-
真空排水系统是一种依靠气压差产生高速气流裹挟污水传输的排水系统[1],与传统重力排水系统相比,具有防堵性能好、地形限制较小、施工便利等优势,在广大城市和农村地区被广泛使用。但是,真空排水系统在我国农村地区应用时也普遍存在用户端真空洁具噪声较大[2]、系统节点存在异味、北方地区冬季管道易冰冻等弊端。因此,为使真空排水系统在农村地区更加安全稳定运行,开展针对农村真空排水系统机理和技术优化的研究迫在眉睫。
一般而言,真空排水管道的密封性减少了排水系统沿线的异味散发,这在一定程度上避免了农村地区传统重力排水系统普遍存在的夏季蚊蝇滋生、污水横流、恶臭明显等问题。但真空排水系统在运行过程中,真空站与真空井等点位依然是异味逸散的热点区域,异味的扩散给当地村民的日常生活与身体健康带来潜在危害[3]。针对真空排水系统的异味问题,有关研究探索了真空排水系统真空站排气在生物法除臭前后甲烷、硫化氢、二氧化碳和一氧化碳的质量浓度变化,但却忽略了对真空排水系统全流程的异味逸散规律的探索[4]。整体而言,真空排水系统气体逸散规律的研究相对较少,制约了真空排水系统异味控制水平的提高,开展针对真空排水系统异味逸散规律性的研究具有重要的现实意义。
本研究以内蒙古自治区呼和浩特市某农村为示范基地,采用“重力流户管+真空流室外管混合多级收集模式”,对农村真空排水系统全流程的异味逸散规律进行分析,重点分析农村真空排水系统异味散发的重点区域,提出户管水封、真空井防跌水结构设计、真空站物理和生物耦合吸附等相应的异味控制措施,旨在为进一步探索农村真空排水系统的技术优化方法及实际推广应用提供参考。
农村真空排水系统异味产生规律及控制措施
Odor generation pattern and control measures of rural vacuum drainage system
-
摘要: 为探究农村真空排水系统异味逸散对周围居民的潜在健康风险,采用真空排水实验装置并结合异味分区监测和相关性分析等方法,研究了农村真空排水系统家庭户管、真空井、真空站等全流程的异味逸散规律。结果表明:农村家庭户管卫生间黑水(TBW)、卫生间灰水(TGW)、厨房灰水(KGW)管道中H2S质量浓度平均值分别为0.08、0.06、0.06 mg·m−3,均达到恶臭污染物厂界标准(GB 14554-1993) 2级厂界标准限值(0.06 mg·m−3); TBW管道中NH3、C3H9N、C2H6S2、OU的异味质量浓度峰值为5.79、2.58、0.18、337 mg·m−3,明显高于在TGW和KGW管道中的质量浓度峰值(0.32和0.62 mg·m−3,0.18和0.31 mg·m−3,0.06和0.05 mg·m−3,136和170 mg·m−3); 真空井周围NH3和H2S质量浓度峰值分别超过3级厂界标准限值(4.0 mg·m−3、0.32 mg·m−3)的2.80和17.56倍,真空井防跌水结构改造后NH3和H2S峰值质量浓度分别下降72.3%和65.1%;真空站周围OU、H2S、CS2、C8H8、C2H6S2质量浓度变化与其运行电功率变化的相关系数分别为−0.370、−0.452、−0.169、−0.426、−0.379。由此可知,农村真空排水系统存在H2S等异味气体质量浓度超标的现象,不同水质管道异味特征不同,真空井是整个真空排水系统异味质量浓度最高的区域,对真空井进行防跌水结构改造可使真空井周围异味质量浓度明显降低,真空站周围异味质量浓度变化与其运行功率变化具有显著相关性。该研究结果可为农村排水技术的改良设计和参数优化提供参考。Abstract: In order to investigate the potential health risk of odor escape from rural vacuum sewer system to the surrounding residents, the odor escape law of the whole process of rural vacuum sewer system, household sewer, vacuum well and vacuum station was studied by using the vacuum sewer experimental device combined with odor zoning monitoring and correlation analysis, etc. The results showed that the average H2S mass concentrations in toilet black water (TBW), toilet gray water (TGW), and kitchen gray water (KGW) sewer in rural households were 0.08, 0.06, and 0.06 mg·m−3, respectively, all of them reached the standard limit (0.06 mg·m−3) of class 2 plant boundary for malodorous pollutants (GB 14554-1993). The peak odor mass concentrations of NH3、C3H9N、C2H6S2 and OU in the TBW sewer were 5.79, 2.58, 0.18, 337 mg·m−3, respectively, which were significantly higher than the peak mass concentrations in the TGW and KGW sewers (0.32 and 0.62 mg·m−3, 0.18 and 0.31 mg·m−3, 0.06 and 0.05 mg·m−3, 136 and 170 mg·m−3). The peak mass concentrations of NH3 and H2S around the vacuum wells are 2.80 and 17.56 times higher than the standard limits of level 3 plant boundary (4.0 mg·m−3, 0.32 mg·m−3), respectively, and the peak mass concentrations of NH3 and H2S decreased by 72.3% and 65.1%, respectively after the transformation of the anti-fall water structure of vacuum wells. The correlation coefficients between the changes in mass concentrations of OU, H2S, CS2, C8H8, and C2H6S2 around the vacuum station and their changes in operating electrical power were −0.370, −0.452, −0.169, −0.426 and −0.379, respectively. This showed that over standard phenomenon occurred for the mass concentration of H2S and other odorous gases in the rural vacuum sewer system, different water quality pipes had different odor characteristics, the vacuum well was the area with the highest odor quality concentration in the whole vacuum sewer system, the anti-fall structure modification of vacuum wells could significantly reduce the odor quality concentration around vacuum wells, and the change of odor quality concentration around vacuum stations significantly correlated with the change of its operating power. The research results can provide a reference for the improvement design and parameter optimization of rural drainage technology.
-
Key words:
- vacuum sewerage /
- odor /
- prevention and control measures /
- generation pattern /
- rural
-
表 1 GB 14554-1993 恶臭污染物厂界标准值
Table 1. Standard value of odor pollutants factory boundary in GB 14554-1993
厂界标
准级别监测项目 氨气
(NH3)/
( mg·m−3)三甲胺
(C3H9N)/
( mg·m−3)硫化氢
(H2S)/
( mg·m−3)甲硫醇
(CH4S) /
( mg·m−3)甲硫醚
(C2SH6) /
( mg·m−3)二甲基二硫醚
(C2H6S2)/
( mg·m−3)二硫化碳
(CS2) /
( mg·m−3)苯乙烯
(C8H8) /
( mg·m−3)臭气
(OU)1级 1.0 0.05 0.03 0.004 0.03 0.03 2.0 3.0 10 2级 1.5 0.08 0.06 0.007 0.07 0.06 3.0 5.0 20 3级 4.0 0.45 0.32 0.020 0.55 0.42 8.0 14 60 表 2 真空排水系统异味质量浓度峰值
Table 2. Peak concentration of odor in vacuum drainage system
监测点位 监测项目 NH3/
(mg·m−3)C3H9N/
(mg·m−3)H2S/
(mg·m−3)CH4S/
(mg·m−3)C2SH6/
( mg·m−3)C2H6S2/
( mg·m−3)CS2/
(mg·m−3)C8H8/
(mg·m−3)OU VOCS/
(mg·m−3)C2H6S/
(mg·m−3)卫生间黑水管 5.793) 2.583) 0.122) 0 0.01 0.182) 0.49 0.84 3373) 0 0 卫生间灰水管 0.32 0.182) 0.12) 0 0 0.062) 0.44 0.84 1363) 0 0 厨房灰水管 0.62 0.312) 0.112) 0.012) 0.02 0.05 1) 0.23 0 1703) 0 0 真空井 11.213) 5.073) 5.623) 0 13.563) 8.943) 0.14 37.293) 32113) 0 0 真空站 0 0 0.182) 0 0 0.34 1) 0.41 1.74 1133) 0 0 注:1) 超过1级厂界标准限值;2) 超过2级厂界标准限值;3) 超过3级厂界标准限值。 表 3 异味质量浓度和电功率spearman分析结果
Table 3. Spearman analysis results of odor concentration and electrical power
项目 OU H2S CS2 C8H8 C2H6S2 功率 OU 1 0.906** −0.019 0.932** 0.882** −0.370** H2S 1 −0.182** 0.857** 0.738** −0.452** CS2 1 −0.57** 0.024 0.169** C8H8 1 0.904** −0.426** C2H6S2 1 −0.379** 功率 1 注: **表示在0.01水平(双侧)上显著相关。 -
[1] 陈丽琴. 真空排水在排水系统中的设计理论研究 [D]. 重庆: 重庆大学, 2011. [2] TERRYN I C, LAZAR G. Driving forces affecting the adoption of eco-innovation: A survey on vacuum sewer systems[J]. Environmental Engineering and Management Journal, 2016, 15(3): 589-598. doi: 10.30638/eemj.2016.064 [3] HUMBAL C, GAUTAM S, TRIVEDI U. A review on recent progress in observations, and health effects of bioaerosols[J]. Environmental International, 2018, 118(9): 189-193. [4] TERRYN I, COCARCEA A, LAZAR G. Mitigation of hazardous air pollutant emissions: Vacuum vs. conventional sewer system[J]. Environmental Engineering and Management Journal, 2017, 16(4): 809-819. doi: 10.30638/eemj.2017.082 [5] 叶美瀛, 王平波, 刘宇奇, 等. 室外真空排水系统及其在我国农村生活污水治理工程中的应用[J]. 环境工程技术学报, 2021, 11(6): 1196-1201. [6] 韩彦召, 程世昆, 严巾堪, 等. 负压排水真空便器冲水噪声的影响因素[J]. 环境工程学报, 2022, 16(4): 1400-1406. [7] 孙瑞敏. 我国农村生活污水排水现状分析[J]. 能源与环境, 2010(5): 33-34. [8] 李文凯, 郑天龙, 刘俊新. 农村污水管道堵塞成因分析与解决对策[J]. 环境工程学报, 2020, 14(7): 1966-1974. [9] 陶俊尧, 董泽华, 董中华. 建筑排水管道室内串味的防治技术[J]. 福建建筑, 2017(12): 79-82. [10] 张钊彬. 污水处理厂高标准除臭技术研究 [D]. 哈尔滨: 哈尔滨工业大学, 2013. [11] SMET E, LENS P, LANGENHOVE H V. Treatment of waste gases contaminated with odorous sulfur compounds[J]. Critical Reviews in Environmental Science and Technology, 1998, 28(1): 89-117. doi: 10.1080/10643389891254179 [12] ZHANG L, DE SCHRYVER P, DE GUSSEME B, et al. Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: A review[J]. Water Research, 2008, 42(1/2): 1-12. [13] PUI D Y, CHEN S C, ZUO Z. PM2.5 in China: Measurements, sources, visibility and health effects, and mitigation[J]. Particuology, 2014, 13(4): 1-26. [14] 朱雁伯, 王溪蓉, 张礼文, 等. 排水系统中硫化氢的危害及预防措施[J]. 中国给水排水, 2000, 16(9): 45-47. doi: 10.3321/j.issn:1000-4602.2000.09.014 [15] MARLENI N, GRAY S, SHARMA A, et al. Impact of water source management practices in residential areas on sewer networks: A review[J]. Water Science and Technology, 2012, 65(4): 624-642. doi: 10.2166/wst.2012.902 [16] 谷天峰. 排水系统恶臭污染及挥发性有机物的控制效果与机制研究 [D]. 杭州: 浙江大学, 2019. [17] JIANG G, SUN J, SHARMA K R, et al. Corrosion and odor management in sewer systems[J]. Current Opinion in Biotechnology, 2015, 33: 192-197. doi: 10.1016/j.copbio.2015.03.007 [18] 李元元. 垃圾卫生填埋场臭气排放规律及现场除臭效果和方案研究 [D]. 武汉: 华中科技大学, 2008. [19] 李新民, 罗学科, 李文, 等. 基于亨利定律的水中臭氧浓度检测方法研究[J]. 中国环境监测, 2021, 37(4): 150-155. [20] 张静, 张樑, 陈明. 抑制城镇污水处理厂恶臭气体的产生和迁移[J]. 环境科学与管理, 2012, 37(2): 84-89. [21] 何怡. 城市污水处理厂生物过滤除臭工艺设计方法优化研究 [D]. 北京: 清华大学, 2014. [22] 李珊红, 李彩亭, 谭娅, 等. 恶臭气体的治理技术及其进展[J]. 四川环境, 2005, 24(4): 45-49. doi: 10.3969/j.issn.1001-3644.2005.04.013 [23] 王爱杰, 徐潇文, 任南琪, 等. 污水厂臭气生物处理技术研究现状与发展趋势[J]. 中国沼气, 2005, 23(3): 15-19.