTEZ-MATEOS A I, SAN SEBASTIAN E, RÍOS-LOMBARDÍA N, et al. Asymmetric reduction of prochiral ketones by using self-sufficient heterogeneous biocatalysts based on NADPH-dependent ketoreductases [J]. Chemistry - A European Journal, 2017, 23(66): 16843-16852. doi: 10.1002/chem.201703475 [59] WANG J, LV Y Q. An enzyme-loaded reactor using metal-organic framework-templated polydopamine microcapsule [J]. Chinese Journal of Chemical Engineering, 2021, 29: 317-325. doi: 10.1016/j.cjche.2020.07.042 [60] LI Y, WEN L Y, TAN T W, et al. Sequential co-immobilization of enzymes in metal-organic frameworks for efficient biocatalytic conversion of adsorbed CO2 to formate [J]. Frontiers in Bioengineering and Biotechnology, 2019, 7: 394. doi: 10.3389/fbioe.2019.00394 [61] EL-ZAHAB B, DONNELLY D, WANG P. Particle-tethered NADH for production of methanol from CO2 catalyzed by coimmobilized enzymes [J]. Biotechnology and Bioengineering, 2008, 99(3): 508-514. doi: 10.1002/bit.21584 [62] JI X Y, SU Z G, WANG P, et al. Tethering of nicotinamide adenine dinucleotide inside hollow nanofibers for high-yield synthesis of methanol from carbon dioxide catalyzed by coencapsulated multienzymes [J]. ACS Nano, 2015, 9(4): 4600-4610. doi: 10.1021/acsnano.5b01278 [63] LALANDE J M, TREMBLAY A. Process and a plant for the production of Portland cement clinker. U. S. Patent 6, 908, 507[P]. 2005. [64] FRADETTE L, LEFEBVRE S, CARLEY J. Demonstration results of enzyme-accelerated CO2 capture [J]. Energy Procedia, 2017, 114: 1100-1109. doi: 10.1016/j.egypro.2017.03.1263 [65] LEIMBRINK M, LIMBERG T, KUNZE A K, et al. Different strategies for accelerated CO2 absorption in packed columns by application of the biocatalyst carbonic anhydrase [J]. Energy Procedia, 2017, 114: 781-794. doi: 10.1016/j.egypro.2017.03.1221