-
近年来,镉系量子点(quantum dots,QDs)因其优异的光响应性、带隙可调控和充足且较高的导带能位而被用于制造光催化剂、存储设备、显示器、发光二极管和化学传感器[1-2]。而镉系QDs的大规模商业应用大大增加了其释放到环境中的暴露风险,进而增大其进入污水处理厂的概率以及富集质量浓度。镉系 QDs也将随排水泄露到自然环境,最终危害微生物,藻类和动植物[3-4]。污水处理厂作为防止镉系 QDs进入自然环境的关键一环,明确其长期暴露对污水处理过程的影响至关重要。
活性污泥系统是污水处理厂实现污水净化的核心环节[5],大量研究发现,纳米颗粒(TiO2,ZnO,聚苯乙烯等)进入活性污泥后会通过物理化学吸附等作用从水相转移至污泥中富集[6-8],进而影响污泥絮凝体的结构和功能,造成出水水质恶化[9-11]。当纳米颗粒与微生物长期接触,微生物群落结构和代谢功能也将做出相应响应[12]。对于粒径更小(2~10 nm)、更易进入细胞的含镉量子点(CdSe、CdTe/CdS、CdSe/ZnS)[13],其在污泥内富集的环境风险可能更为突出。目前,尽管研究人员已经在关注镉系QDs的生物毒性研究,但目标生物(细胞、细菌、斑马鱼和少数藻类)和实验条件较为单一[14-15],其在复杂系统中的毒理效应尚不明确,镉系QDs对污水处理厂处理效能的影响和作用机制仍未可知。因此,有必要明确镉系QDs对污水处理厂出水水质、污泥絮体物化特性以及微生物群落结构的影响,从而为QDs的安全应用和排放提供理论依据。
本研究通过评估污水处理效果、污泥絮凝沉淀性能、胞外聚合物(extracellular polymeric substances,EPS)物化特征,微生物群落结构及其代谢功能对CdSe QDs长期胁迫的响应,全面揭示CdSe QDs对活性污泥的毒性效应及其内在机制,将为QDs的环境行为研究及其暴露风险评估提供理论支撑。
-
采用水相合成法制备水溶性的CdSe QDs[16]。将硼氢化钠(NaHB4)和硒粉(Se)分散于除氧超纯水,得到硒氢化钠(NaHSe)溶液。将20 μL 巯基乙酸溶于2 mmol·L−1 50 mL氯化镉(CdCl2)后,用1 mol·L−1 氢氧化钠(NaOH)溶液调节pH至10,并用高纯氮气(N2,99.999%)鼓泡30 min。将制备得到的两种溶液于500 mL三颈烧瓶内混合,溶液在氮气环境下水浴加热4 h,得到CdSe QDs溶液。经反复洗脱和冷冻干燥处理,最终制备得到CdSe QDs粉末。利用高分辨透射电子显微镜(Tecnai G2 F20,美国FEI公司)和荧光分光光度计(FP 6 500,日本JASCO 公司)测定样品的表面形貌及其荧光特性。
-
本实验采用有效工作容积为5 L的序批式活性污泥反应器(sequencing batch reactor,SBR)。反应器由进气管、曝气泵、流量计和排水管组成。接种污泥取自西安市第4污水厂曝气池,进水采用人工配制的模拟污水[17],组分和质量浓度如下:80 mg·L−1醋酸钠(CH3COONa·3H2O)、26.32 mg·L−1磷酸二氢钾(NaH2PO4·2H2O)、150 mg·L−1葡萄糖(C6H12O6)、150 mg·L−1蛋白胨、114.6 mg·L−1氯化铵(NH4Cl)、444 mg·L−1碳酸氢钠(NaHCO3)、10.6 mg·L−1氯化钙(CaCl2)、180 mg·L−1硫酸镁(MgSO4·7H2O)以及0.38 mL·L−1微量元素溶液。运行周期包括:进水0.25 h,曝气10.5 h,沉淀1 h,排水0.25 h。 污水排放比为0.5,水力停留时间和污泥龄分别为24 h和30 d。培养过程溶解氧控制在4~6 mg·L−1,混合液悬浮固体质量浓度(mixed liquid suspended solids,MLSS)保持在3 000 mg·L−1左右,通过投加NaHCO3使pH维持在7~8的范围内。
-
待污泥驯化完成后,反应器连续运行120 d,以前30 d无CdSe QDs添加阶段作为对照组。CdSe QDs暴露条件连续运行90 d,运行期内每隔30 d增加进水CdSe QDs质量浓度,各阶段质量浓度分别为0、0.1、1和10 mg·L−1。实验阶段每3 d测定1次出水水质和污泥沉降性能,每个阶段结束前对单个反应周期水质变化进行连续监测。在反应器运行的第30、60和90天提取污泥样品进行后续傅里叶红外光谱(fourier transform infrared spectroscopy,FTIR)、EPS以及微生物种群结构和多样性分析。
-
出水水质(NO3−-N、NH4+-N、 NO2−-N、COD、PO43--P)、MLSS和污泥容积指数(sludge volume index,SVI)按照《水和废水监测分析方法》(第4版)中的标准方法进行测定[18]。出水浊度采用浊度仪(Model 2 100 AN)测定。利用傅里叶红外光谱仪(IRPrestige-21,Shimadzu)对活性污泥样品表面官能团进行定性分析,取污泥粉末样品与干燥的溴化钾粉末混合均匀,在压片机上压制成片测试,扫描范围 4 000~500 cm−1,分辨率0.8 cm−1,扫描速度2.5 kHz。EPS提取采用修改的热提法[19],具体步骤如下:将30 mL泥水混合液离心10 min (4 000 r·min−1),去掉上清液后加入0.05% NaCl至30 mL,重复上述步骤3次,然后将混合液水浴加热处理30 min (60 ℃),经离心和0.45 μm醋酸纤维素膜过滤后得到的上清液即为EPS。通过荧光分光光度计(FP 6 500,JASCO)测定其三维荧光光谱(three-dimensional excitation and emission matrix fluorescence,3DEEM),并通过对光谱不同区域积分对EPS进行区域荧光积分(fluorescence regional integration,FRI)分析。污泥DNA采用E.Z.N.A. ®Tissue DNA Kit (MoBio Laboratories,Carlsbad,CA) 试剂盒提取,DNA的质量检测、扩增、纯化和测序委托上海生工生物工程技术服务有限公司完成。选取引物338F(5′-ACTCCTACGGGAGGCAGCAG-3′)和806R(5′-GGACTACHVGGGTWTCTAAT-3′)扩增16S rRNA基因V3-V4区,通过Illumina Miseq高通量测序平台测定微生物16S rRNA基因,采用QIIME(1.8.0)软件进行数据分析。利用PICRUSt2软件进一步对16S rRNA高通量测序数据进行功能预测,基于KEGG数据库,得到微生物代谢途径及其预测丰度。该项目数据已上传至SRA数据库,项目号为PRJNA941489。
-
本研究制备的CdSe QDs的平均粒径为(2.54±0.7) nm (图1(a,b))并且其最大发射波长为521 nm (图1(c))。将不同质量浓度CdSe QDs投加到SBR中,其对反应器运行性能的影响如图2(a)所示。在CdSe QDs连续暴露90 d实验期间,反应器硝化作用相较于对照组几乎不受影响。NH4+-N去除率高达99%,几乎无 NO2−-N积累,NO3−-N质量浓度稳定在35 mg·L−1左右,表明硝化作用对CdSe QDs并不敏感。而石墨纳米颗粒却能通过抑制氨氧化细菌(Nitrosomonas)活性,进而影响NH4+-N的去除[20]。对比SBR运行期间的出水COD值,对照组出水COD值稳定在106 mg·L−1,而0.1 mg·L−1 CdSe QDs实验组可显著降低反应器中耗氧有机污染物的含量,出水COD值由127.1 mg·L−1降低至71.7 mg·L−1。这可能归因于微生物的毒性兴奋效应[21],微生物对耗氧有机污染物的降解量增加。然而,随着CdSe QDs暴露剂量的进一步增加,出水COD值整体呈现出上升趋势,最终达到124.7 mg·L−1。该现象表明过量的CdSe QDs会抑制活性污泥微生物对有机物的降解能力。
SBR单个反应周期的水质监测结果如图2(b)所示。CdSe QDs的存在加速了NH4+-N的降解,在1 mg·L−1 CdSe QDs胁迫下氨氧化速率由2.2 mg·(L∙h)−1增大到3.3 mg·(L∙h)−1。同时,添加CdSe QDs能够有效降低NO2−-N的累积质量浓度,在不同暴露剂量条件下NO2−-N几乎均未有积累。此外,反应过程NO3−-N生成速率也随CdSe QDs质量浓度的增加而增加。以上结果表明,CdSe QDs对硝化过程有明显的促进作用。通常,氧化反应消耗电子,而电子传递对参与硝化作用的酶活性有显著影响[22],利于电子转移的外源物质可以提高酶的活性[23]。因此,推测CdSe QDs对硝化作用的促进可能归因于其作为电子载体可加速电子传递过程。
-
1)污泥絮凝性能对CdSe QDs的胁迫响应。CdSe QDs对污泥絮凝沉降性能的影响如图3所示。受不同质量浓度CdSe QDs(0、0.1、1和10 mg·L−1)胁迫,活性污泥的SVI分别稳定在36.8、33.6、31.2和31.2 mL·g−1左右。显然,CdSe QDs的存在不仅提高了污泥的沉降能力,而且使得污泥的SVI水平更为稳定。这可能是由于CdSe QDs粒径(2.54 nm)较小,极易通过污泥絮体网捕和物理化学吸附作用从水相转移至污泥中,增加污泥比重,提升污泥沉降能力[6-8]。该结论与纳米磁粉能够有效提升污泥沉降性能的结论一致[24]。此外,暴露于CdSe QDs条件的出水浊度稳定在2.92 NTU,高于对照组的平均浊度(1.51 NTU)。该现象可能是由于CdSe QDs在污泥表面大量聚集,影响了污泥对水中营养物质的吸收,以及由于自身生物毒性干扰了微生物代谢,导致污泥絮凝性能下降,出水浑浊。
2)胞外聚合物对CdSe QDs的胁迫响应。不同剂量CdSe QDs暴露条件下EPS的3D-EEM图谱类似(图4),主要组分包括色氨酸类蛋白(峰B,Ex/Em=280~290 nm/330~365 nm),酪氨酸类蛋白(峰A,Ex/Em=225~235 nm/300~350 nm)和腐殖酸类物质(峰C,Ex/Em=340~370 nm/440~460 nm)。无CdSe QDs暴露条件下EPS中峰A和B的荧光强度分别为1 517和2 515。随着CdSe QDs累积质量浓度的增大,酪氨酸类蛋白物质的荧光峰强度逐渐下降。在1 mg·L−1和10 mg·L−1 CdSe QDs胁迫下,峰A几乎消失。该现象可能是因为酪氨酸类蛋白与CdSe QDs作用强烈,诱导发生荧光淬灭[25]。此外,CdSe QDs的存在会显著增加EPS中色氨酸类蛋白的含量,峰B的荧光强度也从2 515增至3 969。有研究表明, PN能够加速微生物聚集,减少与QDs的接触面积,从而缓解纳米毒性。ZHANG等[26]发现 Thalassiosira Pseudonana可以通过分泌大量PN缓解CdSe/ZnS QDs的毒性胁迫。因此,推测色氨酸类蛋白是污泥微生物缓解CdSe QDs刺激的主要作用物质。再者,随着CdSe QDs暴露质量浓度的增加,腐殖酸类物质的含量逐渐增加,最终导致峰C的出现。
FRI将三维荧光光谱构成的三维区域依照有机物的特性分为5个区域,包括区域Ⅰ:芳香蛋白类物质A(类酪氨酸Ex/Em: 220~250 nm/280~330 nm);区域Ⅱ:芳香蛋白类物质B(类色氨酸Ex/Em:220~250 nm/330~380 nm);区域Ⅲ:类富里酸类物质(Ex/Em:220~250 nm/380~550 nm);区域Ⅳ:微生物代谢产物(Ex/Em:250~400 nm/280~380 nm);区域Ⅴ:腐殖酸类物质(Ex/Em:250~400 nm/380~550 nm)[27]。如图4(b)所示,随着胁迫质量浓度增加,区域I类酪氨酸物质的占比由15.3%下降到8%,该现象与酪氨酸蛋白所代表的峰A荧光强度下降结果一致。此外,色氨酸类物质在EPS中的贡献率最高,分别为52.6%、48.1%、28.3%和35.5%。对于EPS中的富里酸类物质,其含量几乎不受CdSe QDs的影响。相较于对照组,CdSe QDs暴露下区域Ⅳ微生物代谢产物的占比均有所增加,最终上升到25%。此外,V区代表的腐殖酸类物质含量的变化规律也与图4(a)中峰C荧光强度的变化规律一致,在高质量浓度CdSe QDs暴露剂量条件大量累积。
3)污泥FTIR分析。不同CdSe QDs胁迫质量浓度下活性污泥的红外光谱如图5所示。显然,红外光谱吸收峰所在的位置基本相同,说明CdSe QDs的胁迫只会影响活性污泥表面化学基团的数量,而不会改变其化学组成。3 292 cm−1处存在蛋白质和多糖O—H和N—H振动形成的宽峰[28]。2 930 cm−1处存在脂肪族 C—H 伸缩振动吸收[28]。1 638 cm−1和1 544 cm−1处为蛋白质酰胺类化合物C=O、C—N和N—H的伸缩振动[29-30]。1 403 cm−1存在羧基中C—O和 C=O的振动吸收[30]。1 229 cm−1附近的吸收峰是蛋白质中酰胺Ⅲ中N—H、C—N的伸缩振动峰[30]。1 040 cm−1处出现的吸收峰被认为是多糖的C—O—C、C—O和C—C的对称收缩振动[31]。小于1 000 cm−1的吸收峰是磷酸基团的伸缩振动[31]。
CdSe QDs会与特定物质发生相互作用,仅0.1 mg·L−1的CdSe QDs就能显著减弱各个化学基团的振幅。而1 mg·L−1和10 mg·L−1的胁迫质量浓度对化学基团的影响差异并不明显。此外,1 641 cm−1(蛋白质的酰胺Ⅰ)处峰值振动强度的降低进一步证明酪氨酸类蛋白含量的下降可能与脱酰胺作用有关[32]。同时,1 110 cm−1和420~470 cm−1峰带的伸缩振动强度也随CdSe QDs剂量的增加呈现规律性的减弱,推测CdSe QDs在活性污泥表面的主要结合位点是C—O—C、C—O、C—C和磷酸基团。
-
1)物种多样性和丰富度变化。为明确CdSe QDs对活性污泥微生物丰富度和多样性的影响,本研究对不同运行阶段的污泥样本进行Alpha分析。表1结果显示,文库的覆盖率均在99%以上,代表大部分的样本序列都被测出,并且测序结果能较好反映出活性污泥微生物的真实状况。本研究通过Chao1和ACE指数表征丰富度,通过Shannon指数表征多样性。显然,随着CdSe QDs质量浓度的增大,测序分析得到的OTUs和序列数均骤减,证明具有较强的CdSe QDs生物毒性。此外,Chao1、ACE和Shannon指数均因CdSe QDs的投加而减小,说明暴露于CdSe QDs活性污泥的物种丰富度和多样性均会降低。
2)活性污泥种群结构的响应。不同CdSe QDs胁迫质量浓度下的活性污泥微生物群落门水平组成差异如图6所示。结果显示,变形菌门(Proteobacteria)是最主要的优势菌群,4种胁迫质量浓度下相对丰度达到65.4%、45.4%、38.8%以及47.5%。Proteobacteria广泛存在于活性污泥系统中,该门下的菌属对脱氮除磷效果有重要影响[33]。超级门(Patescibacteria)随着CdSe QDs暴露质量浓度的增大,其群落占比逐渐增大,分别为14.4%、14%、27.3%和28.2%。此外,其他优势菌群还包括拟杆菌门(Bacteroidetes:3.6%、12.5%、13.3%、6.5%)、浮霉菌门(Planctomycetes:1.4%、11.4%、6.3%、6.3%)、放线菌门(Actinobacteria:2.4%、5.2%、3.9%、3.6%)和厚壁菌门(Firmicute:1.4%、2.6%、3.4%、3.3%)。上述6类门微生物占总菌门的比例高达95%。硝化螺旋菌门(Nitrospirae)在活性污泥中的含量较小,仅为2%、2.6%、3.4%、1.5%,30 mg·L−1 CdSe QDs对其丰度表现出一定的胁迫影响。
在属水平上微生物群落差异更为明显(图7)。暴露于CdSe QDs的活性污泥中,微生物优势菌主要包括中慢生根瘤菌属(Mesorhizobium:7.5%、1.1%、0.9%、2.9%)、下水道球菌属(Amaricoccus:6.5%、0.1%、0、0)、红杆菌属(Rhodobacter:2.4%、0.8%、0.8%、0.9%)、硝化螺旋菌属(Nitrospira:2%、2.6%、3.4%、1.5%)、古字状菌属(Runella:1.2%、4.5%、5.9%、1.3%)和鞘氨醇盒菌属菌(Sphingopyxis:0.1%、0.9%、4.9%、6.3%)等。显然,除了Runella 和Sphingopyxis,大部分微生物都受到CdSe QDs的抑制。Sphingopyxis和Runella被认为具有较强的环境适应性[34-35],Sphingopyxis能够生物转化重金属并能降解多种生物毒性物质[34],Runella对100 mg·L−1聚氯乙烯以及聚苯乙烯纳米颗粒也表现出较强抗性[35],两者在本研究中对CdSe QDs同样表现出较强的耐受性。此外,Amaricoccus 属于Proteobacteria,与有机物降解有关[36]。该菌属丰度的下降也解释了反应器出水COD值逐渐增大的现象。Nitrospira属于Nitrospirae,该菌属的微生物可参与亚硝酸盐的氧化[37]。同样,10 mg·L−1 CdSe QDs对Nitrospira的抑制作用较为明显,这也解释了SBR运行后期(90~120 d)硝化速率减慢的现象。
3)微生物代谢通路的响应。PICRUSt将暴露于CdSe QDs微生物的16S rRNA基因序列在KEGG数据库进行预测,最终得到微生物代谢通路的预测结果。如图8所示,活性污泥中微生物的1级功能层主要包括细胞过程、环境信息处理、遗传信息处理、人类疾病和新陈代谢。显然,基因代谢通路丰度最大的是新陈代谢,该功能区与微生物的生存和生长密切相关[38]。CdSe QDs显著降低了该功能层下的11个子功能基因代谢丰度,而这些子功能直接决定污染物的去除效果,导致高质量浓度CdSe QDs条件微生物降解有机物能力变差。此外,环境信息处理功能层下的膜传输的丰度从 85 944降至32 552,并伴随着信号传导丰度由18 563降至7 876。该现象可能归因于CdSe QDs进入细胞并造成细胞膜破裂[39],最终影响活性污泥微生物之间的物质交流和信息传递。以上结果表明 CdSe QDs长期暴露对微生物代谢功能的胁迫作用显著,进而影响活性污泥活性及其聚集性能。
-
1) CdSe QDs的长期暴露对活性污泥系统运行效能影响较小,整个运行期间硝化运行效果稳定,且CdSe QDs的存在可加速NH4+-N和NO2−-N的转化速率,但在高浓度胁迫条件下有机物降解和生物絮凝性能均受到一定程度的抑制作用。
2)当CdSe QDs与活性污泥表面的吸附位点(C—O—C、C—O、C—C和磷酸基团)结合后,会导致蛋白质的酰胺基团减少,造成酪氨酸类蛋白荧光淬灭。同时, EPS中色氨酸类蛋白荧光强度大大增加。
3) CdSe QDs进入细胞后,会进一步干扰污泥微生物的代谢途径,包括氨基酸、碳水化合物、脂质及核苷酸的代谢。同时,与环境信息处理和遗传信息处理相关代谢也受到明显抑制,表明CdSe QDs长期暴露会引起细胞膜破裂并损伤DNA,降低微生物的活性及对有机污染物的去除能力。
活性污泥对硒化镉量子点暴露的胁迫响应机制
The stress response mechanisms of activated sludge exposed to CdSe quantum dots
-
摘要: 为揭示硒化镉(CdSe)量子点(quantum dots, QDs)在复杂环境体系中的生物毒性效应,本研究以活性污泥为研究对象,探讨了CdSe QDs(0.1~10 mg·L−1)长期暴露对序批式活性污泥反应器运行效能、污泥性能以及微生物代谢作用的影响。结果表明,在实验质量浓度范围内,出水COD值和硝酸盐波动较大,而硝化作用影响较小,且低剂量CdSe QDs的存在加速了NH4+-N的降解,1 mg·L−1 CdSe QDs将平均氨氧化速率由2.2 mg·(L∙h)−1提高到3.3 mg·(L∙h)−1。尽管CdSe QDs会引起出水浊度略微增加,但污泥沉降性能始终维持稳定。CdSe QDs主要与污泥表面的C—O—C、C—O、C—C和磷酸基团结合,诱导胞外聚合物的酪氨酸类蛋白荧光淬灭。同时,微生物会通过分泌色氨酸类蛋白以缓解胁迫影响。此外,活性污泥的物种丰富度和多样性均受CdSe QDs的抑制,但低质量浓度CdSe QDs有利于Nitrospirae相对丰度的增加。PICRUSt2预测显示,微生物的新陈代谢和遗传信息处理相关的代谢通路均受到CdSe QDs的显著抑制,膜传输和信号传导的代谢通路丰度最终分别下降至32 552和7 876,导致反应器出水COD值随暴露剂量的增加而逐渐增大。因此,CdSe QDs通过改变微生物群落结构和功能影响活性污泥有机物的去除效果,但对硝化反应及污泥絮凝和沉淀性能并未表现出明显负面效果。Abstract: In order to reveal the biotoxicity of CdSe quantum dots (QDs) in complex environmental systems, activated sludge was taken as the research object to study the effects of long-term exposure to CdSe QDs (0.1~10 mg·L−1) on the operation efficiency, sludge performance and microbial metabolism in sequencing batch reactor (SBR). The results showed that COD and nitrate concentrations in effluent fluctuated greatly under the stress of CdSe QDs (0.1~10 mg·L−1), but nitrification performance was stable. Low dosed CdSe QDs accelerated degradation of NH4+-N, and 1 mg·L−1 CdSe QDs could increase average oxidation rate of NH4+-N from 2.2 to 3.3 mg·(L∙h)−1. Although CdSe QDs caused a slight increase in effluent turbidity, the sludge sedimentation maintained stable. CdSe QDs mainly bound to C—O—C, C—O, C—C and phosphate group on sludge surface, and caused the fluorescence quenching of tyrosine-like protein in extracellular polymeric substance. Meanwhile, microorganisms also secreted tryptophan-like proteins to alleviate stress. Besides, both abundance and diversity of microbes in activated sludge were inhibited by CdSe QDs, but low level CdSe QDs were conducive to abundance of Nitrospirae. The results predicted by PICRUSt found that the metabolic pathway for metabolism and genetic information processing was significantly inhibited by CdSe QDs, and the abundances of the metabolic pathway for membrane transport and signal transduction finally decreased to 32 552 and to 7 876, respectively. That might be the reason for the increase in effluent COD with the rise of exposure dosage. Therefore, CdSe QDs affected the organic matter removal by changing the structure and function of microbial community in activated sludge, but showed no obvious negative effects on nitrification, sludge settling and flocculation.
-
随着工业生产技术发展,重金属对全球水环境的污染日趋严重. 重金属废水无序排放严重污染周边的水体环境,直接或间接地危害人类健康[1],亟待有效处理. 其中酸性重金属废水如酸性矿山废水和电镀废水因其pH低、重金属种类多含量高、毒性大、成分复杂等特点,处理尤为困难[2-3]. 用于酸性重金属废水处理的传统工业水处理技术如加碱沉淀、吸附、离子交换和膜处理等存在成本高、二次污染严重、运行时间长、操作复杂等缺点[4-7]. 而电絮凝技术因其去除效率高、无需外加药剂、设备简单、絮凝产物可资源化等特点逐渐发展成为重金属废水处理领域研究热点[8-11].
对电絮凝所产生絮体产量和种类的调控是优化电絮凝工艺效能的关键[12]. 已有研究表明电絮凝溶液中不同支持电解质种类以及曝气条件会导致不同矿物的生成[12-14]. 针铁矿(goethite)、磁铁矿(magnetite)、赤铁矿(hematite)、水铁矿(ferrihydrite)和绿锈(green rust)等是电絮凝过程中常见的一次或二次生成的铁矿物[14]. 其中绿锈和磁铁矿通常在较低溶解氧(DO)浓度的电絮凝过程中产生,且都具有层状双金属氧化物(LDHs)结构,因而二者具有较高的比表面积和反应活性. 近年来,磷酸亚铁矿物蓝铁矿因其具备对砷、铀、钴和氯化有机化合物的吸附和还原能力而备受关注[15],然而电絮凝形成蓝铁矿(vivianite)的研究甚少,这与磷酸盐在中性条件下对铁阳极的钝化作用有关. 目前针对电絮凝吸附固载重金属的研究主要聚焦于中性或碱性条件[8-9, 12, 16],例如,有研究报道了中性和碱性条件下不同电解质阴离子和溶解氧浓度对于铁基电絮凝成矿种类的影响规律和影响机制[12] . 现阶段,酸性条件下铁电絮凝成矿过程缺乏关注;实际上,探讨酸性铁电絮凝用于实际重金属废水处理具有一定应用价值,这是因为阴极自产碱有利于提高系统pH,进而有效节省碱耗;较低pH能够提高溶液导电率及铁阳极法拉第效率,还使得在中性和碱性条件下易导致阳极钝化的电解质(如磷酸盐),在酸性条件下能够适用于电絮凝处理[17].
本研究着重讨论了酸性条件下铁基电絮凝的成矿规律及其对典型重金属的固载效果. 通过构建铁阳极、不锈钢阴极的电絮凝体系,考察不同支持电解质(NaCl、Na2SO4、NaH2PO4、NaNO3)和有无曝气对成矿种类的影响,以及不同铁矿物对重金属去除效果的影响;其次,通过检测溶液态铁Feaq(铁离子、亚铁离子及其溶液态羟基结合物种等)浓度在不同条件下铁电絮凝的变化规律,帮助深入解了酸性铁电絮凝的反应过程. 研究成果为酸性重金属废水的铁电絮凝处理提供理论参考,为电絮凝产物的资源化回收提供数据支撑.
1. 材料与方法(Materials and methods)
1.1 实验材料
硫酸镉 8/3水合物(CdSO4·8/3 H2O)、硫酸铜五水合物(CuSO4·5 H2O)、硫酸镍六水合物(NiSO4·6 H2O)、氯化铅(PbCl2)、硫酸钠(Na2SO4)、氯化钠(NaCl)、硝酸钠(NaNO3)、磷酸二氢钠 二水合物(NaH2PO4·2 H2O)购自阿拉丁化学试剂有限公司,硫酸、盐酸和硝酸购自广州化学试剂厂,以上试剂均为分析纯. 实验用水均为去离子水. 铁片电极(DT-3型,瑞源钢铁有限公司,江苏),不锈钢片电极(304型,中润宏发不锈钢有限公司,深圳),电极的表面积均为16 cm2(4 cm × 4 cm). 每次实验之前,铁片用粗砂布抛光,用稀释的HCl溶液(按重量5%)除锈,并用去离子水洗涤.
1.2 电絮凝实验
电絮凝实验在300 mL玻璃烧杯中进行,均使用铁片作为阳极,不锈钢作为阴极. 阴阳两极平行放置,电极间距为15 mm(有文献报道此间距下铁电絮凝去除重金属效率高[18]). 使用直流电源施加5 mA·cm−2的恒定电流于Fe阳极和不锈钢阴极,电流大小的选取以确保实现高的法拉第效率及重金属去除效率为依据[19]. 反应时间为30 min,磁力搅拌器控制转速为500 r·min−1. 实验分为曝气组和未曝气组,曝气组实验:在反应过程中持续向溶液中通入O2以模拟高DO浓度废水的电絮凝过程,未曝气组:将溶液暴露于空气中以模拟低DO浓度废水的电絮凝过程. 利用CdSO4、CuSO4、NiNO3和Pb(NO3)2储备液配制浓度分别为10、20、10、50 mg·L−1的重金属溶液,初始浓度的选取参考实际酸性矿山废水和工业废水中常见重金属污染数据[18, 20]. 针对每一种重金属溶液分别加入4种支持电解质NaCl、Na2SO4、NaH2PO4和NaNO3(10 mmol·L−1). 利用NaOH和电解质对应的酸溶液(NaH2PO4体系用硫酸溶液)调节初始溶液pH为3,并在反应过程中利用便携式pH计检测溶液pH变化. 开始试验后,以指定的时间间隔用注射器采集样品,通过0.45 μm的聚四氟乙烯膜过滤,收集滤液,分别测定其中的重金属浓度和Feaq浓度. 反应结束后,采集1 mL悬液并立即转移至4 mol·L−1 HCl溶液中溶解,用于后续测定实际产铁量[Fee]以计算法拉第效率. 对剩余悬液抽滤,然后将固体冷冻干燥、称重以便后续进行进一步分析和表征. 所有实验至少进行 3 次,结果以平均值 ± 标准差表示.
1.3 法拉第效率的计算
理论铁的溶解浓度(
)根据法拉第电解定律根据公式1计算. 式中,CL是电絮凝体系的电荷负载量,MFe是铁的摩尔质量(55.845 g·mol−1),F是法拉第常数(96 485 C·mol−1),z是电荷转移系数,铁的电荷转移系数z = 2.[Fet] [Fet]=CL⋅MFe/(F⋅z) (1) 实验中电絮凝条件为I = 80 mA,L = 0.3 L,t = 30 min,带入公式2即电荷负载量CL为480 C·L−1. 式中,I是实验施加恒定电流大小,t是反应时间,L是反应溶液体积.
CL=It/L (2) 最后计算可得实验中电絮凝理论溶解量为138.91 mg·L−1. 将实验组反应后悬液溶解测定的实际产铁量
除以理论溶解量[Fee] ,即可得法拉第效率.[Fet] 1.4 固相矿物表征与液相金属含量分析
采用X射线衍射光谱(XRD,马尔文帕纳科公司,荷兰)分析铁矿物的物相组成,扫描范围为10°—80°,扫描速度为2(°)·min−1;用扫描电镜(SEM,FEI公司,美国)观察铁矿物表面形貌,并辅助分析铁矿物的种类;用火焰原子吸收光谱(AAS,岛津公司,日本)测定溶液中Cu(Ⅱ)、Cd(Ⅱ)、Ni(Ⅱ)、Pb(Ⅱ)的含量,以确定产生的铁矿物对重金属的去除效果. 采用邻菲啰啉分光光度法,在510 nm波长处测定溶液态铁(Feaq)的浓度,以分析铁电絮凝的成矿过程.
1.5 重金属赋存形态分析
收集上述电絮凝反应后的固体物质,对其进行冷冻干燥后,取0.2 g样品于离心管中,并加入10 mL 0.4 mol·L−1 HCl,然后置于旋转振荡仪以200 r·min−1反应0.5 h,离心收集上清液,测试重金属浸出含量,记为吸附态含量;再将离心后含有残余固体的离心管内加入10 mL 4 mol·L−1 HCl,然后置于旋转振荡仪中反应0.5 h,离心收集上清液,测试重金属浸出含量,记为结构态含量[21-22].
2. 结果与讨论(Results and discussion)
2.1 电解质种类和曝气条件对酸性条件下铁基电絮凝形成矿物种类的影响
为了探讨电解质和曝气条件对酸性铁基电絮凝体系成矿量的影响,对沉淀进行称重. 如图1a所示,NaNO3体系成矿量极少,这是因为NO3−对铁阳极有钝化作用. 据报道,中性铁电絮凝在NO3−和PO43−存在的情况下,铁阳极会形成一层纳米尺度的钝化层,钝化层的产生抑制了铁阳极的Fe(Ⅱ)溶出[17]. 而在本研究中,磷酸盐体系明显浑浊,产生了相对较多铁矿物,这是因为在酸性条件下,磷酸盐的阳极钝化作用被减弱,具体机理由后文详述. 曝气条件下溶液中DO浓度从7.5 mg·L−1逐渐上升,并维持至饱和浓度8.2 mg·L−1左右;而在不曝气条件下,由于阳极产生Fe(Ⅱ)的消耗,溶液中DO浓度将由7.5 mg·L−1在15 min内逐渐降低至0. 图1a结果表明,由于DO浓度影响,曝气相较于不曝气产生的铁矿物量略高.
图 1 (a)不同电絮凝体系成矿量,(b)不曝气和(c)曝气情况下于不同支持电解质中产生铁矿物XRD图和(d)不同支持电解质体系(1)NaCl、(2)Na2SO4、(3)NaH2PO4、(4)NaCl(曝气)和(5)NaH2PO4(曝气)成矿的SEM图Figure 1. (a) Quantities of Fe minerals formed under different conditions; XRD patterns of Fe minerals produced in different supporting electrolytes (b) without and (c) with aeration; (d) SEM images of Fe minerals produced in different supporting electrolytes: (1) NaCl (without aeration), (2) Na2SO4 (without aeration), (3) NaH2PO4 (without aeration), (4) NaCl (with aeration), and (5) NaH2PO4 (with aeration)采用XRD和SEM对固体物质组成和表面形貌进行表征,以明晰不同溶液条件下铁基电絮凝产生铁矿物的种类. 首先,利用XRD对不同条件下电絮凝作用30 min后产生的铁矿物沉淀进行物相区分. 图1b和1c表明,在未曝气条件下,NaCl、Na2SO4和NaH2PO4体系产生沉淀中的主要矿物分别为磁铁矿、绿锈和蓝铁矿;而在曝气条件下,NaCl和Na2SO4体系主要为无定型铁矿物. 未曝气条件下NaCl、Na2SO4和NaH2PO4体系产生铁矿物颜色分别为黑色、绿色和蓝绿色,与XRD结果相符;而在曝气条件下,NaCl和Na2SO4体系产生红棕色固体,NaH2PO4体系产生白色固体,结合XRD表征结果和体系中可能发生的反应[14, 23],认为两者分别为氢氧化铁和磷酸铁. SEM结果如图1d(1)—(5)所示,电絮凝产生的磁铁矿呈现颗粒状结构,绿锈呈现层状结构,蓝铁矿呈现扁平状堆叠结构;而在曝气条件下,所产生的氢氧化铁和磷酸铁分别呈现出层状和絮状结构,这与文献中记载的各类沉淀微观形貌结构一致[12, 14].
2.2 酸性条件下铁基电絮凝过程中Feaq浓度及pH随时间变化
酸性铁基电絮凝过程中,发现同一体系中溶液颜色在某一时刻后显著变深,且这一时刻后重金属浓度骤降. 据此推测酸性铁基电絮凝的反应过程可分为两个阶段. 为了验证这一观点,并讨论不同的电解质和曝气条件对两个阶段发生时间节点的影响,对电絮凝过程中不同时间节点的溶液态铁Feaq浓度进行取样检测,结果如图2a、2b所示. 在曝气和未曝气条件下,各个支持电解质体系中,Feaq浓度随着反应时间的推移均呈现先上升后下降的趋势. 这可能与Feaq浓度和pH两方面因素有关:一方面,Feaq浓度不断上升,增加了氧化成矿(式7—11)的底物浓度[17];另一方面,随着阴极不断产生OH−,溶液的pH逐渐升高(如图2c、2d所示),Fe(Ⅲ)与OH−的结合增强从而加快了成矿速度[24]. 这导致了该电絮凝体系由Fe(0)氧化反应(式3、式4)为主导向Feaq成矿反应(式7—11)为主导的转变,即表现为铁电絮凝从积累阶段向成矿阶段的转变(图2a、b虚线前后).
不同的电解质组成和曝气条件会导致阳极法拉第效率以及Feaq氧化沉淀速率的不同[25],从而影响成矿. 为了验证上述推断,计算了不同条件下电絮凝反应30 min后的法拉第效率. 如表1所示,NaCl、Na2SO4体系的法拉第效率均高于0.9,表明此时阳极表面主要发生Fe(0)氧化反应(式3、式4)[26-28],而NaH2PO4体系的法拉第效率略低,但是仍高于已有报道中,相应体系在近中性pH条件下的法拉第效率[12]. 这是因为:首先低的pH会导致H2O/O2的E0上升,从而阻碍在给定的阳极电位条件下电解水反应的发生;其次,低pH会导致Fe(Ⅱ)更难被O2氧化,降低了产生的铁氧化物附着在铁阳极表面阻止Fe(Ⅱ)进一步析出的可能性. 而NaNO3体系法拉第效率低于0.2,表明阳极表面主要发生电解水反应(式5)[17]. 这是因为硝酸盐能够氧化Fe(0),生成一层薄的(羟基)铁氧化物钝化膜,抑制离子扩散[29]. 除不同的法拉第效率会影响Fe(Ⅱ)/Fe(Ⅲ)溶出从而影响Feaq浓度外,不同体系Feaq的氧化沉淀速度也会影响Feaq峰值浓度和达峰位置. 例如Cl−存在的电絮凝体系中会产生氯自由基从而提高氧化成矿率[13],因而NaCl体系的Feaq峰值浓度低且达峰时间更早;而相较于蓝铁矿,绿锈的成矿速度更快,故其Feaq峰值浓度更低且达峰更早[12]. 相比于未曝气条件,曝气条件下Feaq的浓度更低,这是因为溶解氧浓度的增加对Fe(Ⅱ)氧化为Fe(III)速度有促进作用,从而提升了成矿率[24]. 该结论与曝气条件下电絮凝体系最终产生沉淀物质量高于不把曝气条件相符.
表 1 不同支持电解质和曝气条件对电絮凝处理酸性废水法拉第效率的影响Table 1. Effects of type of supporting electrolyte and aeration on Faradic efficiency of electrocoagulation in treating acidic wastewater支持电解质Supporting electrolyte 曝气条件Aeration condition 法拉第效率Faradic efficiency NaCl without aeration 0.91 with aeration 0.92 Na2SO4 without aeration 0.92 with aeration 0.92 NaH2PO4 without aeration 0.89 with aeration 0.83 NaNO3 without aeration 0.19 with aeration 0.12 Fe(0)−2e−→Fe(Ⅱ) (3) Fe(0)−3e−→Fe(Ⅲ) (4) 2H2O−4e−→4H++O2 (5) 2H2O+2e−→H2↑+2OH− (6) Fe(Ⅱ,Ⅲ)+OH−→Magnetite↓ (7) Fe(Ⅱ,Ⅲ)+OH−+SO2−4→Greenrust↓ (8) Fe(Ⅱ,Ⅲ)+OH−+H2PO2−4→Vivianite↓ (9) Fe(Ⅲ)+3OH−→Fe(OH)3↓ (10) Fe(Ⅲ)+H2PO2−4→FePO4↓+2H+ (11) 基于上述结果,在酸性条件下的铁基电絮凝过程中需要经历两个阶段——积累阶段和成矿阶段,铁矿物的形成以及重金属的固载吸附均发生于成矿阶段. 这两个阶段中铁阳极氧化溶出Fe(Ⅱ)和溶液体相中Feaq沉淀分别占据主导地位. 这两个阶段发生的时间节点主要取决于Feaq积累阶段中的法拉第效率,以及在成矿阶段的Feaq成矿效率,两者都与溶液的支持电解质种类及曝气条件有关,并与其共同决定了形成铁矿物的种类和质量. 首先,在积累阶段,阳极Fe(0)的氧化(式3、式4)、和阴极电解水析氢产碱(式6)是主要反应. 这一阶段阳极附近会产生并积累Fe(Ⅱ),并伴随体相pH上升,但是溶液中固体物质的质量不会明显增加. 而随着溶液中Feaq浓度和pH的增加,成矿(式7—11)速率逐渐增加,直至超过Fe(0)的氧化(式3、式4)速率,在这个节点之后,溶液中的固体物质显著增加.
2.3 酸性条件下铁基电絮凝产生矿物吸附重金属效果
为研究上文中产生不同铁矿物物种对不同重金属的吸附固载效果,向不同支持电解质和有无曝气的电絮凝体系中加入常见重金属阳离子Cd(Ⅱ)、Cu(Ⅱ)、Ni(Ⅱ)和Pb(Ⅱ),并研究其去除情况. 如前文所述,NaH2PO4作为支持电解质的溶液在酸性未曝气的条件下主要产生蓝绿色的蓝铁矿,而曝气条件下,蓝铁矿则会被充足的氧气氧化为白色的磷酸铁沉淀. 如图3所示,二者对Cd(Ⅱ)、Cu(Ⅱ)均有优良的去除效果,30 min去除率均能达到99%以上. 在未曝气条件下,NaCl和Na2SO4体系分别产生的磁铁矿和绿锈,该体系对Cu(Ⅱ)的去除率也能达到99%以上,但在对Cd(Ⅱ)的去除率上,磁铁矿(85.0%)要高于绿锈(36.5%). 曝气组中NaCl或Na2SO4体系中产生的氢氧化铁对Cd(Ⅱ)、Cu(Ⅱ)的固载效果较差,其去除率分别为35.5%和72.9%. 这是因为除了内球络合吸附,蓝铁矿和绿锈、磁铁矿均因为晶格中具有Fe(Ⅱ),能够被相似离子半径和价态的Pb(Ⅱ)、Cd(Ⅱ)、Cu(Ⅱ)同晶替代[30]. 因此电絮凝产生的不同矿物对Cd(Ⅱ)去除效果强弱顺序可概括为:磷酸铁≈蓝铁矿>磁铁矿>绿锈>氢氧化铁;对Cu(Ⅱ)去除效果强弱顺序为:磁铁矿>蓝铁矿≈磷酸铁>氢氧化铁.
对于Ni(Ⅱ)和Pb(Ⅱ),NaH2PO4电解质体系则无法展现良好的吸附性能. 如图4a、4c所示,未曝气条件下NaH2PO4体系电絮凝对于Ni(Ⅱ)的去除效果十分有限,低于NaCl、Na2SO4体系下81.6%的去除率,与NaNO3体系效果接近,去除率仅约为40.9%. 这与Cu(Ⅱ)和Cd(Ⅱ)的结果差别很大. 结合上文法拉第效率的计算结果可排除阳极钝化的可能性,推测是由于蓝铁矿比表面积小、表面正电荷较强以及官能团种类较单一的特点导致其对Ni(Ⅱ)吸附能力较弱[31],但其对于这三种重金属去除效果的差异的微观机理还有待进一步阐明. 磁铁矿具有非化学计量缺陷同时氧骨架较为灵活,因而具有很大的容量通过Fe(Ⅱ)替代来容纳各种金属离子,故其对Cu(Ⅱ)、Cd(Ⅱ)、Pb(Ⅱ)、Ni(Ⅱ)均有较好的去除能力[32]. 绿锈因为特殊的LDHs而具有内表面,因此也有不错的反应特性,此外在绿锈的形成过程中,Cu(Ⅱ)、Cd(Ⅱ)、Ni(Ⅱ)等也能通过同晶替代Fe(Ⅱ)从而被共沉淀固载. 曝气条件下NaH2PO4体系产生的磷酸铁对Ni(Ⅱ)的去除率仅为34.4%,低于NaCl和Na2SO4体系所产生氢氧化铁的56.1%.
对于酸性溶液中Pb(Ⅱ)的去除,结果如图4b、4c所示,未曝气条件下的NaCl体系效果最好,其次是曝气条件下的NaCl体系,这反映出磁铁矿固载Pb(Ⅱ)的效果强于氢氧化铁. 二者均优于NaNO3电解质体系. 这是由于磁铁矿对于Pb(Ⅱ)的特殊作用导致的,即Pb(Ⅱ)主要通过双齿双核共享配位作用吸附在磁铁矿表面,无吸附容量限制[33]. 因此,电絮凝产生的不同矿物对Ni(Ⅱ)去除效果强弱顺序可概括为:磁铁矿≈绿锈>蓝铁矿≈氢氧化铁>磷酸铁;对Pb(Ⅱ)去除效果强弱顺序为:磁铁矿>氢氧化铁. 未比较Na2SO4和NaH2PO4体系对Pb(Ⅱ)的吸附固载效果是因为PbSO4和Pb(H2PO4)2溶解度较低,Pb(Ⅱ)在这两种支持电解质的废水中无法以稳定的离子形式存在.
需要说明的是,在重金属的电絮凝处理过程中,除了矿物的固载作用,还可能存在阴极还原以及阳极置换的氧化还原过程. 以Cu(Ⅱ)为例,通过惰性电极替代Fe阳极后,发现在不同电解质和曝气条件实验组中Cu(Ⅱ)处理后浓度均为约15 mg·L−1,说明Cu(Ⅱ)的阴极还原确实存在,对溶液中Cu(Ⅱ)去除的贡献占20%. 对于阳极置换反应,由于阳极附近有大量带正电荷的Fe(Ⅱ)/Fe(III)物种和铁氧化物,带相同电荷的Cu(Ⅱ)难以接近,故认为其影响可忽略不计.
图5为不同电解质和曝气条件下酸性铁基电絮凝的成矿过程、成矿种类及其对四种重金属离子Cd(Ⅱ)、Cu(Ⅱ)、Ni(Ⅱ)、Pb(Ⅱ)的吸附固载效果. 使用NaNO3作为支持电解质会使铁阳极钝化,导致低成矿量和重金属去除效率. 在其他电解质体系中,在无曝气的条件下NaCl、Na2SO4、NaH2PO4体系分别产生磁铁矿、绿锈和蓝铁矿;曝气条件下NaCl、Na2SO4体系产生氢氧化铁、NaH2PO4体系产生磷酸铁. 而产生的不同种类铁矿物对四种重金属的吸附效果各有所长,Cu(Ⅱ)和Ni(Ⅱ)易被吸附在磁铁矿和绿锈上,而磁铁矿对Pb(Ⅱ)、Cd(Ⅱ)的吸附效率高于绿锈;蓝铁矿和磷酸铁对Cu(Ⅱ)和Cd(Ⅱ)固载效果优异,而对Ni(Ⅱ)的固载效果较差;氢氧化铁絮体对四种重金属的固载效果均较差.
2.4 电化学产生铁矿物与重金属结合形态
重金属的赋存形态直接影响其在介质中的迁移转化能力、毒性和生物活性[34]. 而酸性条件下产生的铁矿物稳定固载重金属的能力尤为重要,为此对电絮凝结束后产生的固体沉淀进行盐酸提取实验,研究了不同种类铁矿物对Cd(Ⅱ)、Cu(Ⅱ)、Ni(Ⅱ)、Pb(Ⅱ)的的4种重金属离子的固载稳定性. 如图6所示,绿锈对Cd(Ⅱ)的固载后,结构态比例高达76%,对Cu(Ⅱ)、Ni(Ⅱ)的结构态比例分别为10%和38%. 这是因为在绿锈的形成过程中,Cu(Ⅱ)和Ni(Ⅱ)能够在绿锈的形成过程中通过对相似离子半径的Fe(Ⅱ)同晶替代,从而结合进入绿锈的晶格之中被共沉淀固载[16]. 磁铁矿对于4种重金属Cd(Ⅱ)、Cu(Ⅱ)、Ni(Ⅱ)、Pb(Ⅱ)的结构态比例分别为8%、7%、41%和18%. 这是由于磁铁矿的原子组成和原子结构较为灵活,同样促使其能够通过同晶替代Fe(Ⅱ)容纳不同的重金属阳离子[35]. 磷酸铁和氢氧化铁对Cd(Ⅱ)、Cu(Ⅱ)的固载形式为吸附态,对Ni(Ⅱ)的结构态比例也低于22%. 这是因为磷酸铁、氢氧化铁和蓝铁矿对pH较为敏感,易溶于酸. 综上,电絮凝产生的绿锈和磁铁矿对重金属的固载稳定性更高,而磷酸铁、氢氧化铁和蓝铁矿的固载稳定性相对较低,对重金属固载稳定性较低的电絮凝铁泥的进一步处置,更需要注意其可能产生的环境影响.
2.5 多种重金属同时存在的相互影响
因为在实际的重金属废水中,经常同时存在多种重金属,故为了验证酸性条件铁基电絮凝对多种重金属的同步去除效果,开展了Cd(Ⅱ)、Cu(Ⅱ)、Ni(Ⅱ)同时存在的电絮凝实验. 结果如图7所示,所有不同支持电解质种类和曝气条件的溶液体系对Cu(Ⅱ)和Ni(Ⅱ)的固载效果均与单一去除效果类似,说明其他共存阳离子的存在对Cu(Ⅱ)和Ni(Ⅱ)的去除没有显著影响. 而对于Cd(Ⅱ)的去除,除了NaNO3体系在单一去除实验中去除效果本身很差之外,NaCl和Na2SO4体系的去除速率也显著低于单一去除实验的去除速率,这说明在同步去除实验中Cd的固载受到了其他共存重金属离子的影响,这是因为Cd(Ⅱ)具有较低的电负性和较大的水化半径[36-37] ,使得Cd(Ⅱ)与铁矿物的亲和力要弱于Cu(Ⅱ)和Ni(Ⅱ),从而在竞争吸附中处于较弱的地位. 而NaH2PO4体系仍然保持较高的去除速率,说明该体系对Cd(Ⅱ)的固载过程除了吸附,还可能存在其他机理. 例如,随着pH升高,H2PO4−会逐渐转化为HPO42−和PO43−,其中,HPO42−和PO43−与Cd(Ⅱ)所形成沉淀的溶解度更低,从而将Cd(Ⅱ)固载下来. 因为这一过程仅与溶液中H2PO4−的浓度和pH有关,而不受其他重金属的影响,故NaH2PO4体系中Cd(Ⅱ)能够保持较高的去除速率.
图 7 电解质和曝气条件对铁电絮凝同步去除Cd(Ⅱ)(a. 不曝气、d. 曝气)、Cu(Ⅱ) (b. 不曝气、e. 曝气)、Ni(Ⅱ) (c. 不曝气、f. 曝气)的影响Figure 7. Effects of supporting electrolyte and aeration conditions on the simultaneous removal of Cd(Ⅱ) (a. without and d. with aeration), Cu(Ⅱ) (b. without and e. with aeration), and Ni(Ⅱ) (c. without aeration, f. with aeration) by Fe-electrocoagulation3. 结论(Conclusions)
(1)酸性铁电絮凝分为两个阶段. 其中第一阶段Feaq浓度逐渐升高,成矿量少,重金属去除较低;第二阶段Feaq浓度达到峰值并开始下降,成矿量逐步增加,重金属去除速率骤然提升.
(2)不同电解质(NaCl、Na2SO4、NaH2PO4、NaNO3)和曝气与否影响下酸性铁电絮凝会产生不同种类铁矿物. 其中,NaNO3体系会导致铁阳极钝化,抑制成矿;其他电解质在曝气条件下,电絮凝产生固体包括氢氧化铁(NaCl/Na2SO4体系)和磷酸铁(NaH2PO4体系);不曝气条件下,产生铁矿物包括磁铁矿(NaCl体系)、绿锈(Na2SO4体系)和蓝铁矿(NaH2PO4体系).
(3)重金属吸附结果表明,磁铁矿对Cu(Ⅱ)、Ni(Ⅱ)、Pb(Ⅱ)、Cd(Ⅱ)等都具有优异的固载效果,绿锈对Cu(Ⅱ)和Ni(Ⅱ)的吸附能力高于Cd(Ⅱ);蓝铁矿和磷酸铁对溶液中重金属Cd(Ⅱ)和Cu(Ⅱ)也有良好的去除效率,但对Ni(Ⅱ)去除效果较差,且其重金属固载稳定性低于磁铁矿和绿锈. 在Cd(Ⅱ)、Cu(Ⅱ)、Ni(Ⅱ)同时存在的重金属废水中,电絮凝对Cu(Ⅱ)和Ni(Ⅱ)的吸附效果与单一重金属废水结果一致,而对Cd(Ⅱ)的吸附效果则显著下降.
-
表 1 CdSe QDs胁迫下活性污泥微生物群落多样性指数
Table 1. Alpha diversity indexes of activated sludge exposed to CdSe QDs
CdSe QDs质量浓度/( mg·L−1) 序列数 OTUs Shannon Chao 1 ACE 覆盖率/% 0 65 288 1 720 7.07 1 720.0 1 739.5 99.9 0.1 43 101 881 7.46 882.1 951.3 99.7 1 40 025 805 6.74 805.9 881.3 99.7 10 32 356 700 6.69 701.1 801.7 99.6 -
[1] CAI Q Q, WU D, LI H K, et al. Versatile photoelectrochemical and electrochemiluminescence biosensor based on 3D CdSe QDs-DNA nanonetwork-SnO2 nanoflower coupled with DNA walker amplification for HIV detection[J]. Biosensors and Bioelectronics, 2021, 191: 113455. doi: 10.1016/j.bios.2021.113455 [2] ZHAO Z J, LIU Z L, ZHU Z X, et al. Ultrathin zinc selenide nanosheet-based intercalation hybrid coupled with CdSe quantum dots showing enhanced photocatalytic CO2 reduction[J]. Chinese Chemical Letters, 2021, 32(8): 2474-2478. doi: 10.1016/j.cclet.2021.01.004 [3] LIAN F, WANG C G, WANG C X, et al. Variety-dependent responses of rice plants with differential cadmium accumulating capacity to cadmium telluride quantum dots (CdTe QDs): Cadmium uptake, antioxidative enzyme activity, and gene expression[J]. Science of the Total Environment, 2019, 697: 134083. doi: 10.1016/j.scitotenv.2019.134083 [4] YU Z, HAO R, ZHANG L, et al. Effects of TiO2, SiO2, Ag and CdTe/CdS quantum dots nanoparticles on toxicity of cadmium towards Chlamydomonas reinhardtii[J]. Ecotoxicology and Environmental Safety, 2018, 156: 75-86. doi: 10.1016/j.ecoenv.2018.03.007 [5] LIU F, HU X M, ZHAO X, et al. Rapid nitrification process upgrade coupled with succession of the microbial community in a full-scale municipal wastewater treatment plant (WWTP)[J]. Bioresource Technology, 2018, 249: 1062-1065. doi: 10.1016/j.biortech.2017.10.076 [6] BRAR S K, VERMA M, TYAGI R D, et al. Engineered nanoparticles in wastewater and wastewater sludge-evidence and impacts[J]. Waste Management, 2010, 30(3): 504-520. doi: 10.1016/j.wasman.2009.10.012 [7] LI H X, XU S S, WANG S, et al. New insight into the effect of short-term exposure to polystyrene nanoparticles on activated sludge performance[J]. Journal of Water Process Engineering, 2020, 38:101559. [8] WEI L L, DING J, XUE M, et al. Adsorption mechanism of ZnO and CuO nanoparticles on two typical sludge EPS: Effect of nanoparticle diameter and fractional EPS polarity on binding[J]. Chemosphere, 2019, 214: 210-219. doi: 10.1016/j.chemosphere.2018.09.093 [9] 马娇, 曾天续, 宋珺, 等. 纳米单质铁对厌氧氨氧化脱氮性能的影响[J]. 中国环境科学, 2022, 42(6): 2619-2627. [10] 王树涛, 李素萍, 王未青, 等. ZnO纳米颗粒对SBR活性污泥活性的影响[J]. 中国环境科学, 2014, 34(10): 2575-2580. [11] 高静湉, 胡鹏, 蔡怡婷, 等. 纳米ZnO胁迫下SBBR污染物去除性能及微生物群落响应[J]. 中国环境科学, 2022, 42(8): 1-8. [12] YANG Y, QUENSEN J, MATHIEU J, et al. Pyrosequencing reveals higher impact of silver nanoparticles than Ag+ on the microbial community structure of activated sludge[J]. Water Research, 2014, 48: 317-325. doi: 10.1016/j.watres.2013.09.046 [13] HU L, ZHONG H, HE Z G. Toxicity evaluation of cadmium-containing quantum dots: A review of optimizing physicochemical properties to diminish toxicity[J]. Colloids and Surfaces B:Biointerfaces, 2021, 200: 111609. doi: 10.1016/j.colsurfb.2021.111609 [14] LU T, ZHANG Q, ZHANG Z Y, et al. Pollutant toxicology with respect to microalgae and cyanobacteria[J]. Journal of Environmental Sciences, 2021, 99: 175-186. doi: 10.1016/j.jes.2020.06.033 [15] ZHENG N Y, YAN J H, QIAN W, et al. Comparison of developmental toxicity of different surface modified CdSe/ZnS QDs in zebrafish embryos[J]. Journal of Environmental Sciences, 2021, 100: 240-249. doi: 10.1016/j.jes.2020.07.019 [16] YANG Y, YUAN Z, LIU X P, et al. Electrochemical biosensor for Ni2+ detection based on a DNAzyme-CdSe nanocomposite[J]. Biosensors and Bioelectronics, 2016, 77: 13-18. doi: 10.1016/j.bios.2015.09.014 [17] 曾湘梅, 李咏梅, 赵俊明. SBR工艺去除模拟城市污水中双酚A的研究[J]. 环境污染与防治, 2008, 30(10): 23-27. [18] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [19] YIN C Q, MENG F G, CHEN G H. Spectroscopic characterization of extracellular polymeric substances from a mixed culture dominated by ammonia-oxidizing bacteria[J]. Water Research, 2015, 68: 740-749. doi: 10.1016/j.watres.2014.10.046 [20] DONG Q, LIU Y C, SHI H C, et al. Effects of graphite nanoparticles on nitrification in an activated sludge system[J]. Chemosphere, 2017, 182: 231-237. doi: 10.1016/j.chemosphere.2017.04.144 [21] GUO L K, YANG L, Ren Y X, et al. The response and anti-stress mechanisms of nitrifying sludge under long-term exposure to CdSe quantum dots[J]. Journal of Environmental Sciences, 2024, 135: 174-184. doi: 10.1016/j.jes.2022.11.016 [22] WANG C, LIU S Q, HOU J, et al. Effects of silver nanoparticles on coupled nitrification-denitrification in suspended sediments[J]. Journal of Hazardous Materials, 2020, 389: 122130. doi: 10.1016/j.jhazmat.2020.122130 [23] ZHANG H M, CAO J, TANG B P, et al. Effect of TiO2 nanoparticles on the structure and activity of catalase[J]. Chemico-Biological Interactions, 2014, 219: 168-174. doi: 10.1016/j.cbi.2014.06.005 [24] 高丽英, 汤兵, 梁玲燕, 等. 纳米磁粉协同解偶联剂作用下活性污泥性能的研究[J]. 环境科学, 2012, 33(8): 2766-2772. [25] ZHAO J F, LIU S X, LIU N, et al. Accelerated productions and physicochemical characterizations of different extracellular polymeric substances from Chlorella vulgaris with nano-ZnO[J]. Science of the Total Environment, 2019, 658: 582-589. doi: 10.1016/j.scitotenv.2018.12.019 [26] ZHANG S J, JIANG Y L, CHEN C S, et al. Ameliorating effects of extracellular polymeric substances excreted by Thalassiosira pseudonana on algal toxicity of CdSe quantum dots[J]. Aquatic Toxicology, 2013, 126: 214-223. doi: 10.1016/j.aquatox.2012.11.012 [27] 袁乙卜, 张建民, 陈希, 等. 大分子有机物作用下胞外聚合物对除磷污泥颗粒化的影响[J]. 环境工程学报, 2021, 15(4): 1321-1332. [28] 王远红, 张红波, 罗世田, 等. 胞外聚合物对水中Cd(Ⅱ)的吸附性能研究[J]. 环境工程学报, 2010, 4(10): 2185-2189. [29] 张国威, 黄建, 崔浩, 等. 活性污泥对Pb(Ⅱ)的吸附机理[J]. 环境工程学报, 2016, 10(7): 3707-3714. [30] ZHENG S M, ZHOU Q X, CHEN C H, et al. Role of extracellular polymeric substances on the behavior and toxicity of silver nanoparticles and ions to green algae Chlorella vulgaris[J]. Science of the Total Environment, 2019, 660: 1182-1190. doi: 10.1016/j.scitotenv.2019.01.067 [31] HAN F, WEI D, NGO H H, et al. Performance, microbial community and fluorescent characteristic of microbial products in a solid-phase denitrification biofilm reactor for WWTP effluent treatment[J]. Journal of Environmental Management, 2018, 227: 375-385. [32] WANG X L, ZHANG L, PENG Y Z, et al. Enhancing the digestion of waste activated sludge through nitrite addition: insight on mechanism through profiles of extracellular polymeric substances (EPS) and microbial communities[J]. Journal of Hazardous Materials, 2019, 369: 164-170. doi: 10.1016/j.jhazmat.2019.02.023 [33] 陈鑫童, 郝庆菊, 熊艳芳, 等. 铁矿石和生物炭添加对潜流人工湿地污水处理效果和温室气体排放及微生物群落的影响[J]. 环境科学, 2022, 43(3): 1492-1499. [34] SHARMA M, KHURANA H, SINGH D N, et al. The genus Sphingopyxis: Systematics, ecology, and bioremediation potential - A review[J]. Journal of Environmental Management, 2021, 280: 111744. doi: 10.1016/j.jenvman.2020.111744 [35] WANG Z Q, GAO J F, DAI H H, et al. Microplastics affect the ammonia oxidation performance of aerobic granular sludge and enrich the intracellular and extracellular antibiotic resistance genes[J]. Journal of Hazardous Materials, 2021, 409: 124981. doi: 10.1016/j.jhazmat.2020.124981 [36] WANG Q, ZHOU G Y, QIN Y X, et al. Sulfate removal performance and co-occurrence patterns of microbial community in constructed wetlands treating saline wastewater[J]. Journal of Water Process Engineering, 2021, 43: 102266. doi: 10.1016/j.jwpe.2021.102266 [37] MANNACHARAJU M, SOMASUNDARAM S, GANESAN S. Treatment of refractory organics in secondary biological treated post tanning wastewater using bacterial cell immobilized fluidized reactor[J]. Journal of Water Process Engineering, 2021, 43: 102213. doi: 10.1016/j.jwpe.2021.102213 [38] 张雪, 乔雪姣, 苏佳, 等. 垃圾渗滤液处理厂活性污泥微生物种群结构和功能分析[J]. 北京大学学报(自然科学版), 2021, 57(5): 927-937. [39] LIU N, TANG M. Toxicity of different types of quantum dots to mammalian cells in vitro: An update review[J]. Journal of Hazardous Materials, 2020, 399: 122606. doi: 10.1016/j.jhazmat.2020.122606 期刊类型引用(1)
1. 陈颖,王新雨,徐秀丽,蔡璐,郑国砥,王侃. 添加复合酶对污泥生物干化有机质降解及产热的影响研究. 宁波大学学报(理工版). 2024(03): 88-95 . 百度学术
其他类型引用(0)
-