-
西北干旱区既是我国石油天然气主产区,又是生态环境高度脆弱区,水资源仅占全国水资源总量的5.7%[1]。但水资源平均开发利用率却达到了53.3%。其中,新疆塔里木河和准噶尔盆地的水资源利用率高达79%和80%,远高于国际用水率安全线(40%)标准[2]。水资源短缺严重制约着西北地区社会经济的可持续发展和生态恢复[3]。
随着西北地区石油和天然气的快速开发[4],造成对清水的需求同步增长,废水排放量也呈逐年增加的趋势[5]。由于西北地区受纳水体少,直排荒漠土壤又无相关标准,只能将大量产油废水排入人工修建的蒸发池,通过自然蒸发的方式实现污水的减量化[6-7],导致水资源的巨大浪费。西北地区干旱缺水[8],实现油气田外排水的生态利用是解决西北地区水资源短缺和外排水处置矛盾最有效的策略之一[9]。虽然油气田外排水经过了达标处理,但其中还存在少量污染物/指标(TPH、COD、盐分)。因此,要想实现外排水的生态利用,就需要先明确典型污染物在荒漠土壤中的迁移转化规律。目前,关于土壤盐分的迁移已有较多报道。虽然已有研究[10-11]报道了TPH在土壤中的迁移规律,但大多数研究均是基于石油污染土壤后模拟自然降水观察石油类污染物的迁移情况,鲜有报道将油气田处理后的外排水分别模拟形成湿地和用于灌溉植物情况下研究TPH和COD在荒漠土壤中的迁移转化行为。
本研究以西部某油田外排水为研究对象,采集西北地区荒漠土壤制备土柱,模拟外排水形成湿地和用于灌溉植物(土壤含水率20%[12])这2种生态利用模式下,分别考察了外排水中不同浓度的TPH和COD在荒漠土壤中的迁移转化行为,并探究了荒漠土壤土著微生物对2类有机污染物/指标降解效果,本研究结果以期为油气田外排水生态利用可行性提供基础数据参考,进而为制定相应的生态利用技术规范和污染物控制标准提供参考。
生态利用模式对油气田外排水中典型污染物在荒漠土壤中迁移和转化的影响
Effects of ecological utilization patterns on the migration and transformation of typical pollutants from oil and gas field wastewater in desert soil
-
摘要: 西北地区干旱缺水,但油气田外排水产量却呈逐年增加的趋势,外排水生态利用是解决西北地区水资源短缺和外排水处置矛盾的有效策略之一。为此,探究了在湿地和灌溉生态利用模式下水中典型耗氧有机物(以COD计)和石油烃(petroleum hydrocarbon)在荒漠土壤中的迁移和转化规律。原位土壤分层土柱实验结果表明,2种利用模式均会导致土壤中总有机碳(TOC)的含量有不同程度的下降,外排水COD的升高会减缓土壤TOC的流失,但会改变土壤TOC的组成。土壤微生物可有效消减外排水中COD,降低其向土壤深层迁移的风险。TPH易在土壤表层发生累积,但低浓度TPH排放的灌溉模式有利于减少土层中TPH的累积。湿地模式下由于水流量大,增加了TPH向地下水迁移的风险。土壤微生物对TPH的降解率可达15%,并导致C25以下的TPH相对含量显著降低,但C26以上组分的TPH相对含量则有所提升,原因在于短链TPH易被微生物降解,长链TPH不易降解并形成累积。以上研究结果可为油气田外排水生态利用可行性提供数据参考。Abstract: Water shortage is the main limiting factor in Northwest China, however, the production of oil and gas field wastewater in northwest China is increasing year by year. The ecological utilization of discharged water is one of the effective strategies to solve the contradiction between water resources shortage and discharged water treatment in northwest China. Therefore, this study explored the migration and transformation of typical oxygen-consuming organic matter (COD) and petroleum hydrocarbon (TPH) in desert soil under wetland and irrigation ecological utilization patterns. In-situ soil column experiments showed that both of the two utilization patterns could lead to the decrease of Total organic carbon (TOC) in varying degrees, the increased COD could reduce the loss of TOC, but would change the composition of TOC. Soil microorganisms could effectively reduce COD in efflux water and reduce the migration risk of COD to deep soil. TPH could accumulate in the surface soil, but the irrigation pattern with low TPH concentration was beneficial to reduce its accumulation. In wetland pattern, large flow increased the risk of TPH migration to groundwater. The degradation rate of TPH by soil microorganisms could reach 15%, resulting in a significant decrease in the relative content of TPH below C25, but an increase in the relative content of TPH above C26. The reason is that short chain TPH can be degraded by microorganisms easily, while long chain TPH is not easily degraded. The above research results can provide basic data for ecological utilization of oil and gas field wastewater.
-
Key words:
- oil and gas field wastewater /
- ecological utilization pattern /
- COD /
- TPH /
- soil microorganism
-
表 1 TPH的验证结果
Table 1. Verification results of TPH
测定项目 检出限/
(mg·kg−1)测定下限/
(mg·kg−1)线性系数 精密度/% 准确度/% 平行样
精密度/%校准点
相对误差/%样品加标
回收率/%验证数据 0.478 1.914 0.999 7 9.692~11.179 92.511~97.582 1.051~1.362 −6.14~2.16 78.24~85.24 标准方法 6 24 ≥0.999 ≤25 70~120 ≤25 ±10 50~140 -
[1] 贾路, 于坤霞, 邓铭江, 等. 西北地区降雨集中度时空演变及其影响因素[J]. 农业工程学报, 2021, 37(16): 80-89. doi: 10.11975/j.issn.1002-6819.2021.16.011 [2] JIANG L W, TONG Y F, ZHAO Z J, et al. Water resources, land exploration and population dynamics in arid areas-the case of the Tarim River basin in Xinjiang of China[J]. Population and Environment, 2005, 26(6): 471-503. doi: 10.1007/s11111-005-0008-8 [3] DENG M J. Three Water Lines strategy: Its spatial patterns and effects on water resources allocation in northwest China[J]. Acta Geographica Sinica, 2018, 73: 1189-1203. [4] ZHU Y N, WANG J H, HE G H, et al. Water use characteristics and water footprints of China's oil and gas production[J]. Resources, Conservation and Recycling, 2022, 184: 106428. doi: 10.1016/j.resconrec.2022.106428 [5] MA J Z, PAN F, HE J H, et al. Petroleum pollution and evolution of water quality in the Malian River Basin of the Longdong Loess Plateau, Northwestern China[J]. Environmental Earth Sciences, 2012, 66(7): 1769-1782. doi: 10.1007/s12665-011-1399-8 [6] KAVVADIAS V, DOULA M K, KOMNITSAS K, et al. Disposal of olive oil mill wastes in evaporation ponds: effects on soil properties[J]. Journal of Hazardous Materials, 2010, 182(1/2/3): 144-155. [7] STEFANAKIS A I, PRIGENT S, BREUER R. Integrated produced water management in a desert oilfield using wetland technology and innovative reuse practices[J]. Constructed Wetlands for Industrial Wastewater Treatment, 2018: 25-42. [8] ZHANG C, ANADON L D. Life cycle water use of energy production and its environmental impacts in China[J]. Environmental Science & Technology, 2013, 47(24): 14459-14467. [9] STEFANAKIS A I, Al-HADRAMI A, PRIGENTt S. Reuse of oilfield produced water treated in a Constructed Wetland for saline irrigation under desert climate[C]//7th International Symposium on Wetland Pollutant Dynamics and Control (WETPOL), Montana, USA. 2017: 21-25. [10] 黄廷林, 史红星, 任磊. 石油类污染物在黄土地区土壤中竖向迁移特性试验研究[J]. 西安建筑科技大学学报:自然科学版, 2001, 33(2): 108-111. [11] SUN X N, LIU A P, CHEN X R, et al. Research on the migration of petroleum hydrocarbon contamination in the soil in different leaching amount//Advanced Materials Research[J]. Trans Tech Publications Switzerland, 2012, 414: 121-125. [12] HAO X M, CHEN Y N, LI W H, et al. Hydraulic lift in Populus euphratica Oliv. from the desert riparian vegetation of the Tarim River Basin[J]. Journal of Arid Environments, 2010, 74(8): 905-911. doi: 10.1016/j.jaridenv.2010.01.005 [13] 罗懿. 石油在黄土壤中的垂直迁移特征及生态毒性研究[D]. 西安: 西安建筑科技大学, 2021. [14] 李宝明. 石油污染土壤微生物修复的研究[D]. 北京: 中国农业科学院. 2007. [15] WU M L, DICK W A, LI W, et al. Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum-contaminated soil[J]. International Biodeterioration & Biodegradation, 2016, 107: 158-164. [16] SCHREIBER J D, DUFFY P D. Organic carbon and oxygen demand relationships in stormflow from southern pine watersheds[J]. Soil Science Society of America Journal, 1982, 46(1): 142-148. doi: 10.2136/sssaj1982.03615995004600010027x [17] CHEN L, HUANG M, JIANG X B, et al. Pilot tests of microbe-soil combined treatment of waste drilling sludge[J]. Natural Gas Industry B, 2, 2015, 2(2-3): 270-276. doi: 10.1016/j.ngib.2015.07.021 [18] 郎梦凡. 石油烃在不同土壤中的挥发及迁移规律研究[D]. 咸阳: 西北农林科技大学. 2022. [19] 马双. 油污土壤石油降解真菌的分离、鉴定与降解效果分析[D]. 哈尔滨: 东北林业大学. 2010. [20] 翟晓波, 盛益之, 张旭, 等. 混凝—气浮工艺处理有机物污染地下水现场中试试验[J]. 化工环保, 2018, 38(1): 33-39.