秸秆粉煤灰基颗粒填料生物膜特性的比较

郭小境, 吴军, 彭浩, 马海涛, 高林燕, 吕宜廉, 寿文琪, 潘周志, 陈轶凡, 苏子龙, 余书瑶, 宋立杰. 秸秆粉煤灰基颗粒填料生物膜特性的比较[J]. 环境工程学报, 2023, 17(5): 1651-1661. doi: 10.12030/j.cjee.202211140
引用本文: 郭小境, 吴军, 彭浩, 马海涛, 高林燕, 吕宜廉, 寿文琪, 潘周志, 陈轶凡, 苏子龙, 余书瑶, 宋立杰. 秸秆粉煤灰基颗粒填料生物膜特性的比较[J]. 环境工程学报, 2023, 17(5): 1651-1661. doi: 10.12030/j.cjee.202211140
GUO Xiaojing, WU Jun, PENG Hao, MA Haitao, GAO Linyan, LYU Yilian, SHOU Wenqi, PAN Zhouzhi, CHEN Yifan, SU Zilong, YU Shuyao, SONG Lijie. Comparative on biofilm properties of straw and fly ash-based granular fillers[J]. Chinese Journal of Environmental Engineering, 2023, 17(5): 1651-1661. doi: 10.12030/j.cjee.202211140
Citation: GUO Xiaojing, WU Jun, PENG Hao, MA Haitao, GAO Linyan, LYU Yilian, SHOU Wenqi, PAN Zhouzhi, CHEN Yifan, SU Zilong, YU Shuyao, SONG Lijie. Comparative on biofilm properties of straw and fly ash-based granular fillers[J]. Chinese Journal of Environmental Engineering, 2023, 17(5): 1651-1661. doi: 10.12030/j.cjee.202211140

秸秆粉煤灰基颗粒填料生物膜特性的比较

    作者简介: 郭小境 (1996—) ,女,硕士研究生,904624933@qq.com
    通讯作者: 吴军(1968—),男,博士,副教授,njuwujun@nju.edu.cn
  • 基金项目:
    国家重点研发计划“固废资源化”重点专项(2018YFC1901404);国家自然科学基金面上项目(51878337)
  • 中图分类号: X703

Comparative on biofilm properties of straw and fly ash-based granular fillers

    Corresponding author: WU Jun, njuwujun@nju.edu.cn
  • 摘要: 为提高曝气生物滤池处理效率、研发新型具有结构和功能优势的颗粒填料,采用间歇式完全混合循环流态化反应器,探究了自制复合颗粒A、自制复合颗粒B、中劲陶粒及石英砂颗粒填料在4个水力停留时间下的挂膜性能、动力学参数及生物膜活性等生物膜特性,建立了生物膜微生物动力学参数实验测定的新方法。结果表明:当水力停留时间为8~12 h时,自制复合颗粒A、B挂膜性能优于石英砂和中劲陶粒,生物膜增殖速率分别为95.83 、63.75 mg·(L·h)−1(以COD去除率标准评价)和54.13、29.23 mg·(L·h)−1(以氨氮降解率标准评价);装填复合颗粒A的完全混合循环流态化反应器氨氮降解效率最高,相应生物膜表观产率系数最低,剩余污泥量最少;当水力停留时间超过8 h后,复合颗粒附着生长生物膜的脱氢酶活性、表面蛋白质、多糖含量最高。由此可知,以自制复合颗粒A、B为颗粒填料能优化曝气生物滤池的处理效率。本研究结果可为新型生物滤池技术的发展提供参考。
  • 据中国自行车协会统计,2020年中国电动自行车产量达到4 126.1×104[1],截至2020年全社会电动自行车保有量接近3×109[2]。由于疫情的影响,外卖、快递的延展变得更加广泛,电动自行车需求量呈爆发式增长,其生产过程产生大量工业废水。其中,电泳涂装废水具有组分复杂、水质水量变化大、难降解等特点[3-5],成为高效处理电泳涂装废水的关键。

    芬顿法为通过H2O2与Fe2+在酸性条件下生成强氧化能力的·OH,进而降解废水中有机污染物,同时生成的Fe(OH)3可以通过絮凝以沉淀有机物和磷酸盐。因其不会产生二次污染,被广泛应用于工业废水处理。王小晓等[6]采用Fenton-混凝应急处理汽车涂装废水,在pH=3~5、H2O2为1.7 g·L−1、FeSO4·7H2O为1.75 g·L−1时,反应10 min后,COD、TP、SS及各种金属离子均达到一级排放标准。杨晨曦等[7]在处理涂料废水时发现,在pH=2、H2O2投量为理论投加量的1.5倍、n(H2O2/Fe2+)=8时,COD去除率可达60.12%。陈烨等[8]使用Fenton法处理汽车涂装废水时发现,在pH=4、H2O2为2.97 g·L−1n(H2O2/Fe2+)=3、反应70 min后,COD去除率为71.4%。刘强[9]的研究表明,在H2O2投量为0.6 g·L−1、FeSO4·7H2O投量为0.2 g·L−1、氧化反应60 min后,COD和SS去除率分别为90.0%和98.3%。其他研究者[10-13]采用Fenton方法处理涂装废水,也取得较好的处理效果。但因为不同的生产工艺和原料所产生各废水污染物的组分和浓度不同,以上Fenton处理涂装废水的反应条件和处理效果有差异。因此,针对某种涂装废水,需做小试研究其适宜的Fenton氧化反应条件。因实际涂装废水的水质有波动,研究Fenton氧化涂装废水的反应动力学可指导实际废水处理工程。本研究以某电动自行车生产企业的涂装废水为研究对象,探索了温度、底物对其反应动力学影响的规律,优化了Fenton处理涂装废水的工艺条件,以期为类似涂装废水的处理提供参考.

    实验原水取自江苏某电动自行车制造企业的涂装车间,该车间生产工序包括脱脂、陶化、电泳和喷涂。其中采用新型陶化工艺取代了传统的磷化工艺,具有不含Fe、Zn、Pb等重金属的优点。原水主要含有苯类、醇类和助剂等,pH=6.0~8.0,COD为1 000~1 500 mg·L−1,TP为10~15 mg·L−1,B/C比约为0.12。实验所用试剂为30%H2O2(质量分数)、NaOH、 H2SO4、七水合硫酸亚铁(FeSO4·7H2O)、聚丙烯酰胺(PAM)。

    芬顿氧化实验:取100 mL原水于若干个烧杯中,并放于恒温磁力搅拌器上,调节pH,投加H2O2和FeSO4·7H2O,以200 r·min−1进行搅拌,反应结束后将pH调至10,加入适量PAM,搅拌后静置沉淀0.5 h。每组平行实验3次。

    pH条件优化。在H2O2为0.6 g·L−1、FeSO4·7H2O为0.8 g·L−1、反应时间为2.5 h的条件下,分别在pH为1、2、3、4、5、6的条件下进行芬顿实验。

    H2O2投加量优化。在上述优化后的最佳pH、FeSO4·7H2O为3 g·L−1、反应时间为2.5 h的条件下,H2O2投加量分别为1、2、3、4、5、6 g·L−1,进行芬顿氧化实验。

    H2O2的理论投加量按式(1) [7]进行计算。

    D=C(COD)M(H2O2)M(O)=2.215C(COD) (1)

    式中:D为H2O2理论投加量,g·L−1C(COD)为耗氧有机物(以COD计)的质量浓度,g·L−1M(H2O2)为H2O2的摩尔质量,g·mol−1M(O)为O的摩尔质量,g·mol−1

    FeSO4·7H2O投加量优化:在最佳pH、最佳H2O2、氧化反应时间2.5 h的条件下,设置FeSO4·7H2O分别为1、2、3、4、5、6 g·L−1进行芬顿实验。

    氧化时间优化:在最佳pH、H2O2、FeSO4·7H2O条件下,设置氧化时间分别为30、60、90、120、150、180、210 min进行芬顿实验。

    依据Box-Benhnken实验设计原理,固定反应时间,以COD去除率为响应值,以单因素实验中pH(A)、H2O2(B)、FeSO4·7H2O(C)的最优结果为中心水平(0),结合高水平(+1)和低水平(-1),利用响应曲面法优化Fenton氧化条件,各因素水平和编码见表1

    表 1  响应面设计因素与水平
    Table 1.  Factors and levels of response surface design
    因素因素编码因素水平
    pHA−101
    H2O2/(g·L−1)B−101
    FeSO4·7H2O/(g·L−1)C−101
     | Show Table
    DownLoad: CSV

    分别以零级反应动力学(式(2))、一级反应动力学(式(3))、二级反应动力学(式(4))和三级反应动力学(式(5))对Fenton氧化有机物的降解过程进行拟合。

    Ct=C0kt (2)
    lnCtC0=kt (3)
    C1tC10=kt (4)
    12(C2tC20)=kt (5)

    式中:Ctt时刻的COD值,mg·L−1C0为原水COD值,mg·L−1k为动力学反应速率常数,min−1t为反应时间,min。

    根据Arrhenius方程,建立Fenton完全氧化最优工艺条件时的表观动力学模型,lnk与1/T之间存在线性关系,如式(5)所示。探索Fenton在15、25、35 ℃时完全氧化本涂装废水的动力学特性,获得反应速率常数的温度修正关系。

    lnk=lnA0EaRT (6)

    式中:k为速率常数,min−1A0为频率因子,min−1Ea为活化能,J·mol−1R为通用气体常数,J·(mol·K)−1T为反应绝对温度,K。

    在响应面实验得到的最优pH和n(H2O2/Fe2+)条件下,固定Fenton完全氧化反应时间,改变H2O2投加量分别为0.4、0.5、0.7、1、1.3、2、4 g·L−1,研究其对COD去除率与B/C比的影响,探索Fenton氧化作为电动自行车涂装废水预处理工艺的可能性。

    COD采用重铬酸盐法测定(HJ 828-2017);TP采用钼酸铵分光光度法测定(GB 11893-89);BOD5采用稀释培养法测定(HJ 505-2009);pH采用玻璃电极法测定(上海仪电PHS-3C)。

    1) pH条件优化。如图1所示,pH从1升至6的过程中,COD去除率先增加再降低。反应体系中过量的H+会阻碍Fe3+转变为Fe2+,抑制催化反应的氧化能力[14],因此,pH并非越低越好。当pH由1增大至3时,随着活性位点数量增加[15],反应速率大幅升高,COD去除率随之升高;当pH 3时,COD去除率达到最高。由式(7)可知,溶液中不断增加的OH会使(·OH)供应不足,且易造成Fe(OH)3铁盐沉淀,阻断链式反应,H2O2和Fe2+难以形成有效的氧化还原系统[16]。因此,在本研究中,当pH ≥ 5时,COD去除率大幅度降低。溶液中TP含量随着pH的增大而逐渐升高。这是由于当氢氧根离子含量变多时,会优先与Fe3+反应生成铁盐沉淀[17],减少了Fe3+与磷酸盐的结合量,使TP去除率下降。王小晓等[6]采用Fenton工艺应急处理某涂装废水,溶液初始pH为3~5;杨晨曦等[7]研究Fenton氧化处理涂料废水,初始pH为2;LI 等[10]研究表明在酸性条件下,Fenton可以氧化涂装废水中的有机物,但涂装废水中主要有机物组分和浓度的不同导致各研究的最优pH条件略有不同。综合COD和TP的去除效果,本研究中最优pH为3。

    图 1  pH对COD和TP去除的影响
    Figure 1.  Effect of pH on COD and TP removal
    H2O2+Fe2++H+Fe3++H2O+OH (7)

    2) H2O2投加量优化。如图2所示,H2O2投加量从1 g·L−1增加到4 g·L−1时,COD最高去除效率达77.75%。增加H2O2能分解产生更多的(·OH)量,有利于提高污染物去除率[18]。但由式(8)可知,H2O2过量会强化(·OH)与H2O2发生复合反应,造成产生的·OH湮灭,导致氧化能力下降;另一方面,过量H2O2分解的O2会携带小絮体上浮,形成浮泥[19]。TP的去除效率无较大波动,为97.50%~99.19%,TP出水浓度稳定在1 mg·L−1以下。故可由COD的去除效果判定H2O2投加量4 g·L−1为宜。由式(1)可得H2O2投加量为1.7 D。于常武等[11]的研究表明,在原水COD为3 280 mg·L−1、pH=3、n(COD/H2O2)=1∶3,即H2O2投加量为6 D时,COD去除率为86%。本研究中COD去除率虽然略低,但H2O2的相对投量比较低。

    图 2  H2O2投加量对COD和TP去除的影响
    Figure 2.  Effect of H2O2 dosage on COD and TP removal
    H2O2+OHH2O+HO2 (8)

    3) FeSO4·7H2O投加量优化。如图3所示,当催化剂Fe2+含量较少时,COD去除率不高。这是因为活性位点少,有效氧化剂(·OH)产生的速度较慢[20-21]。随着FeSO4·7H2O投加量的加大,产生更多(·OH),使体系内有机物的去除效率逐步提高。当投加量为5 g·L−1时,获得COD最高去除效率达84%。但投加量为4 g·L−1和5 g·L−1时,COD出水浓度只相差4 mg·L−1。氧化后生成的Fe3+是去除PO43-的主要物质,所以FeSO4·7H2O投加量与TP去除率的关系表现为正相关。但溶液中Fe2+过量时,会导致(·OH)不必要消耗,且Fe2+还会被氧化成有色的Fe3+,造成出水溶液偏棕黄色,增加废水的后续处理难度。综合反应效果及经济成本,FeSO4·7H2O投量4 g·L−1(H2O2/Fe2+摩尔比为8.2:1)为宜。陈烨等[8]Fenton氧化某汽车涂装废水,得到n(H2O2/Fe2+)=3时处理效果最优,COD去除率达71.4%;孙水裕等[12]在进水COD为1.5~2.5 g·L−1n(H2O2/Fe2+)=3时处理效果最优,COD去除率达75%左右;谢永华等[13]得到n(H2O2/Fe2+)=6时处理效果最优,COD去除率达到峰值53%左右。本实验得到的n(H2O2/Fe2+)=8.2,FeSO4·7H2O投药量更少且去除率更高,达80%,更具有优势。

    图 3  FeSO4·7H2O投加量对COD和TP去除的影响
    Figure 3.  Effect of FeSO4·7H2O dosage on COD and TP removal

    4)反应时间优化。如图4所示,在反应时间0~120 min内,COD去除率呈线性增长趋势,120 min时反应已基本完成,随后的COD去除率曲线逐渐趋于平缓。TP的去除率基本保持稳定,TP出水小于1 mg·L−1。当反应时间足够时,Fenton试剂与原水的分子接触碰撞概率较大,能使工艺处理效能最大化[22]。因此,确定本涂装废水的最佳氧化反应时间为120 min。

    图 4  反应时间对COD和TP去除的影响
    Figure 4.  Effect of reaction time on COD and TP removal

    当反应时间为120 min时,Fenton氧化已基本完成,TP去除率始终高于98%,因此反应时间、TP去除率不作为影响因素。仅以COD去除率为响应值Ƞ,利用响应曲面法研究pH、H2O2和FeSO4·7H2O对Fenton氧化涂装废水的影响,实验结果如表2所示。

    表 2  响应曲面法实验结果
    Table 2.  Experimental results of response surface method
    实验号A(pH)B(H2O2 /(g·L−1))C(FeSO4·7H2O /(g·L−1))COD去除率/%
    123467.54
    233372.93
    334481.65
    444374.77
    534481.19
    635576.97
    734482.26
    845473.98
    935371.74
    1044578.04
    1133569.16
    1234481.53
    1325468.82
    1434481.97
    1524573.53
    1643469.51
    1724372.16
     | Show Table
    DownLoad: CSV

    通过多元回归拟合,获得关于响应值Ƞ的回归方程(式(9))。其方差分析和显著性检验如表3所示。

    表 3  COD去除率的响应面模型方差分析极显著性检验
    Table 3.  Analysis of variance and extreme significance test of response surface model based on COD removal rate
    方差来源平方和自由度均方FP显著性
    模型422.83946.98163.020.000 1显著
    A25.70125.7089.190.000 1显著
    B19.41119.4167.340.000 1显著
    C4.6514.6516.140.005 1显著
    AB2.4012.408.340.023 4显著
    AC0.9010.903.130.120 1不显著
    BC20.25120.2570.270.000 1显著
    A2102.231102.23354.740.000 1显著
    B2197.711197.71686.040.000 1显著
    C219.78119.7868.640.000 1显著
    残差2.0270.29
    失拟1.3430.452.650.185 3不显著
    纯误差0.6840.17
    总和424.8516
     | Show Table
    DownLoad: CSV
    η=81.72+1.79A+1.56B+0.76C+0.78AB+0.48AC+2.25BC4.93AA6.85BB2.17CC (9)

    COD去除率响应面模型P<0.000 1,有极其显著的统计学差异;而失拟项P>0.05,不显著,回归模型显著可靠。根据模型中P值的显著性分析,A、B、BC、A2、B2、C2对COD响应值的影响为极显著;C、AB为显著影响;AC无显著影响。F值可以判断实验因素对实验结果的影响程度[23-24]。本研究中,各因素对Fenton氧化电动自行车涂装废水的影响显著性为pH>H2O2>FeSO4·7H2O。

    等高线可直观呈现反应条件之间交互作用的显著情况,越倾斜椭圆状则交互作用越强烈[25]。如图5(a)所示,当固定FeSO4·7H2O浓度时,响应值随H2O2浓度的增大呈现先升高后降低的明显变化,变化梯度较大。而当H2O2浓度稳定在投量区间时,响应值随FeSO4·7H2O浓度的增大而先升高后降低,但变化幅度小于H2O2图5(b)的紧密等高线和对角线方向的斜椭圆,表明H2O2和FeSO4·7H2O的交互作用非常显著,说明对Fenton氧化过程至关重要。由图5(c)和图5(d)可见,响应值随着H2O2和pH的升高而先增加后降低,陡峭的曲面证明了H2O2和pH存在一定的交互作用,pH对H2O2生成(·OH)有很大影响。由图5(e)和图5(f)可见,FeSO4·7H2O和pH交互作用的响应面陡峭程度相比于其他2个交互作用略平缓,表3方差分析也表明两者交互作用不突出。

    图 5  COD去除率的等高线图和三维图
    Figure 5.  Contour map and 3D map of COD removal rate

    通过响应曲面法得到Fenton完全氧化本涂装废水的最优条件为pH=3.21、H2O2为4.17 g·L−1(H2O2/COD质量比为4.17∶1)、硫酸亚铁为4.29 g·L−1(H2O2/Fe2+摩尔比为8∶1)、反应时间为120 min。对该实验条件进行了验证,得到实际的COD去除率为81.32%,与模型预测值82.15%仅相差1.01%。这表明式(8)可以较好地模拟Fenton完全氧化本废水的处理效果。

    图4反映了涂装废水COD随反应时间的变化,对其进行反应动力学拟合,结果如图6所示。涂装废水的Fenton 完全氧化反应与一级反应动力学拟合度最高,可决系数为0.996,与三级反应动力学拟合度最小,可决系数为0.879。因此,Fenton完全氧化电动自行车涂装废水的反应符合一级反应动力学(式(10))。

    图 6  反应级数线性拟合回归结果
    Figure 6.  Linear fitting regression results of reaction orders
    lnCtC0=0.0139t+2.698 39×10-4 (10)

    图7(a)所示,k值随着T的增大而升高,在15、25、35 ℃时,k分别为0.013 0、0.014 2、0.014 9 min−1。这是由于温度升高可提高(·OH)与有机物的碰撞概率,从而强化氧化效果。但在15~35 ℃,COD去除率并没有得到很大提升,仅提高了7%左右,表明季节变化对Fenton去除涂装废水的COD影响并不显著,无需加热措施,可节省运行成本。

    图 7  温度对COD去除的影响以及反应速率常数与温度的关系
    Figure 7.  Effect of temperature on COD removal and correlation between reaction rate constants k and temperature

    依据图7(b)计算可得反应活化能Ea为4.76 kJ·mol−1,频率因子A0为0.10 min−1Ea较低,说明反应较易进行,且温度对反应影响不大,Fenton降解涂装废水的降解速率的温度修正根据式(11)计算。

    k=0.10exp(4.76RT) (11)

    实际电动自行车涂装废水易受车间生产线等多方面的影响,其水质水量有波动,H2O2的投加量直接关系到废水的处理成本。单一的Fenton完全氧化工艺不仅经济成本高,且不能保证所有时刻的水质指标均稳定达标排放。故在实际工程中常将Fenton氧化作为预处理工艺,与生物方法耦合。Fenton半氧化工艺在去除一部分有机物的同时,改善废水可生化性,为后续生物处理创造有利条件。

    图8可见,当pH=3.21、n(H2O2/Fe2+)=8:1、反应时间为120 min时,随着H2O2投量的增加,废水中COD去除率升高,BOD5先升高后降低,废水B/C比升高。这说明芬顿氧化可以有效去除有机物,并且可较好地改善废水的可生化性。当H2O2为0.7 g·L−1时,COD去除率为25.1%,B/C比为0.22;当H2O2为1 g·L−1时,COD值由1 290 mg·L−1降低至742 mg·L−1,COD去除率为42.5%,B/C比从0.12提高至0.35;当H2O2为1.3 g·L−1时,COD去除率为48.9%,B/C比为0.33。一般认为,B/C>0.3的废水可利用生物处理。LI等[10]利用Fenton预处理工业喷涂废水,废水B/C由0.08增加到0.25,可使后续生物法更容易降解有机物。伊学农等[26]在研究Fenton预处理对汽车零部件涂装废水处理的过程中发现,当pH=3~4、FeSO4·7H2O投加量为1.68 g·L−1、H2O2投加量为2.05 g·L−1时,COD去除率为50%,B/C比由0.18提高到0.57,完全满足后续生化处理要求。韩勇刚[27]利用Fenton氧化喷漆废水,初始COD为2 927 mg·L−1,H2O2投加量为0.25 D,H2O2/FeSO4(质量比)为1.6∶1 时,COD去除率为17%,B/C比由0.31提高到0.49。以上研究结果说明,在一定的反应条件下,Fenton处理可以提高废水的B/C值。在本研究中,为节省药剂投加量,对于COD为1 290 mg·L−1的涂装废水,在pH=3.21、n(H2O2/Fe2+)=8:1、反应时间120 min,H2O2投加量为1 g·L−1,也即0.36 D(m(H2O2/COD)=0.78:1)时,经Fenton氧化后的出水可满足与生物处理耦合的要求。

    图 8  H2O2投量与COD、BOD5、B/C的关系
    Figure 8.  Effect of H2O2 dosage on COD、BOD5 and B /C

    Fenton全氧化常温降解系数k=0.014 2 min−1,H2O2投加量为1.7 D,根据式(9)可预测当pH=3.21、n(H2O2/Fe2+)=8:1、COD去除率为42.5%所需的反应时间为39 min。由2.4节可知,当pH=3.21、n(H2O2/Fe2+)=8:1、H2O2投加量为0.36 D ,COD去除率为42.5%的反应时间为120 min。虽然采用Fenton全氧化的条件进行半氧化,可使反应器体积减少67.5%,但投药量增加317%。因此,从长远看,减少投药量比减少反应体积更具经济优势。

    以实验所用废水的实际流量165 m3·d−1为例,评估Fenton全氧化处理工艺与Fenton半氧化预处理+生物处理耦合工艺的投资及运行成本。Fenton全氧化工艺的投资费用为53.5×104元,Fenton半氧化预处理+生物处理耦合工艺的投资费用为161.3×104[28]

    2种工艺的运行费用的差异主要包括电费、药剂费和污泥费,具体比较结果见表4。Fenton全氧化的总装机容量为138.24 kW,电费以0.8元计,则电费为0.76元·t−1;以COD为1 000 mg·L−1计,需688 kg·d−1 H2O2 ,707 kg·d−1 FeSO4·7H2O,药耗成本为7.94元·t−1;每2 d脱泥1次,污泥费用为3.1元·t−1。Fenton全氧化的运行费用合计为11.8元·t−1。吨水处理费用高,受水质波动影响大。

    表 4  Fenton全氧化与半氧化-生物处理运行费用比较
    Table 4.  Comparison of operation cost between Fenton alone treatment and Fenton-biological treatment 元·t−1
    处理工艺电费药剂费污泥费合计
    Fenton全氧化0.767.043.111.8
    Fenton半氧化-生物处理1.32.125.7
     | Show Table
    DownLoad: CSV

    Fenton半氧化耦合生物处理的总装机容量约为273.84 kW,则电费为1.3元·t−1;以COD为1 000 mg·L−1来计,双氧水用量165 kg·d−1,FeSO4·7H2O用量169 kg·d−1,药耗成本为2.1元·t−1;每3 d进行1次脱泥,污泥费用为2元·t−1。Fenton半氧化预处理+生物处理的运行费用合计为5.4元·t−1。日常运行费用低,工艺运行稳定,约2.8 a即可弥补投资高的不足。因此,Fenton半氧化耦合生物处理具有明显优势。

    1) Fenton完全氧化本涂装废水的最佳条件为pH=3、H2O2为4 g·L−1、FeSO4·7H2O为4 g·L−1、氧化反应时间为120 min,COD去除率达80.1%,TP去除率达98%。

    2)各因素对Fenton完全氧化涂装废水COD去除率影响的顺序为pH>H2O2>FeSO4·7H2O,H2O2与FeSO4·7H2O交互极显著,pH与H2O2交互显著,pH与FeSO4·7H2O交互不突出。最优条件为pH=3.21、m(H2O2/COD)为4.17:1、n(H2O2/Fe2+)为8:1、反应时间为120 min,η=81.72+1.79A+1.56B+0.76C+0.78AB+0.48AC+2.25BC-4.93AA-6.85BB-2.17CC,预测电动自行车涂装废水COD去除率为82.15%,实际COD去除率达81.32%,说明预测模型可靠。

    3) Fenton完全氧化电动自行车涂装废水符合一级动力学,室温(25 ℃)下降解系数k为0.014 2 min−1,反应活化能Ea为4.76 kJ·mol−1K=0.10exp(−4.76/RT)。

    4)综合经济效益和处理效果,Fenton处理电动自行车涂装废水的最佳反应条件为pH=3.21、n(H2O2/Fe2+)=8:1、反应时间120 min、H2O2投加量为理论投加量的0.36倍,在此条件下COD去除率为42.5%,B/C比可提高至0.35,可满足与生物处理耦合,更具经济优势。

  • 图 1  间歇式完全混合循环流态化反应器一体化装置

    Figure 1.  Integrated device of fully mixed circulation fluidized batch reactor

    图 2  不同水力停留时间对生物膜脱氢酶活性变化影响

    Figure 2.  Effect of the different hydraulic retention time on the dehydrogenase activity in biofilm

    图 3  COD去除率稳定条件下不同水力停留时间对生物膜胞外聚合物含量的影响

    Figure 3.  Effects of the different hydraulic retention times on the extracellular polymer content in biofilms with stable COD removal rate

    图 4  氨氮去除率稳定条件下不同水力停留时间生物膜胞外聚合物含量的影响

    Figure 4.  Effect of the extracellular polymer content in biofilms with different hydraulic retention times under a stable ammonia removal rate

    表 1  4种颗粒填料的理化性质

    Table 1.  Physical and chemical properties of four particle fillers

    颗粒类型粒径/mm堆积密度/(g·cm−3)表观密度/(g·cm−3)密度/(g·cm−3)比表面积/(m2·g−1)孔隙率/%破碎率及磨损率之和/%
    中劲陶粒3~50.70~1.101.20~1.801.30~1.60>7.00>40.00<6.0
    复合颗粒A2~50.841.381.5116.2540.12.66
    复合颗粒B2~50.631.471.6114.6857.262.02
    石英砂1~21.10~1.301.30~1.501.50~1.902.00~6.0040.00~60.00<4.0
    颗粒类型粒径/mm堆积密度/(g·cm−3)表观密度/(g·cm−3)密度/(g·cm−3)比表面积/(m2·g−1)孔隙率/%破碎率及磨损率之和/%
    中劲陶粒3~50.70~1.101.20~1.801.30~1.60>7.00>40.00<6.0
    复合颗粒A2~50.841.381.5116.2540.12.66
    复合颗粒B2~50.631.471.6114.6857.262.02
    石英砂1~21.10~1.301.30~1.501.50~1.902.00~6.0040.00~60.00<4.0
    下载: 导出CSV

    表 2  水力停留时间对实验批次的影响

    Table 2.  Effect of the hydraulic retention time on the experimental batches

    水力停留时间/hCOD去除率稳定时所需实验批次
    中劲陶粒复合颗粒A复合颗粒B石英砂
    66666
    85556
    104445
    124445
    水力停留时间/hCOD去除率稳定时所需实验批次
    中劲陶粒复合颗粒A复合颗粒B石英砂
    66666
    85556
    104445
    124445
    下载: 导出CSV

    表 3  不同水力停留时间对挂膜速率和COD去除率的影响

    Table 3.  Effect of the different hydraulic retention time on the film hanging rate and COD removal rate

    水力停留时间/h中劲陶粒复合颗粒A复合颗粒B石英砂
    挂膜速率/(mg·(L·h)−1)去除率/%挂膜速率/(mg·(L·h)−1)去除率/%挂膜速率/(mg·(L·h)−1)去除率/%挂膜速率/(mg·(L·h)−1)去除率/%
    654.8573.2346.5383.6495.8380.6746.4586.37
    841.5879.0063.7591.0378.4589.2254.1887.30
    1050.8387.7759.9594.0071.7591.0050.4589.23
    1239.9589.0848.1894.9057.793.2038.6894.36
    水力停留时间/h中劲陶粒复合颗粒A复合颗粒B石英砂
    挂膜速率/(mg·(L·h)−1)去除率/%挂膜速率/(mg·(L·h)−1)去除率/%挂膜速率/(mg·(L·h)−1)去除率/%挂膜速率/(mg·(L·h)−1)去除率/%
    654.8573.2346.5383.6495.8380.6746.4586.37
    841.5879.0063.7591.0378.4589.2254.1887.30
    1050.8387.7759.9594.0071.7591.0050.4589.23
    1239.9589.0848.1894.9057.793.2038.6894.36
    下载: 导出CSV

    表 4  水力停留时对实验批次的影响

    Table 4.  Effect of the hydraulic retention time on the experimental batches

    水力停留时间/h氨氮去除率稳定时所需实验批次
    中劲陶粒复合颗粒A复合颗粒B石英砂
    64446
    84445
    103334
    123334
    水力停留时间/h氨氮去除率稳定时所需实验批次
    中劲陶粒复合颗粒A复合颗粒B石英砂
    64446
    84445
    103334
    123334
    下载: 导出CSV

    表 5  不同水力停留时间对挂膜速率和氨氮去除率的影响

    Table 5.  Effects of the different hydraulic retention times on the film hanging rate and removal rate of ammonia nitrogen

    水力停留时间/h中劲陶粒复合颗粒A复合颗粒B石英砂
    挂膜速率/(mg·(L·h)−1)去除率/%挂膜速率/(mg·(L·h)−1)去除率/%挂膜速率/(mg·(L·h)−1)去除率/%挂膜速率/(mg·(L·h)−1)去除率/%
    664.5591.5365.8397.29135.3393.2579.3586.37
    838.2598.5873.0897.70103.8394.6668.6587.30
    1055.3099.6062.8898.75103.4395.2761.8389.23
    1259.8099.8066.1898.9476.7396.6147.0594.36
    水力停留时间/h中劲陶粒复合颗粒A复合颗粒B石英砂
    挂膜速率/(mg·(L·h)−1)去除率/%挂膜速率/(mg·(L·h)−1)去除率/%挂膜速率/(mg·(L·h)−1)去除率/%挂膜速率/(mg·(L·h)−1)去除率/%
    664.5591.5365.8397.29135.3393.2579.3586.37
    838.2598.5873.0897.70103.8394.6668.6587.30
    1055.3099.6062.8898.75103.4395.2761.8389.23
    1259.8099.8066.1898.9476.7396.6147.0594.36
    下载: 导出CSV

    表 6  有机物降解动力学参数

    Table 6.  Kinetic parameters of organic matter degradation

    颗粒类型拟合方程拟合系数R2最大比降解速率Vmax/d−1半速率常数Ks/(mg·L−1)
    中劲陶粒y=0.008 66x0.9900.35841.34
    y=0.358x+205.890.936
    复合颗粒Ay=0.005 45x0.9890.20938.35
    y=0.209x+276.540.948
    复合颗粒By=0.005 42x0.7580.34263.11
    y=0.342x+232.930.894
    石英砂y=0.006 42x0.9940.50077.88
    y=0.500x+110.480.957
    颗粒类型拟合方程拟合系数R2最大比降解速率Vmax/d−1半速率常数Ks/(mg·L−1)
    中劲陶粒y=0.008 66x0.9900.35841.34
    y=0.358x+205.890.936
    复合颗粒Ay=0.005 45x0.9890.20938.35
    y=0.209x+276.540.948
    复合颗粒By=0.005 42x0.7580.34263.11
    y=0.342x+232.930.894
    石英砂y=0.006 42x0.9940.50077.88
    y=0.500x+110.480.957
    下载: 导出CSV

    表 7  氨氮降解动力学参数

    Table 7.  Kinetic parameters of ammonia nitrogen degradation

    颗粒类型拟合方程拟合系数R2最大比降解速率Vmax/d−1半速率常数Ks/(mg·L−1)
    中劲陶粒y=0.011 6x0.8240.003 850.332
    y=0.00385x+14.140.827
    复合颗粒Ay=0.011 3x0.9000.0252.212
    y=0.025x+9.730.902
    复合颗粒By=0.013 7x0.9860.0271.971
    y=0.027x+6.580.934
    石英砂y=0.014 3x0.8730.0251.748
    y=0.025x+5.380.941
    颗粒类型拟合方程拟合系数R2最大比降解速率Vmax/d−1半速率常数Ks/(mg·L−1)
    中劲陶粒y=0.011 6x0.8240.003 850.332
    y=0.00385x+14.140.827
    复合颗粒Ay=0.011 3x0.9000.0252.212
    y=0.025x+9.730.902
    复合颗粒By=0.013 7x0.9860.0271.971
    y=0.027x+6.580.934
    石英砂y=0.014 3x0.8730.0251.748
    y=0.025x+5.380.941
    下载: 导出CSV

    表 8  碳氧化菌增殖动力学参数

    Table 8.  Kinetic parameters of carbon oxidizing bacteria proliferation

    颗粒类型拟合方程拟合系数R2产率系数Y衰减系数Kd/d−1
    中劲陶粒y=0.244x−0.0180.9840.2440.018
    复合颗粒Ay=0.239x−0.0160.9820.2390.016
    复合颗粒By=0.486x−0.0080.9780.4860.008
    石英砂y=0.553x−0.0530.9740.5530.053
    颗粒类型拟合方程拟合系数R2产率系数Y衰减系数Kd/d−1
    中劲陶粒y=0.244x−0.0180.9840.2440.018
    复合颗粒Ay=0.239x−0.0160.9820.2390.016
    复合颗粒By=0.486x−0.0080.9780.4860.008
    石英砂y=0.553x−0.0530.9740.5530.053
    下载: 导出CSV

    表 9  硝化菌增殖动力学参数

    Table 9.  Kinetic parameters of nitrobacteria proliferation

    颗粒类型拟合方程拟合系数R2产率系数Y衰减系数Kd/d−1
    中劲陶粒y=1.04x+0.0970.9931.040−0.097
    复合颗粒Ay=0.7x+0.20.8700.700−0.200
    复合颗粒By=0.843x+0.2930.8800.843−0.293
    石英砂y=0.976x+0.3540.8340.976−0.354
    颗粒类型拟合方程拟合系数R2产率系数Y衰减系数Kd/d−1
    中劲陶粒y=1.04x+0.0970.9931.040−0.097
    复合颗粒Ay=0.7x+0.20.8700.700−0.200
    复合颗粒By=0.843x+0.2930.8800.843−0.293
    石英砂y=0.976x+0.3540.8340.976−0.354
    下载: 导出CSV
  • [1] 俞敏. 粉煤灰陶粒制备及其在曝气生物滤池处理城市污水应用[D]. 太原: 太原理工大学, 2014.
    [2] 祝烨烨. 污水处理中曝气生物滤池应用研究[J]. 环境与发展, 2020, 32(7): 39.
    [3] 陈真贤, 张朝升, 荣宏伟. 曝气生物滤池的研究进展[J]. 广东化工, 2007(6): 89-92.
    [4] 崔福义, 张兵, 唐利. 曝气生物滤池技术研究与应用进展[J]. 环境污染治理技术与设备, 2005, 6(10): 4-10.
    [5] 马军, 邱立平. 曝气生物滤池及其研究进展[J]. 环境工程, 2002, 20(3): 7-11.
    [6] 龚鸣. 曝气生物滤池用于印染废水深度处理工艺研究[D]. 苏州: 苏州科技学院, 2015.
    [7] 王劼. 曝气生物滤池关键工艺参数优化研究[D]. 沈阳: 东北大学, 2014.
    [8] 周靖淳. 免烧及烧结污泥陶粒滤料的开发及应用技术研究[D]. 武汉: 武汉大学, 2017.
    [9] 王彦平. 水处理曝气生物滤池中填料的选择和研究[J]. 科技尚品, 2016, 8(1): 210.
    [10] 邱玉琴, 韩丹, 施汉昌, 周小红. 生物膜动力学参数的研究进展[J]. 给水排水, 2008, 44(S1): 59-63.
    [11] 邱玉琴, 周小红, 施汉昌. 废水生物膜动力学参数的研究方法[J]. 中国环境科学, 2008, 32(8): 679-682.
    [12] WU S B, WIESSNERA, DONG R J, et al. Performance of two laboratory-scale horizontal wetlands under varying influent loads treating artificial sewage[J]. Engineering in Life Sciences, 2012, 12(2): 178-187. doi: 10.1002/elsc.201100151
    [13] 苗峻赫, 陈蓉, 廖强, 等. 膜生物反应器中生物膜的生长特性[J]. 环境工程学报, 2013, 7(2): 631-636.
    [14] 王曦曦, 伦琳, 张继彪, 等. 改进型曝气生物滤池的生物量和生物活性[J]. 环境工程学报, 2012, 6(6): 1829-1833.
    [15] 余瑞元、袁明秀、陈丽蓉, 等. 生物化学实验原理与方法[M]. 北京: 北京大学出版社, 1994.
    [16] 薛涛, 俞开昌, 关晶, 等. MBR污水处理工艺中活性污泥动力学参数测定[J]. 环境科学, 2011, 32(4): 1027-1033.
    [17] 徐大为. 玄武岩纤维填料生物膜反应器研究[D]. 镇江: 江苏大学, 2019.
    [18] ZHANG X Y, LI J, YU Y B, et al. Biofilm characteristics in natural ventilation trickling filters (NVTFs) for municipal wastewater treatment: Comparison of three kinds of biofilm carriers[J]. Biochemical Engineering Journal, 2016, 106: 87-96. doi: 10.1016/j.bej.2015.11.009
    [19] 胡小兵, 林睿, 张琳, 等. 载体内微孔孔径对生物膜特性及废水处理效果的影响[J]. 环境工程学报, 2020, 14(12): 3329-3338.
    [20] 刘良军, 万先凯, 乐翠华, 等. 关键参数对MBBR工艺生物膜活性的影响研究[J]. 环境工程, 2014, 32(S1): 358-363.
    [21] 郭磊, 成岳, 鲁莽, 等. 磁性多孔陶粒生物膜反应器处理垃圾渗滤液的试验研究[J]. 工业安全与环保, 2013, 39(8): 3-7.
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 8.1 %DOWNLOAD: 8.1 %HTML全文: 84.1 %HTML全文: 84.1 %摘要: 7.8 %摘要: 7.8 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 94.5 %其他: 94.5 %XX: 4.0 %XX: 4.0 %上海: 0.2 %上海: 0.2 %内网IP: 0.1 %内网IP: 0.1 %北京: 0.4 %北京: 0.4 %天津: 0.1 %天津: 0.1 %宝鸡: 0.1 %宝鸡: 0.1 %惠州: 0.1 %惠州: 0.1 %成都: 0.1 %成都: 0.1 %海东: 0.1 %海东: 0.1 %郑州: 0.1 %郑州: 0.1 %阳泉: 0.1 %阳泉: 0.1 %马鞍山: 0.1 %马鞍山: 0.1 %其他XX上海内网IP北京天津宝鸡惠州成都海东郑州阳泉马鞍山Highcharts.com
图( 4) 表( 9)
计量
  • 文章访问数:  2319
  • HTML全文浏览数:  2319
  • PDF下载数:  112
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-11-25
  • 录用日期:  2023-03-13
  • 刊出日期:  2023-05-10
郭小境, 吴军, 彭浩, 马海涛, 高林燕, 吕宜廉, 寿文琪, 潘周志, 陈轶凡, 苏子龙, 余书瑶, 宋立杰. 秸秆粉煤灰基颗粒填料生物膜特性的比较[J]. 环境工程学报, 2023, 17(5): 1651-1661. doi: 10.12030/j.cjee.202211140
引用本文: 郭小境, 吴军, 彭浩, 马海涛, 高林燕, 吕宜廉, 寿文琪, 潘周志, 陈轶凡, 苏子龙, 余书瑶, 宋立杰. 秸秆粉煤灰基颗粒填料生物膜特性的比较[J]. 环境工程学报, 2023, 17(5): 1651-1661. doi: 10.12030/j.cjee.202211140
GUO Xiaojing, WU Jun, PENG Hao, MA Haitao, GAO Linyan, LYU Yilian, SHOU Wenqi, PAN Zhouzhi, CHEN Yifan, SU Zilong, YU Shuyao, SONG Lijie. Comparative on biofilm properties of straw and fly ash-based granular fillers[J]. Chinese Journal of Environmental Engineering, 2023, 17(5): 1651-1661. doi: 10.12030/j.cjee.202211140
Citation: GUO Xiaojing, WU Jun, PENG Hao, MA Haitao, GAO Linyan, LYU Yilian, SHOU Wenqi, PAN Zhouzhi, CHEN Yifan, SU Zilong, YU Shuyao, SONG Lijie. Comparative on biofilm properties of straw and fly ash-based granular fillers[J]. Chinese Journal of Environmental Engineering, 2023, 17(5): 1651-1661. doi: 10.12030/j.cjee.202211140

秸秆粉煤灰基颗粒填料生物膜特性的比较

    通讯作者: 吴军(1968—),男,博士,副教授,njuwujun@nju.edu.cn
    作者简介: 郭小境 (1996—) ,女,硕士研究生,904624933@qq.com
  • 1. 南京大学环境学院,污染控制与资源化研究国家重点实验室,南京 210023
  • 2. 上海环境卫生工程设计院有限公司,上海 200030
基金项目:
国家重点研发计划“固废资源化”重点专项(2018YFC1901404);国家自然科学基金面上项目(51878337)

摘要: 为提高曝气生物滤池处理效率、研发新型具有结构和功能优势的颗粒填料,采用间歇式完全混合循环流态化反应器,探究了自制复合颗粒A、自制复合颗粒B、中劲陶粒及石英砂颗粒填料在4个水力停留时间下的挂膜性能、动力学参数及生物膜活性等生物膜特性,建立了生物膜微生物动力学参数实验测定的新方法。结果表明:当水力停留时间为8~12 h时,自制复合颗粒A、B挂膜性能优于石英砂和中劲陶粒,生物膜增殖速率分别为95.83 、63.75 mg·(L·h)−1(以COD去除率标准评价)和54.13、29.23 mg·(L·h)−1(以氨氮降解率标准评价);装填复合颗粒A的完全混合循环流态化反应器氨氮降解效率最高,相应生物膜表观产率系数最低,剩余污泥量最少;当水力停留时间超过8 h后,复合颗粒附着生长生物膜的脱氢酶活性、表面蛋白质、多糖含量最高。由此可知,以自制复合颗粒A、B为颗粒填料能优化曝气生物滤池的处理效率。本研究结果可为新型生物滤池技术的发展提供参考。

English Abstract

  • 曝气生物滤池是继普通生物滤池、高负荷生物滤池后发展起来的第三代生物滤池技术[1],具有高水力负荷、高容积负荷、高生物膜活性等特点及生物降解兼截留SS固液分离的功能,被广泛应用于污水二级或三级处理单元[2-4],但也存在对预处理工艺要求高、水头损失大、产泥量大、运行管理复杂等不足[5-7]

    在曝气生物滤池中,颗粒填料是微生物的重要载体,常用的烧结陶粒填料具有机械强度高、生物兼容性好、廉价易得等优点[8-9],但由于高温熔融冷却后形成的质密颗粒孔隙较少,附载生物量偏低,限制了曝气生物滤池处理效率提升。研发新型具有结构和功能优势的颗粒填料能够优化曝气生物滤池的处理能力,进一步提高污水处理厂的处理效率,加强水资源循环利用;另外,生物膜作为生物滤池技术核心,研究生物膜动力学模型能够反映生物膜内传质特性和反应动力学特征,优化生物膜反应器的运行。但传统生物滤池工艺中生物膜微生物动力学参数研究方法具有局限性[10-11],其作为生物滤池技术基础研究的难点一直没有很好解决。

    本研究设计了一种间歇式完全混合循环流态化反应器,采用重量法、重铬酸钾快速消解法和TTC比色法等方法,对自主研发的破碎秸秆纤维煅烧造孔的粉煤灰基颗粒填料、商品化的粉煤灰免烧陶粒和石英砂颗粒填料的挂膜速率、动力学参数以及生物膜活性等生物膜特性进行比较,探索不同填料反应器的污染物降解效率,旨在为新型生物滤池技术发展提供参考。

    • 颗粒填料为从市场采购的商品化的粉煤灰免烧陶粒(浙江中劲环保科技有限公司,简称中劲陶粒)和石英砂(广东创国高新材料有限公司);自主研发的秸秆粉煤灰基颗粒填料A和B(简称复合颗粒A、复合颗粒B)。复合颗粒A的原料配方:将粉煤灰、水泥和生石灰按质量比7∶1∶0.8混合均匀,掺入总质量(粉煤灰+水泥+生石灰的总质量)5%的硫酸钙及1%的秸秆;复合颗粒B的原料配方:将粉煤灰、水泥和生石灰按质量比7∶1∶1混合均匀,掺入总质量(粉煤灰+水泥+生石灰的总质量)3%的硫酸钙及1%的秸秆。

      复合颗粒A和复合颗粒B制备方法:将物料按比例称质量后混合均匀,加物料干质量20%的水搅拌均匀,倒入圆盘造粒机中造粒,成粒过程中喷洒雾状水,喷水量为物料干质量的10%。当物料由粉末状变为直径2~5 mm的球状颗粒时,取出并进行一次养护,即在50 ℃下湿养护5 d后,放入马弗炉中煅烧(煅烧温度为300 ℃),取出后冷却并进行二次养护(喷水养护),制得复合颗粒填料。4种颗粒填料的理化性质见表1

    • 为研究生物膜特性,设计了间歇式完全混合循环流态化反应器,装置结构及实物图见图1。反应器工作原理如下:利用水泵强制循环混合液产生保证颗粒流态化的上升流速,通过射流器的气水混合作用为生化反应充氧,从而保证反应器内基质浓度及颗粒上附着的生物膜分布的均匀性,使小样本样品填料上的生物量能够准确量化评估总填料的生物量。

      实验装置工作流程:实验用水加注到集水池后,启动循环离心泵,实验用水进入文丘里射流器,吸入空气并通过气水混合作用为反应器充氧;主体反应器内的颗粒填料在足够大上升流速作用下实现流态化,在上部分离区进行固液两相分离,颗粒填料回落至主体反应器内,污水则通过出水管流出,经无纺布过滤系统截留悬浮颗粒后再进入集水池,以此不断循环运行(图1)。

    • 1)实验设计。采用间歇式完全混合循环流态化反应器研究4种颗粒填料的生物膜特性。每个反应器装0.4 L填料,首先进行微生物接种,用复合菌液作为微生物接种液,将活化后的微生物菌液投入到反应器中,闷曝2 d。然后将微生物菌液缓慢排出,加入人工配制的污水(按浓液与清水为1 mL·L−1的体积分数[12]制备)。配浓液所需试剂为EDTA 0.100 g·L−1、FeSO4·7H2O 0.100 g·L−1、MnCl2·4H2O 0.100 g·L−1、CaCl2·2H2O 0.067 g·L−1、ZnCl2 0.100 g·L−1、CuCl2·2H2O 0.015 g·L−1、NiCl2·6H2O 0.030 g·L−1、H3BO3 0.010 g·L−1、Na2MoO4·2H2O 0.010 g·L−1 、葡萄糖 0.300 g·L−1、NH4Cl 0.015 g·L−1、KH2PO4 0.003 g·L−1

      设计水力停留时间(HRT)分别为6、8、10、12 h批次实验,每一批次处理水量为2.6 L,每一批次实验测定初始和结束时耗氧有机污染物的浓度 (以COD计) 和氨氮浓度。结束后,将水排出,取一定量颗粒填料,测定生物膜特性量化指标,包括生物膜量、生物膜脱氢酶活性、胞外聚合物(extracellular polymeric substances, EPS)含量,同时计算经气水冲刷作用剥落并随出水流出被过滤系统截留的悬浮污泥总量。

      在每个水力停留时间批次实验中,反应器内水流不断循环,因冲刷作用而剥落的悬浮污泥经滤膜过滤,每间隔30~60 min更换滤膜以防止堵塞,当污染物(COD、氨氮)去除率稳定后,记录所需处理的实验批次数、进出水浓度、生物质量浓度、悬浮污泥浓度、脱氢酶活性、胞外聚合物含量等,从挂膜速率、动力学参数、生物膜活性3方面进行综合比较研究。

      2)指标分析方法。生物膜量及悬浮污泥浓度采用重量法[13]:将滤料或滤布淋洗3次以去除表面游离的微生物,接着将干净的坩埚烘至恒质量,计为m1;取湿质量约为10 g滤料或滤布置于坩埚并在105 ℃烘箱中烘至恒质量,分别计为m2m3;最后将样品置于600 ℃马弗炉内灼烧2 h,取出坩埚并放于干燥器内冷却后称质量,分别计为m4m5。单位质量滤料的可挥发性生物量及悬浮污泥的浓度计算方法见式 (1) 和式 (2) 。

      式中:Q1为滤料可挥发性生物量,mg·g−1Q2为悬浮污泥质量分数,mg·g−1m1为坩埚恒质量,g;m2为10 g滤料烘干后的恒质量;m3为10 g滤布烘干后的恒质量,g;m4为烘干后的滤料经灼烧后与坩埚的质量,g; m5为烘干后的滤布经灼烧后与坩埚的质量,g。

      生物膜脱氢酶活性的测定采用TTC比色法[14]。COD的测定采用重铬酸钾快速消解法(HJ 828-2017);NH4+-N的测定参照国标纳氏试剂分光光度法(HJ 535-2009);多糖含量测定采用苯酚-硫酸法[15];蛋白质含量测定采用考马斯亮蓝法[15]

      3) 污染物降解动力学模型推导。底物利用速率与微生物浓度X成正比,计算方法如式 (3) 所示。

      底物利用速率与微生物浓度及底物浓度之间的动力学关系见式(4)。

      将式(4)代入式(3),可得式(5)。

      式中:X为活性污泥质量浓度,mg·L−1S为底物质量浓度,mg·L−1V为比底物利用速率,d−1Vmax为有机底物的最大比降解速率,d−1Ks为半速率常数,也称饱和常数,即µ=µmax/2时的基质质量浓度,mg·L−1

      积分后,得式(6)。

      式中:S0为初期有机物质量浓度,mg·L−1Se为反应进行到t时,污水中残存的有机物的质量浓度,mg·L−1

      在高有机物浓度条件下,底物降解速率与底物浓度呈一级反应关系如式(7)所示。

      积分后,可得式(8)。

      对系统内污染物量进行衡算,得式(9)。

      将式(7)和式(8)带入式(9)并积分,可得式(10)。

      结合式(6)和式(10),分别以S0Se为纵坐标,以Xt为横坐标,对实验结果进行回归分析,并用最小二乘法进行计算;再以lnS0Se为纵坐标,以Xt为横坐标,对实验结果进行回归分析,并用最小二乘法进行计算,可得到参数VmaxKs

      4) 微生物增殖动力学模型推导。对系统内微生物量进行衡算,可得式(11)。

      积分后,可得式(12)。

      式中:Kd为微生物的自身氧化率(即衰减系数),d−1Y为被利用的单位底物量转换成微生物体量的系数(即产率系数),mg·mg−1。以1XΔXt为纵坐标,S0SeXt为横坐标,对实验结果进行回归分析,并用最小二乘法进行计算,得到YKd值。

    • 颗粒填料挂膜速率决定生物滤池的启动速度,可作为评价颗粒填料优劣及其生物膜特性的重要指标。利用流态化完全混合反应器中颗粒填料生物膜均一化特性及便捷的重量法,可获取生物膜量化指标,计算不同颗粒填料和不同停留时间批次实验下单位体积滤料上微生物增量,据此定量评估不同颗粒填料挂膜速率;再针对各批次实验中COD和氨氮去除率差异进行分析,定性评价生物膜质量差异(即不同颗粒填料附着生长的生物膜污染物降解效能和生物膜活性的差异),从而为后续相关研究提供相互佐证的依据。

      1) COD去除率评价标准的挂膜性能。在相同COD进水条件下,对4种填料进行批次挂膜实验,当出水COD稳定(即去除率稳定时)视为挂膜成功。根据COD去除率稳定所需要的批次实验数量,判断4种填料挂膜性能。由表2可以看出,中劲陶粒和复合颗粒A、B挂膜性能相当,石英砂挂膜性能较差。这可以从表观上定性反映填料表面粗糙更有利于挂膜。

      计算4种颗粒填料附着生长生物膜增殖速率并结合COD去除率进行分析。由表3可以看出,复合颗粒B和A生物膜增殖速率最高,其次是中劲陶粒,石英砂最差,最高增殖速率分别为95.83、63.75、54.85、54.18 mg·(L·h)−1,最高去除率分别为93.20%、94.90%、89.08%、94.36%。中劲陶粒和石英砂填料表面生物膜增殖速率无显著差异,反映普通免烧技术制备颗粒填料(中劲陶粒)因表面致密导致挂膜效果不佳;而复合颗粒A、B利用纤维状秸秆造孔,获得内外孔洞连通结构,具有较大孔隙率和比表面积,能够给微生物提供更多附着空间,单位时间内碳氧化细菌在装填复合颗粒A、B系统内生长速率更快。

      2)氨氮降解率评价标准的挂膜性能。根据氨氮去除率稳定所需要的批次实验数量,可粗略判断4种颗粒填料的挂膜性能(表4),该结果与上述实验结论相近。

      计算4种颗粒填料附着生长生物膜增殖速率并结合氨氮去除率进行分析。由表5可以看出,复合颗粒B和A挂膜性能最优,其次是石英砂、中劲陶粒,最高挂膜速率分别为135.3、73.08、79.35、64.55 mg·(L·h)−1,最高去除率分别为96.61%、98.94%、94.36%、99.80%。可以看出,硝化细菌在装填复合颗粒A、B系统内生长速率最快,这是由于复合颗粒A、B具有较大孔隙率和比表面积,能够给微生物提供更多附着空间。

    • 1)污染物降解动力学。在4组水力停留时间(6、8、10、12 h)条件下进行实验,颗粒填料完全混合循环流态化反应器的有机物降解动力学参数见表6

      4种颗粒填料附着生长生物膜有机物最大比降解速率依次为石英砂(0.500 d−1)>中劲陶粒(0.358 d−1)>复合颗粒B(0.342 d−1)>复合颗粒A(0.209 d−1),半饱和常数依次为石英砂(77.88 mg·L−1)>复合颗粒B(63.11 mg·L−1)>中劲陶粒(41.34 mg·L−1)>复合颗粒A(38.35 mg·L−1),其中最大比降解速率明显低于完全混合活性污泥法系统中微生物。原因可能是,生物膜具有厚度,物质传输存在传质阻力,溶解氧、基质等无法传入生物膜深层,导致微生物的最大比降解速率较低[11]

      在4组水力停留时间(6、8、10、12 h)条件下进行实验,4种填料完全混合循环流态化反应器的氨氮降解动力学参数见表7

      4种颗粒填料的氨氮最大比降解速率依次为复合颗粒B(0.027 d−1)>复合粉颗粒A(0.025 d−1)=石英砂(0.025 d−1)>中劲陶粒(0.003 85 d−1),半饱和常数依次为复合颗粒A(2.212 mg·L−1)>复合颗粒B(1.971 mg·L−1)>石英砂(1.748 mg·L−1)>中劲陶粒(0.332 mg·L−1)。将上述2个动力学参数带入式(10)中,由计算结果可以看出,在相同进水污染物浓度、反应时间及生物量时,出水氨氮浓度依次为中劲陶粒>复合颗粒B>石英砂>复合颗粒A,表明复合颗粒A系统对氨氮降解效率最高。

      2)微生物增殖动力学。在4组水力停留时间(6、8、10、12 h)条件下运行实验,颗粒填料完全混合循环流态化反应器的碳氧化菌增殖动力学参数见表8

      4种颗粒填料的污泥产率系数依次为石英砂(0.553)>复合颗粒B(0.486)>中劲陶粒(0.244)>复合颗粒A(0.239),衰减系数依次为石英砂(0.053)>中劲陶粒(0.018)>复合颗粒A(0.016)>复合颗粒B(0.008)。由综合污泥产率系数及衰减系数计算结果可以看出,表观产率系数依次为复合颗粒B>石英砂>中劲陶粒>复合颗粒A,表明装填复合颗粒A处理系统,碳氧化菌产生的剩余污泥量最少。

      在4组水力停留时间(6、8、10、12 h)条件下进行实验,颗粒填料完全混合循环流态化反应器的硝化菌增殖动力学参数见表9

      4种颗粒填料的污泥产率系数依次为中劲陶粒(1.040)>石英砂(0.976)>复合颗粒B(0.843)>复合颗粒A(0.700),较活性污泥处理系统产率系数高[16];4种颗粒填料系统的衰减系数均为负值(表9)。原因是,气水混合的冲刷作用导致生物膜剥落,经过滤系统过滤后从系统中分离出来,而分离出的剥落生物膜并非立刻取出,故导致生物膜衰减系统为负值。

    • 1)脱氢酶活性。脱氢酶活性测定标准曲线为y=0.005 6x+0.030 7,R2=0.983。图2分别展示了颗粒填料完全混合循环流态化反应器在不同水力停留时间(6、8、10、12 h)下,COD和氨氮去除率稳定时生物膜脱氢酶活性变化规律。可以看出,4种颗粒填料附着生长的微生物脱氢酶活性均随水力停留时间的增加而不断增加。

      COD去除率稳定时,复合颗粒A附着生长微生物脱氢酶活性在水力停留时间分别为6 h和8 h时均高于其他3种颗粒填料,而停留时间为10 h和12 h时低于复合颗粒B。这表明,在较短水力停留时间下,复合颗粒A上生物量较大,但随水力停留时间的延长,生物量增长有限,这与复合颗粒A上测得的生物量特征吻合。此结果与徐大为[17]对脱氢酶活性研究结果50 mg·(g·h)−1相比,小很多。原因可能为,较大的气水混合冲刷作用使得生物膜脱落严重。

      在氨氮去除率稳定后,停留时间为6、8 h时,中劲陶粒生物膜脱氢酶活性明显高于复合颗粒B和石英砂,略高于复合颗粒A;停留时间为10 、12 h时,复合颗粒A、B生物膜脱氢酶活性快速增加,超过中劲陶粒。这与中劲陶粒系统具备最高的氨氮去除率结果不一致,说明脱氢酶活性只是影响去除率的因素之一,还需结合其他指标 (如生物量等) 进行判定。

      2)蛋白质及多糖含量。蛋白质含量测定标准曲线为y=0.005 6x+0.706 2,R2=0.995;多糖含量测定标准曲线为y=0.010 8x+0.081 1,R2=0.989。在COD去除率稳定时,采用苯酚-硫酸法和考马斯亮蓝法对EPS含量进行判断。由图3可以看出,复合颗粒A生物膜胞外聚合物含量均高于其他3种颗粒填料,说明复合颗粒A上生物膜活性较高,这也解释了复合颗粒B挂膜速率快但去除率低的原因;此外,复合颗粒A、B生物膜胞外聚合物含量在水力停留时间为8 h时快速升高,而在水力停留时间为10 、12 h时,上升幅度较小,其变化趋势与脱氢酶活性的变化趋势基本一致。这说明,随着反应器内微生物脱氢酶活性的增加,微生物新陈代谢能力增强,分泌出更多的胞外聚合物[18]。胡小兵等[19]研究了SBBR工艺中颗粒填料上EPS含量,其值为73.19~104.07 mg·g−1,该结果比本研究结果高很多。原因可能为,本装置气水冲刷作用较强,导致生物膜脱落严重。

      在氨氮去除率稳定时,采用苯酚-硫酸法和考马斯亮蓝法对EPS含量进行判断。在水力停留时间为6 h和8 h情况下,中劲陶粒上微生物的胞外聚合物含量较高(图4(a)、图4(b));而随着水力停留时间的延长,复合颗粒A、B上生物膜胞外聚合物含量增长速度加快(图4(c)、图4(d)),总含量超过中劲陶粒,与脱氢酶活性变化趋势相同。原因可能为,随着水力停留时间的延长,载体上生物量增加,而中劲陶粒的微孔堵塞,不利于内部微生物的脱落、更新,导致后续胞外聚合物含量增速较慢[19]

      综上所述,复合颗粒A与B的生物膜活性大于中劲陶粒与石英砂。生物膜活性大小可反应微生物的活性以及微生物对有机物的氧化分解能力,当生物膜活性较高时,有利于COD与氨氮等污染物的去除[20]。郭磊等[21]研究发现,磁化能够增加载体填料表面生物膜中微生物的种类和数量,提高生物膜活性,从而将COD、氨氮去除率分别提高了5%~10%和15%~20%。

    • 在秸秆粉煤灰基颗粒填料长期使用状态下,生物膜生长将削弱其多孔结构优势,填料功能性优势也会逐渐弱化,这个特征在上述实验结果中已经显现。然而粉煤灰含有大量活性SiO2及Al2O3,具有火山灰活性,在水处理环境条件下与Ca(OH)2等碱性物质发生化学反应形成胶凝物质,使颗粒机械强度逐渐加强。这进一步保障了秸秆粉煤灰基颗粒填料在工程应用中的长期有效性,并在处理系统间歇运行、频繁启停的过程中充分施展秸秆粉煤灰基颗粒填料挂膜性能优势。

    • 1) 采用秸秆造孔技术形成的粉煤灰基复合颗粒A、B的生物膜特性最优,其次为粉煤灰基免烧中劲陶粒,石英砂因为表面相对光滑表现最差。复合颗粒A、B系统挂膜性能最佳,生物膜增殖速率最快。

      2)复合颗粒A系统COD降解半饱和常数Ks和有机物最大比降解速率最大,分别为50.993 mg·L−1、2.208 d−1,且脱氢酶活性、蛋白质及多糖含量较高,因此,复合颗粒A系统COD去除率最高,且表观污泥产率系数最低。

      3) 中劲陶粒系统的氨氮降解半饱和常数Ks和氨氮最大比降解速率最大,分别为10.108 mg·L−1、1.110 d−1,且表征生物膜活性的脱氢酶活性、蛋白质及多糖含量都较高,相应氨氮去除率最高。

    参考文献 (21)

返回顶部

目录

/

返回文章
返回