-
持久性和可迁移有机污染物 (persistent and mobile organic contaminants, PMOCs) 是一类人工合成的高极性有机污染物,具有在环境中降解缓慢,在水中有持久性和可迁移性的特点[1]。随着食品制造业、制药业和化工业的快速发展,越来越多的PMOCs随着生活污水和工业废水的排放进入天然水体[2]。目前,监管措施多集中在多氯联苯[3]、有机氯农药[4]这类具有环境持久性 (半衰期长达数年) 、迁移性、生物蓄积性、毒性的有机污染物 (persistent,bioaccumulative and toxic contaminants, PBT) [5],但其在水循环中迁移性较弱,趋向于在生物相和沉积物中会沉积或积聚[6]。PMOCs不仅具有PBT环境持久性的特点,还不容易吸附到土壤和沉积物的表面,在水循环中有很强的扩散能力,会影响到地表水和地下水水质,并最终威胁到饮用水源安全[7]。
目前,气相色谱-质谱联用法 (GC-MS) [8-9]和液相色谱-质谱联用法 (LC-MS) [10-11]是检测PMOCs的主要方法。其中,高效液相色谱-串联质谱技术 (HPLC-MS /MS) 凭借高灵敏度和高选择性的优势在检测极性有机物中更为常用。基于相关文献,本研究选择了17种极性高、环境排放潜力大、难降解的PMOCs作为研究对象,包括人工甜味剂、医药中间体、化工助剂等[12-13]。本研究对固相萃取条件和HPLC-MS/MS 参数进行优化,建立同时测定17种PMOCs的分析方法。在北京潮白河、广东北江和河北滹沱河进行布点采样,测定不同地区水样中的PMOCs的存在水平,旨在为我国水环境中新污染物的监管提供数据支撑。
水体中17种持久性和可迁移有机污染物的检测
Determination of 17 persistent and mobile organic contaminants (PMOCs) in water
-
摘要: 持久性和移动性有机污染物 (persistent and mobile organic contaminants, PMOCs) 在环境中降解缓慢,并且可以通过水体循环进行迁移。由于缺乏水体中PMOCs的高效富集和准确测定方法,导致关于PMOCs在水体中存在水平的可靠监测数据较少。通过优化固相萃取条件和高效液相色谱-串联质谱参数,建立了同时检测水中17种PMOCs的分析方法。采用HLB固相萃取柱对水样中的PMOCs进行富集,乙腈和含10 mmol·L−1乙酸铵的水溶液作为流动相进行梯度洗脱,PMOCs检出限为0.04~0.35 ng·L−1,定量限为0.13~1.16 ng·L−1,回收率为65.01%~98.65%。在北京潮白河、广东北江和河北滹沱河进行布点采样,并测定其PMOCs的质量浓度。实验结果表明:17种PMOCs在潮白河、北江和滹沱河中均有检出,其ƩPMOCs平均质量浓度分别为604.69、740.45和505.11 ng·L−1。潮白河地表水中安赛蜜、金刚烷胺和己内酰胺的质量浓度相对较高,分别高达261.75、143.84和153.71 ng·L−1。北江中安赛蜜、磷酸三 (2-氯丙基) 酯和己内酰胺的质量浓度相对较高,分别高达433.14、444.46和108.76 ng·L−1。滹沱河中金刚烷胺、己内酰胺和磷酸三 (2-氯丙基) 酯的质量浓度较高,分别高达218.10、101.14和222.60 ng·L−1。本研究结果可为地表水和地下水水体中PMOCs的检测评价提供参考。
-
关键词:
- 持久性和可迁移有机污染物 /
- 高效液相色谱-串联质谱仪 /
- 固相萃取 /
- 地表水 /
- 地下水
Abstract: The persistent and mobile organic contaminants (PMOCs) in aquatic environments degrade very slowly and present a great ability to spread through the water cycle. Due to the lack of both enrichment and determination methods for PMOCs analysis in water samples, only a few reliable monitoring data as regards the real levels of these compounds. The analytical methods were developed to determine 17 PMOCs in the surface and ground water with solid-phase extraction (SPE) pretreatment and liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Water samples were concentrated by SPE with the HLB cartridge, and gradient elution was performed using methanol and 10 mmol·L−1 ammonium acetate as the mobile phases. The limits of detection (LODs) and quantitation (LOQs) for the 17 PMOCs ranged from 0.04~0.35 ng·L−1 and 0.13~1.16 ng·L−1, respectively. The average recoveries of the 17 PMOCs ranged from 65.01%~98.65%. Water samples were collected and detected from Chaobai River (Beijing), Beijiang River (Guangdong) and Hutuo River (Hebei). The average concentrations of ƩPMOCs were respectively 604.69, 740.45 and 505.11 ng·L−1. The concentrations of acesulfame, amantadine and caprolactam in the Chaobai River were relatively high, as high as 261.75, 143.84 and 153.71 ng·L−1. The concentrations of acesulfame, tris(1-chloro-2-propyl) phosphate and caprolactam in the Chaobai River were relatively high, as high as 433.14, 444.46, 108.76 ng·L−1. The concentrations of amantadine, caprolactam and tris(1-chloro-2-propyl) phosphate in the Hutuo River were relatively high, as high as 218.10, 101.14 and 222.60 ng·L−1. This study can provide a reference for the detection assessment of PMOCs in surface water and groundwater. -
表 1 17种PMOCs的LC-MS/MS优化参数
Table 1. The details of LC-MS/MS operating parameters of 17 PMOCs
化合物 出峰时间/min 母离子 (m/z) 定量离子 (m/z) Q1/V CE/V Q3/V BDMA 2.548 135.70 90.90/65.00/38.95 −30 −25/-35/-54 −30/-25/-15 DTG 2.134 239.70 132.95/107.95/106.10 −30 −21/-22/-30 −14/-21/-19 TCPP 7.152 328.60 99.00/174.85/252.95 −23 −23/-13/-9 −19/-19/-29 DPG 2.145 211.60 119.00/76.95/94.00 −29 −22/-40/-21 −22/-28/-18 AMANT 2.294 151.70 135.05/78.9/77.00 −30 −18/-35/-44 −26/-28/-29 BETMA 2.293 150.90 92.05/91.00/65.10 −30 −21/-22/-38 −17/-17/-24 CAP 2.592 111.10 79.95/95.85/81.00 12 22/23/20 30/17/29 MTSC 3.421 111.90 80.05/95.90/80.90 11 22/24/19 30/17/29 PEA 1.464 111.10 79.95/96.00/81.00 11 23/23/19 30/17/30 MBSA 2.053 169.80 106.05/63.85/79.00 18 16/46/27 18/23/30 MS 3.483 111.10 79.95/96.00/81.00 12 24/23/20 30/17/28 ACE 1.488 162.00 82.00/78.05/40.00 11 13/29/28 30/30/14 XSA 1.638 185.20 80.00/121.10/118.85 12 30/22/25 30/22/21 SAC 1.499 182.00 41.90/105.85/62.00 20 36/21/23 14/19/25 AMPSA 1.504 206.00 135.00/79.95/70.00 14 22/29/25 25/30/26 TFMSA 1.987 149.00 79.90/98.80/68.90 16 23/23/31 30/17/27 BPS 2.948 249.00 107.95/92.00/155.90 17 30/36/20 20/30/16 表 2 17种PMOCs的回收率、相对标准偏差、线性相关系数及检测限
Table 2. Recovery rate, RSD, correlation coefficients, detection limit of 17 PMOCs
化合物 回收率/% RSD/% 相关
系数R2检出限/
(ng·L-1)定量限/
(ng·L-1)BDMA 87.49 4.8 0.998 0.09 0.29 DTG 98.65 8.8 0.999 0.08 0.27 TCPP 80.21 7.1 0.996 0.13 0.43 DPG 98.24 6.1 0.998 0.21 0.69 AMANT 85.32 3.6 0.995 0.12 0.39 BETMA 76.98 8.7 0.999 0.18 0.59 CAP 65.05 5.1 0.995 0.04 0.13 MTSC 74.40 4.9 0.998 0.12 0.39 PEA 94.10 7.5 0.998 0.15 0.49 MBSA 76.73 6.2 0.994 0.31 1.02 MS 65.01 6.1 0.995 0.11 0.36 ACE 86.58 5.4 0.998 0.26 0.86 XSA 89.50 5.6 0.993 0.35 1.16 SAC 83.21 7.6 0.996 0.24 0.79 AMPSA 85.21 8.9 0.995 0.33 1.09 TFMSA 82.99 7.7 0.998 0.17 0.56 BPS 76.12 3.6 0.996 0.16 0.53 表 3 平水期17种PMOCs在10个采样点中的质量浓度
Table 3. Mass concentrations of 17 kinds of PMOCs in 10 sampling points in flat water period
化合物 地表水质量浓度 /(ng·L−1) 地下水质量浓度 /(ng·L−1) S1 S2 S3 S4 S5 1# 2# 3# 4# 5# BDMA 23.32 11.22 41.03 22.64 23.44 6.97 7.84 14.56 22.46 5.16 DTG 34.56 12.81 31.27 8.19 6.76 2.57 1.65 ND 6.31 5.22 TCPP 143.34 28.77 21.47 17.64 64.64 21.71 31.47 35.85 109.69 45.61 DPG 68.79 113.62 1.70 32.42 61.22 31.79 ND 95.11 36.72 2.98 AMANT 143.84 64.69 111.17 68.97 45.66 25.33 81.70 60.46 70.58 68.84 BETMA 48.82 30.71 18.15 62.59 33.02 9.67 16.11 8.08 28.53 11.88 CAP 101.82 61.26 81.11 36.56 73.27 47.36 39.68 39.58 51.76 46.16 MTSC 64.88 13.41 46.99 33.11 60.55 60.49 59.75 45.66 19.99 55.51 PEA 28.11 52.84 7.41 17.89 45.43 27.34 14.99 11.61 28.17 6.66 MBSA 30.56 6.98 80.56 12.43 14.69 33.36 40.12 28.64 10.82 29.99 MS 69.75 88.29 10.35 87.57 64.73 38.49 27.86 13.49 24.55 17.97 ACE 261.75 137.13 89.38 113.13 69.94 50.24 73.87 32.29 59.74 168.11 XSA 79.45 23.09 35.31 14.29 34.59 33.51 39.81 36.64 7.05 65.09 SAC 63.71 57.21 53.48 14.38 9.60 7.45 4.4 ND 6.02 6.63 AMPSA 25.36 24.08 63.29 100.48 79.66 20.59 20.59 12.90 15.10 52.32 TFMSA 10.29 14.35 3.16 14.26 18.65 74.65 20.66 11.62 10.36 21.24 BPS 33.41 20.52 28.63 26.36 2.06 11.91 11.49 ND 35.76 32.53 ƩPMOCs 1 231.76 760.94 724.47 682.91 707.91 503.43 491.99 446.49 543.61 641.91 注:ND表示未检出。 表 4 丰水期17种PMOCs在10个采样点中的质量浓度
Table 4. Mass concentrations of 17 kinds of PMOCs in 10 sampling points in abundant water period
化合物 地表水质量浓度/(ng·L−1) 地下水质量浓度/(ng·L−1) S1 S2 S3 S4 S5 1# 2# 3# 4# 5# BDMA 71.23 13.81 22.81 11.77 29.83 32.87 14.07 9.26 34.12 14.96 DTG 17.10 3.29 24.43 6.97 13.67 1.71 1.13 ND 24.65 12.34 TCPP 68.94 36.69 23.82 118.8 8.16 84.53 14.93 12.56 10.61 20.26 DPG 45.91 43.93 91.85 79.25 49.49 15.88 33.27 15.18 11.94 24.58 AMANT 83.84 71.14 13.37 102.18 69.88 22.41 37.23 28.22 26.05 34.21 BETMA 17.42 3.94 11.64 15.80 26.45 23.93 5.39 19.09 25.61 49.03 CAP 153.71 49.94 52.43 61.60 72.01 73.35 57.15 19.38 73.88 101.14 MTSC 23.55 27.84 30.13 22.55 20.07 30.75 22.68 37.84 60.30 19.87 PEA 17.42 10.26 7.52 11.43 9.77 6.24 10.57 3.52 23.25 23.30 MBSA 15.56 48.11 25.82 42.79 18.76 33.42 22.41 38.5 15.08 26.86 MS 79.77 20.65 ND 3.77 13.53 38.69 12.79 71.97 32.11 20.62 ACE 128.72 59.78 98.09 63.61 135.94 46.32 54.75 25.61 42.41 73.37 XSA 77.48 3.25 44.16 3.61 7.72 34.16 30.9 ND 18.65 8.19 SAC 15.46 6.82 12.94 24.16 19.16 4.02 1.76 ND 6.53 2.26 AMPSA 48.70 18.23 52.42 31.02 19.93 13.79 54.72 16.08 36.42 10.20 TFMSA 17.09 9.21 8.26 11.97 9.44 7.43 11.48 3.11 14.55 20.74 BPS 13.13 33.68 3.31 9.82 ND 2.49 19.68 10.81 1.41 2.17 ƩPMOCs 895.03 460.57 522.95 621.08 523.81 471.99 404.91 311.12 457.56 464.11 注:ND表示未检出。 表 5 北江中PMOCs在10个采样点中的质量浓度
Table 5. Mass concentrations of 17 kinds of PMOCs in 10 sampling points in the Beijiang River
ng·L−1 化合物 B01 B02 B03 B04 B05 B06 B07 B08 B09 B10 BDMA 60.65 81.75 52.21 105.47 44.18 60.49 31.53 54.76 20.91 39.72 DTG 21.43 38.15 21.69 17.51 11.97 7.97 9.19 4.19 17.72 7.73 TCPP 444.46 120.06 37.87 57.93 152.75 27.73 17.76 43.50 25.20 72.15 DPG 10.58 23.42 18.97 114.19 3.36 17.87 1.65 31.81 51.42 7.72 AMANT 55.81 25.93 10.42 16.22 10.81 44.99 18.80 36.07 48.21 14.26 BETMA 23.99 79.06 69.55 78.31 27.46 78.42 32.29 30.34 62.82 53.16 CAP 79.44 99.71 96.62 198.76 47.09 41.68 57.76 49.69 64.96 78.87 MTSC 64.84 46.47 31.28 21.37 36.35 30.78 25.32 29.07 43.82 33.06 PEA 6.16 7.37 5.09 7.42 4.23 5.92 7.53 5.96 27.36 8.35 MBSA 38.13 10.63 28.44 18.10 47.27 10.27 9.46 32.28 10.16 8.45 MS 17.16 28.96 18.74 7.48 13.68 20.90 13.15 12.25 26.36 17.62 ACE 433.14 134.13 127.47 26.50 217.85 99.06 270.24 123.51 233.37 60.49 XSA 130.85 38.70 33.05 26.76 20.93 84.65 27.15 24.41 29.34 23.86 SAC 31.70 22.65 15.90 13.74 14.09 6.19 5.65 7.32 9.35 4.54 AMPSA 20.47 18.34 41.14 27.86 35.04 34.71 29.25 58.86 111.40 64.94 TFMSA 36.09 17.65 4.62 16.71 5.14 16.41 6.73 25.37 24.74 7.14 BPS 1.31 1.28 3.41 6.65 2.09 0.83 1.16 0.93 27.59 1.72 ƩPMOCs 1 476.21 794.26 616.47 760.98 694.29 588.87 564.62 570.32 834.73 503.78 注:ND表示未检出。 表 6 滹沱河中PMOCs在10个采样点中的质量浓度
Table 6. Mass concentrations of 17 kinds of PMOCs in 10 sampling points in the Hutuo River
ng·L−1 化合物 H01 H02 H03 H04 H05 H06 H07 H08 H09 H10 BDMA 11.19 24.74 71.31 31.78 60.38 77.03 28.32 38.08 52.41 35.06 DTG 0.95 1.52 1.27 3.13 13.40 24.80 49.03 3.85 4.84 9.29 TCPP 19.27 222.60 11.82 21.12 77.13 43.66 70.52 20.44 30.51 20.53 DPG 2.04 3.46 47.20 8.18 35.09 14.07 22.06 22.92 94.93 29.86 AMANT 4.36 11.63 14.15 9.72 140.59 218.10 171.78 24.64 69.36 13.86 BETMA 8.07 19.18 9.48 3.84 14.78 54.57 87.63 2.28 159.80 31.46 CAP 73.88 14.33 89.86 141.14 43.80 38.76 53.71 46.21 60.41 73.35 MTSC 17.89 10.28 6.51 4.78 11.59 9.95 23.37 11.08 5.48 2.54 PEA 4.44 9.84 8.93 7.16 11.81 6.83 7.48 4.86 4.05 3.69 MBSA 16.19 19.55 63.20 29.95 4.04 16.76 25.10 89.73 63.49 51.13 MS 2.08 39.42 32.02 33.96 13.87 9.19 24.23 40.88 48.69 18.46 ACE 61.97 6.46 51.61 18.33 86.07 241.16 20.50 24.68 6.89 9.67 XSA 12.67 2.56 5.11 7.24 10.88 43.09 37.60 3.64 6.28 11.35 SAC ND 9.13 1.05 3.93 22.44 2.43 6.13 0.73 0.88 1.18 AMPSA 26.04 55.74 40.45 26.16 41.12 11.33 35.13 17.37 54.92 60.66 TFMSA 3.09 9.19 8.03 6.26 10.21 6.26 6.94 4.06 3.48 3.76 BPS ND 1.16 1.05 1.14 5.35 6.12 4.46 1.31 4.23 1.36 ƩPMOCs 264.13 460.79 463.05 357.82 602.55 824.11 673.99 356.76 670.65 377.21 注:ND表示未检出。 -
[1] ARP H P, BEOWN T N, BEREGER U, et al. Ranking REACH registered neutral, ionizable and ionic organic chemicals based on their aquatic persistency and mobility[J]. Environmental Science:Processes & Impacts, 2017, 19(7): 939-955. [2] 刘艺, 于洋, 金彪, 等. 持久、迁移性有机污染物的水污染现状、分析检测方法和去除技术[J]. 地球化学, 2021, 50(3): 305-316. [3] 王薛平, 黄星, 毕春娟, 等. 滴水湖及其环湖水系沉积物、土壤中多氯联苯的空间分布特征及风险评价[J]. 环境科学, 2016, 37(6): 2121-2130. [4] 罗淑文, 刘兴泉, 吴峰华, 等. 有机氯农药污染现状及检测技术研究进展[J]. 农业工程技术, 2022, 42(26): 84-87. [5] 王宏, 杨霓云, 闫振广, 等. 我国持久性、生物累积性和毒性(PBT)化学物质评价研究[J]. 环境工程技术学报, 2011, 1(5): 414-419. [6] HOLOUBEK I, KOCAN A, HOLOUBKOVA I, et al. Persistent, bioaccumulative, and toxic compounds in Central and Eastern Europe–Hot spots[J]. Arhiv za higijenu rada i toksikologiju, 2001, 52(2): 239-251. [7] REEMTSMA T, BERGER U, ARP H P, et al. Mind the gap: persistent and mobile organic compounds water contaminants that slip through[J]. Environmental Science & Technology, 2016, 50(19): 10308-10315. [8] 刘茵. 气相色谱法测定N-乙烯基己内酰胺中己内酰胺残留量[J]. 化学工程与装备, 2011(2): 148-149. [9] 许丰. 毛细管气相色谱法测定硫酸金刚烷胺注射液的含量[J]. 安徽医学, 2013, 34(10): 1526-1528. doi: 10.3969/j.issn.1000-0399.2013.10.038 [10] MONTES R, AGUIRRE J, VIDAL X, et al. Screening for polar chemicals in water by trifunctional mixed-mode liquid chromatography–high resolution mass spectrometry[J]. Environmental Science & Technology, 2017, 51(11): 6250-6259. [11] 乐浩鸣, 梁泉, 卢银兵, 等. HPLC-MS-MS法快速筛查4种常见强极性除草剂[J]. 中国法医学杂志, 2022, 37(1): 65-68. doi: 10.13618/j.issn.1001-5728.2022.01.014 [12] SCHULZE S, STTLER D, NEUMANN M, et al. Using REACH registration data to rank the environmental emission potential of persistent and mobile organic chemicals[J]. Science of the Total Environment, 2018, 625(1): 1122-1128. [13] NEUWALD I, MUSCHKET M, ZAHN D, et al. Filling the knowledge gap: A suspect screening study for 1310 potentially persistent and mobile chemicals with SFC- and HILIC-HRMS in two German river systems[J]. Water Research, 2021, 204: 117645. doi: 10.1016/j.watres.2021.117645 [14] 中华人民共和国国家环境保护总局. 地表水和污水监测技术规范: HJ/T 91-2002[S]. 北京: 中国环境出版社, 2003 [15] 中华人民共和国生态环境部. 地下水环境监测技术规范: HJ 164-2020[S]. 北京: 中国环境出版社, 2021. [16] 韩超, 梁存珍, 高欲乾, 等. 水体中27种有机磷阻燃剂(OPFRs)的检测及风险评价[J]. 环境工程学报, 2022, 16(5): 1737-1747. [17] 陈玫宏, 徐怀洲, 宋宁慧, 等. 高效液相色谱-串联质谱法同时测定水体和沉积物中12种有机磷酸酯类化合物[J]. 分析化学, 2017, 45(7): 987-995. [18] HUNTSCHA S, SINGER H P, MCARDELL C S, et al. Multiresidue analysis of 88 polar organic micropollutants in ground, surface and wastewater using online mixed-bed multilayer solid-phase extraction coupled to high performance liquid chromatography–tandem mass spectrometry[J]. Journal of Chromatography A, 2012, 1268: 74-83. doi: 10.1016/j.chroma.2012.10.032 [19] ANGELES L F, AGA D S. Catching the elusive persistent and mobile organic compounds: novel sample preparation and advanced analytical techniques[J]. Trends in Environmental Analytical Chemistry, 2020, 25: e00078. doi: 10.1016/j.teac.2019.e00078 [20] DIAS N C, POOLE C F. Mechanistic study of the sorption properties of OASIS® HLB and its use in solid-phase extraction[J]. Chromatographia, 2002, 56(5): 269-275. [21] BOULARD L, DIERKES G, TERNES T. Utilization of large volume zwitterionic hydrophilic interaction liquid chromatography for the analysis of polar pharmaceuticals in aqueous environmental samples: benefits and limitations[J]. Journal of Chromatography A, 2018, 1535: 27-43. doi: 10.1016/j.chroma.2017.12.023 [22] MONTES R, RODIL R, CELA R, et al. Determination of persistent and mobile organic contaminants (PMOCs) in water by mixed-mode liquid chromatography–tandem mass spectrometry[J]. Analytical chemistry, 2019, 91(8): 5176-5183. doi: 10.1021/acs.analchem.8b05792 [23] 干志伟, 孙红文, 王若男, 等. 固相萃取-离子对液相色谱-质谱法检测水环境中7种人工甜味剂[C]. 持久性有机污染物论坛2012暨第七届持久性有机污染物全国学术研讨会论文集. 2012: 3. [24] 桂建业, 孙威, 张辰凌, 等. 离子色谱-串联质谱法分析环境水体中痕量人工甜味剂[J]. 分析化学, 2016, 44(03): 361-366. [25] SCHEURER M, STORCK F R, BRAUCH H J, et al. Performance of conventional multi-barrier drinking water treatment plants for the removal of four artificial sweeteners[J]. Water research, 2010, 44(12): 3573-3584. doi: 10.1016/j.watres.2010.04.005 [26] MOHLE E, METZGER J W. Drugs in municipal sewage effluents: screening and biodegradation studies[M]. ACS Publications, 2001: 192-205. [27] 赵军强, 韩典峰, 田秀慧, 等. 食品中金刚烷胺的危害, 检测方法和残留风险研究进展[J]. 中国渔业质量与标准, 2022, 12(3): 64-71. [28] 朱丽波, 徐能斌, 冯加永, 等. 双柱串联-超高效液相色谱-质谱法检测水中的4种胺类物质[J]. 分析化学, 2013, 41(4): 594-597. [29] VEEN I V D, BOER J D. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis[J]. Chemosphere, 2012, 88(10): 1119-1153. doi: 10.1016/j.chemosphere.2012.03.067 [30] LI J, LU J, XIANG L, et al. Adsorption and aerobic biodegradation of four selected endocrine disrupting chemicals in soil–water system[J]. International Biodeterioration & Biodegradation, 2013, 76(1): 3-7. [31] YING G G, KOOKANA R S. Sorption and degradation of estrogen-like-endocrine disrupting chemicals in soil[J]. Environmental Toxicology and Chemistry, 2005, 24(10): 2640-2645. doi: 10.1897/05-074R.1 [32] JIN H, ZHU L. Occurrence and partitioning of bisphenol analogues in water and sediment from Liaohe River Basin and Taihu Lake, China[J]. Water Research, 2016, 103: 343-351. doi: 10.1016/j.watres.2016.07.059 [33] 李栋, 张圣虎, 张芹, 等. 长江南京段水源水中有机磷酸酯的污染特征与风险评估[J]. 环境科学, 2020, 41(1): 205-212. doi: 10.13227/j.hjkx.201907149 [34] BUERGE I J, BUSER H R, KAHLE M, et al. Ubiquitous occurrence of the artificial sweetener acesulfame in the aquatic environment: an ideal chemical marker of domestic wastewater in groundwater[J]. Environmental science & technology, 2009, 43(12): 4381-4385. [35] SCHULZE S, ZAHN D, MONTES R, et al. Occurrence of emerging persistent and mobile organic contaminants in European water samples[J]. Water research, 2019, 153: 80-90. doi: 10.1016/j.watres.2019.01.008