-
二十世纪初,人们选用氯消毒作为保障饮用水安全的最后一道工艺,至二十一世纪,已经发展出氯胺消毒、二氧化氯消毒、紫外线消毒、臭氧消毒、光催化消毒、水力空化消毒、高锰酸钾消毒等多种消毒方式。在消毒过程中,消毒剂会不可避免的与水中的部分有机或无机物发生反应,生成一类对人体健康有害的物质,即消毒副产物(disinfection byproducts,DBPs)。自从Rook于1976年首次从消毒后的水中检测出三氯甲烷以来,已有超过600余种消毒副产物被人类识别和发现,主要包括:三卤甲烷、卤乙酸、卤代酮、卤代醛等[1-2]。近年来,有研究表明,在原水中有无机阴离子如溴离子或碘离子存在的情况下,消毒后的水中不仅会生成氯代消毒副产物(chlorinated disinfection byproducts,Cl-DBPs),还会有溴代消毒副产物(brominated disinfection byproducts,Br-DBPs)和碘代消毒副产物(iodinated disinfection byproducts,I-DBPs)的生成[3-4]。在我国,大部分沿海地区的水源是潮汐河流,靠近入海口,经常会受到咸潮入侵的影响,而海水中溴离子和碘离子的质量浓度是一般淡水的3 000多倍和十几倍,这将使得这些地区的水源水中有存在较高质量浓度溴离子和碘离子的风险,进而导致消毒过程中更容易生成Br-DBPs和I-DBPs。此外,在我国北方地区的一些城镇生活饮用水中的碘含量可以超过100 µg·L−1[5-6],2019年全国生活饮用水水碘含量调查报告表明[7],河北、天津、河南、山东等地区水碘含量较高,其中河北最高可达1 113.7 µg·L−1,天津最高可达427.0 µg·L−1,河南最高可达489.0 µg·L−1,山东最高可达901.0 µg·L−1。水体中较高的碘含量,不仅会增加人类患甲状腺疾病的风险,而且还会增加消毒过程中I-DBPs的生成。有研究表明,Br-DBPs和I-DBPs较Cl-DBPs具有更强的细胞毒性和遗传毒性[8-9],而包括中国、美国、以色列、澳大利亚、土耳其等世界各地的饮用水厂的出水中均发现有Br-DBPs和I-DBPs的存在[10-11],控制消毒过程中Br-DBPs和I-DBPs的生成已成为目前饮用水安全研究方面的热点和重点。
由于氯消毒会产生较多的三卤甲烷、卤乙酸等受到严格管控的含碳消毒副产物(carbonaceous disinfection byproducts, C-DBPs),因此,不少饮用水厂转而采用氯胺作为消毒剂。氯胺与消毒副产物前体物的反应活性远小于氯,能够有效减少消毒后三卤甲烷和卤乙酸的生成,且氯胺在管网中形成余氯的持续时间长,能够有效抑制管网中残留细菌的再繁殖。但氯胺消毒会导致一些毒性更强的含氮消毒副产物(nitrogenous disinfection byproducts,N-DBPs)如卤代乙腈、卤代乙酰胺、卤代硝基甲烷、亚硝胺类等生成的增加[12-13]。近年来,国内外学者对于N-DBPs的关注日渐增加,但多集中于氯代N-DBPs,如氯乙腈、氯代硝基甲烷、氯代乙酰胺等的生成特性、生成机理和生物毒性等方面。而当原水中存在高质量浓度的溴离子或碘离子时,氯胺消毒后的水中生成的N-DBPs也会由氯代向溴代和碘代转变,且溴代和碘代N-DBPs的毒性更是远高于氯代N-DBPs。
目前对于DBPs的定性和定量分析主要采用气相色谱、液相色谱结合质谱等方法实现。其中气相色谱与气相色谱质谱联用技术主要针对挥发性和半挥发性的DBPs进行定性和定量分析[14-15],而针对难挥发性或高极性的DBPs,特别是一些溴代和碘代DBPs,气相色谱与气相色谱质谱联用技术难以实现检测和分析。近年来,ZHANG等[16]和DING等[17]使用超高效液相色谱/电喷雾电离-三重四极杆质谱(ultra performance liquid chromatography/electrospray ionization-triple quadruple mass spectrometry,UPLC-ESI-tqMS)可实现对饮用水中极性Br-DBPs和I-DBPs的快速选择性检测。该方法基于质谱中的前体离子扫描(precursor ion scan,PIS)模式,在该模式下,可以检测出产生特定碎片离子的所有母离子分子。例如,可以通过将子离子的质荷比(m/z)设置为79/81,并扫描产生该子离子碎片的所有母离子,进而筛选出水样中的所有Br-DBPs,最后,通过分析同位素的丰度比以及结合其他子离子碎片信息,可以确定这些Br-DBPs的分子结构[18]。同样,通过将子离子的质荷比(m/z)设置为127,可以快速选择性地检测出I-DBPs[19]。
本研究以中国南方某沿海城市的饮用水厂和污水厂出水为研究对象,通过投加溴离子和碘离子来模拟咸潮入侵,考察这2类水体在氯胺消毒过程中溴代和碘代DBPs的生成情况,并采用UPLC/ESI-tqMS的PIS模式,快速选择性地检测和识别出氯胺消毒过程中生成的主要极性卤代DBPs。在此基础上,对2类水体中卤代DBPs的生成种类和数量进行对比。整个研究对于加深溴代和碘代DBPs的认识,保障人们群众的饮水安全具有重要意义。
经氯胺消毒的高溴碘水体中极性卤代消毒副产物的生成及鉴定
Formation and identification of polar halogenated disinfection byproducts during chloramine disinfection of high bromine and iodine water
-
摘要: 本研究以中国南方某沿海地区易受海水入侵影响的自来水厂和污水处理厂出水为研究对象,通过建立基于液液萃取与超高效液相色谱/电喷雾电离-三重四级杆质谱的分析方法,快速选择性地检测这类含高质量浓度溴离子、碘离子的水体在氯胺消毒过程中生成的极性卤代消毒副产物。结果表明,通过设置子离子m/z 79/81和m/z 127,对母离子进行扫描,在氯胺消毒后的2种水样中检测出了10种极性溴代消毒副产物和19种极性碘代消毒副产物。通过对同位素丰度比和子离子碎片的分析,首次提出了2种溴代消毒副产物和4种碘代消毒副产物的分子结构。此外,对比自来水厂和污水厂出水的总离子强度可以发现,污水厂出水中生成的极性卤代消毒副产物,特别是卤代含氮消毒副产物的种类和数量显著高于自来水厂出水。
-
关键词:
- 极性卤代消毒副产物 /
- 超高效液相色谱/电喷雾电离-三重四极杆质谱 /
- 氯胺消毒 /
- 前体离子扫描
Abstract: This study takes the effluents from a drinking water treatment plant and a wastewater treatment plant in a coastal area in southern China which is vulnerable to seawater intrusion as the research object. A detection method based on liquid-liquid extraction combined with ultra performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry was established, which can rapidly and selectively detect polar halogenated disinfection byproducts from chloramine disinfection of water containing high concentration of bromide and iodide ions. The results showed that 10 kinds of polar brominated disinfection byproducts and 19 kinds of polar iodinated disinfection byproducts were detected in two water samples by setting precursor ion scans of m/z 79/81 and m/z 127. Based on the analysis of isotopic abundances ratio and particular fragment ions, the molecular structures of 2 brominated disinfection byproducts and 4 iodinated disinfection byproducts were firstly proposed. In addition, the species and the quantities of polar halogenated disinfection byproducts generated from the effluent of wastewater treatment plant were higher than those from the drinking water treatment plant by comparing the total ion intensity, especially for halogenated nitrogenous disinfection byproducts. -
表 1 各水样水质指标
Table 1. Water quality indicators of each water sample
样品 TOC/(mg·L−1) 氨氮/(mg·L−1) SUVA pH 溴离子/(µg·L−1) 碘离子/(µg·L−1) 自来水厂出水 1.53 0.04 1.65 7.10 / / 污水厂出水 3.00 0.63 3.54 7.36 81 / 表 2 PIS模式检测到的极性卤代DBPs
Table 2. Summary of polar halogenated DBPs detected by the PIS method
保留时间/min m/z 分子式 自来水厂(离子强度) 污水厂(离子强度) 1.138 171/173/175 Br2CH‒(二溴乙酸脱羧) 32 027.30 29 648.04 7.121 171/173 C6H5BrO — 177 050.17 7.329 199/201 C8H9OBr — 26 709.16 6.658 216/218 C6H4BrNO3 59 143.04 294 934.40 3.287 233/235/237 C8H8ClBrO/ C7H4BrClO2 — 23 850.18 4.756 250/252/254 C6H3ClBrNO3 — 20 814.88 6.937 278/280/282 C6H3O2NBr2/C7H7ONBr2/C8H11NBr2 — 31 756.26 5.045 294/296/298 C7H7Br2NO2/ C6H3Br2NO3 12 335.46 61 958.09 9.920 327/329/331/333 C6H3Br3O — 31 623.82 1.045 185 ICH2COOH 10 471.12 2 206.56 1.045 212 C3H4O2NI 10 354.86 37 467.30 4.773 241 HOOCCI=CHCOOH 4 813.60 / 6.248 247 C7H5IO2 19 194.20 11 113.92 1.041 263/265 BrICHCOOH 9 653.30 12 649.32 1.222 267 I2CH‒(碘乙酸脱羧) 86 903.52 175 636.39 1.080 277 C8H7IO3 44 945.46 93 248.87 4.757 291 C8H5IO4 2 252.32 7 910.82 1.230 307 C8H5IO5 1 107.56 979.00 1.222 311 I2CHCOOH 3 467.16 7 815.92 4.573 373 C7H4I2O2 5 0451.95 96 620.75 6.272 374 C6H3O2NI2/C7H7ONI2 29 565.46 87 359.02 1.026 381 C5H4I2O4 56 681.59 94 595.47 6.106 390 C6H3I2NO3 16 543.80 53 547.95 6.380 445 C5H5I3 70 950.00 21 901.90 11.252 471 C6H3I3O 296 380.22 340 645.97 -
[1] HUANG H, ZHU H H, GAN W H, et al. Occurrence of nitrogenous and carbonaceous disinfection byproducts in drinking water distributed in Shenzhen, China[J]. Chemosphere, 2017, 188: 257-264. doi: 10.1016/j.chemosphere.2017.08.172 [2] DU P H, ZHAO H, CAO H B, et al. Transformation of halobenzoquinones with the presence of amino acids in water: Products, pathways and toxicity[J]. Water Research, 2017, 122: 299-307. doi: 10.1016/j.watres.2017.06.007 [3] XIA Y, LIN Y L, XU B, et al. Iodinated trihalomethane formation during chloramination of iodate-containing waters in the presence of zero valent iron[J]. Water Research, 2017, 124: 219-226. doi: 10.1016/j.watres.2017.07.059 [4] ZHANG H F, YANG M. Characterization of brominated disinfection byproducts formed during chloramination of fulvic acid in the presence of bromide[J]. Science of the Total Environment, 2018, 627: 118-124. doi: 10.1016/j.scitotenv.2018.01.215 [5] WANG N, ZHANG G, XIONG R, et al. Synchronous moderate oxidation and adsorption on the surface of gama-MnO2 for efficient iodide removal from water[J]. Environmental Science & Technology, 2022, 56(13): 9417-9427. [6] YANG W, YU S C, CHEN C, et al. Stopping the supply of iodized salt alone is not enough to make iodine nutrition suitable for children in higher water iodine areas: A cross-sectional study in northern China[J]. Ecotoxicology and Environmental Safety, 2020, 188: 109930. doi: 10.1016/j.ecoenv.2019.109930 [7] 中国疾病预防控制中心. 全国生活饮用水水碘含量调查报告[R]. 2019 [8] LI X F, MITCH W A. Drinking water disinfection byproducts (DBPs) and human health effects: Multidisciplinary challenges and opportunities[J]. Environmental Science & Technology, 2018, 52(4): 1681-1689. [9] WAGNER E D, PLEWA M J. CHO cell cytotoxicity and genotoxicity analyses of disinfection byproducts: An updated review[J]. Journal of Environmental Sciences, 2017, 58: 64-76. doi: 10.1016/j.jes.2017.04.021 [10] WANG J, HAO Z N, SHI F, et al. Characterization of brominated disinfection byproducts formed during the chlorination of aquaculture seawater[J]. Environmental Science & Technology, 2018, 52(10): 5662-5670. [11] LUEK J L, SCHMITT K P, MOUSER P J, et al. Halogenated organic compounds identified in hydraulic fracturing wastewaters using ultrahigh resolution mass spectrometry[J]. Environmental Science & Technology, 2017, 51(10): 5337-5385. [12] HU J, SONG H, ADDISON J W, et al. Halonitromethane formation potentials in drinking waters[J]. Water Research, 2010, 44(1): 105-114. doi: 10.1016/j.watres.2009.09.006 [13] JEONG C H, POSTIGO C, RICHARDSON S D, et al. Occurrence and comparative toxicity of haloacetaldehyde disinfection byproducts in drinking water[J]. Environmental Science & Technology, 2015, 49(23): 13749-13759. [14] ZHANG B B, XU G J, LI L, et al. Facile fabrication of MIL-96 as coating fiber for solid-phase microextraction of trihalomethanes and halonitromethanes in water samples[J]. Chemical Engineering Journal, 2018, 350: 240-247. doi: 10.1016/j.cej.2018.05.180 [15] RHYS A A, CARTER D S, LIEW N W, et al. Simultaneous analysis of haloacetonitriles, haloacetamides and halonitromethanes in chlorinated waters by gas chromatography-mass spectrometry[J]. Chemosphere, 2018, 220: 314-323. [16] ZHANG X R, TALLEY J W, BOGGESS B, et al. Fast selective detection of polar brominated disinfection byproducts in drinking water using precursor ion scans[J]. Environmental Science & Technology, 2008, 42(17): 6598-6603. [17] DING G Y, ZHANG X R. A picture of polar iodinated disinfection byproducts in drinking water by (UPLC/ESI-tqMS)[J]. Environmental Science & Technology, 2009, 43(24): 9287-9293. [18] ZHANG D, WU Y, ZHANG X R, et al. Identification, formation and control of polar brominated disinfection byproducts during cooking with edible salt, organic matter and simulated tap water[J]. Water Research, 2020, 172: 115526. doi: 10.1016/j.watres.2020.115526 [19] PAN Y, ZHANG X R, LI Y. Identification, toxicity and control of iodinated disinfection byproducts in cooking with simulated chlor(am)inated tap water and iodized table salt[J]. Water Research, 2016, 88: 60-68. doi: 10.1016/j.watres.2015.10.002 [20] HAN J R, ZHANG X R, LIU J Q, et al. Characterization of halogenated DBPs and identification of new DBPs trihalomethanols in chlorine dioxide treated drinking water with multiple extractions[J]. Journal of Environmental Sciences, 2017, 58: 83-92. doi: 10.1016/j.jes.2017.04.026 [21] YANG M T, ZHANG X R, LIANG Q H, et al. Application of (LC/MS/MS) precursor ion scan for evaluating the occurrence, formation and control of polar halogenated DBPs in disinfected waters: A review[J]. Water Research, 2019, 158: 322-337. doi: 10.1016/j.watres.2019.04.033