-
有机磷酸酯(organophosphate esters, OPEs)主要作为阻燃剂和增塑剂被广泛生产和使用. 随着溴代阻燃剂(brominated flame retardants, BFRs)在全球范围内被逐步禁用,其主要替代品OPEs的产量大幅增加[1],被广泛用于建筑材料、电子产品、家装饰品和纺织品等行业. 由于OPEs是物理添加型阻燃剂,易经过挥发、浸出、产品使用摩损等方式释放进入环境[2],OPEs环境问题引起国内外的广泛关注. 作为一类新兴环境污染物,OPEs在全球环境中普遍存在. 目前已有大量研究表明在水体、土壤、空气和灰尘等各种环境介质中检测到OPEs[3-6]. 此外,在生物体、人体血液和尿液中也检测出了OPEs及其代谢产物[7-8]. 毒理学研究结果显示,部分OPEs会影响生物内分泌、神经系统和生殖功能,并且具有溶血作用、致畸性和潜在致癌毒性[9].
灰尘既是室内材料释放的有机污染物的首要聚集地,同时也是室外污染物进入室内后的汇,且被公认为是室内环境污染的有效指示物[10-11]. 研究证实各类微环境室内灰尘中均存在不同程度的OPEs污染,包括家庭[12-14]、办公室[15]、教室[16-17]等. 一项对中国室内灰尘中OPEs污染状况的调研显示[18],办公室和电子废物拆解车间室内灰尘OPEs的含量高于家庭、高校宿舍和其他微环境. 由于室内特殊的环境条件,如更少的阳光直射等,室内灰尘中聚积的OPEs可能比在其他环境介质中半衰期更长,因而具有更强的持留性和人群暴露机会. 室内灰尘中的OPEs可通过手口摄入、呼吸吸入和皮肤接触等途径被人体吸收[19],造成潜在的健康风险.
本研究以室内灰尘作为研究对象,在上海市高校(教室、研究生办公室和宿舍)、办公楼、公共场所(商场、街边商铺和地铁站)和家庭等8种不同微环境采集样品,探究不同微环境室内灰尘中OPEs的含量和组分特征,同时整合生活和工作/学习两类暴露场景,综合评估室内灰尘中OPEs对不同职业人群的健康风险.
上海市不同微环境室内灰尘中有机磷酸酯污染特征及健康风险评价
The pollution characteristics and health risk assessment of organophosphate esters in indoor dust from different microenvironments in Shanghai
-
摘要: 作为一类新兴污染物,有机磷酸酯(OPEs)的环境污染状况及其潜在的健康风险受到国内外的广泛关注. 本研究以室内灰尘作为研究对象,在上海市高校(教室、研究生办公室和宿舍)、办公楼、公共场所(商场、街边商铺和地铁站)和家庭等8种不同微环境采集样品,利用气质联用仪(GC-MS)测定灰尘中10种OPEs(TMPP、EHDPP、TPHP、TPPO、TBOEP、TNBP、TEHP、TCIPP、TDCIPP和TCEP)的含量,并采用 US EPA 推荐的健康风险评模型,结合中国人群的暴露参数,整合生活和工作/学习两类暴露场景,综合评价室内灰尘中OPEs对不同职业人群的健康风险. 研究表明,上海市室内灰尘中OPEs的总含量范围为127—16828 ng·g−1,其中研究生办公室和办公楼灰尘中OPEs的总含量比其他微环境高1—2个数量级. 绝大多数微环境包括地铁站、商场、街边商铺、宿舍和研究生办公室灰尘中以Cl-OPEs为主,其中TCIPP是主要污染物;在办公楼、家庭和教室中以Alkyl-OPEs为主,其中教室的主要污染物为TNBP和TCIPP,办公楼和家庭的主要污染物为TEHP. 职业人群OPEs的主要暴露途径均为手口摄入,但是不同职业人群摄入OPEs的主要暴露源存在差异,生活环境室内灰尘是商场、街边商铺和地铁工作人员以及高校本科生的主要暴露源;工作/学习环境室内灰尘是办公室工作人员和高校研究生的主要暴露源. 此外,在生活和工作/学习环境中,人类暴露于灰尘中OPEs的非致癌风险和致癌风险均在可接受范围内.Abstract: As a kind of emerging pollutants, the environmental pollution status and health risks of organophosphorus esters (OPEs) have been widely concerned at home and abroad. In this study, indoor dust samples were collected from 8 different microenvironments in Shanghai, including university microenvironments (classrooms, graduate offices and dormitories), office buildings, public microenvironments (shopping malls, shops and subway stations) and houses. The concentrations of 10 OPEs (TMPP, EHDPP, TPHP, TPPO, TBOEP, TNBP, TEHP, TCIPP, TDCIPP and TCEP) were determined by GC-MS, and the health risk for different occupations exposure to OPEs in dusts of living and working/studying environments was evaluated by the health risk assessment model recommended by the US EPA combined with the exposure parameters of the Chinese population. The results showed total concentrations of OPEs in dust samples ranged from 127 ng·g−1 to 16828 ng·g−1, and the total concentrations of OPEs in dust from graduate offices and office buildings were 1—2 orders of magnitude higher than that in other microenvironments. Cl-OPEs were the dominant predominant OPEs in dust samples of most microenvironments, including subway stations, shopping malls, shops, dormitories and graduate offices, and TCIPP was the predominant OPEs. Alkyl-OPEs were the dominant predominant OPEs in dust samples from office buildings, houses and classrooms, in which TNBP and TCIPP were the predominant OPEs in classrooms, while TEHP was the predominant OPEs both in office buildings and houses. Indoor dust ingestion is the main exposure route for different occupations exposure to OPEs, but the main exposure source of OPEs is varied among different occupations. Indoor dust of living environments is the main exposure source for population in shopping mall, shops, subway stations and undergraduates. Indoor dust of work/study environments is the main exposure source for office workers and postgraduates. In addition, both non-carcinogenic risk and carcinogenic risks for different occupations exposure to OPEs in dusts of living and working/studying environments were within acceptable thresholds.
-
表 1 OPEs非致癌经口摄入参考剂量(RfD)和致癌斜率因子(SF)[27]
Table 1. OPEs non-carcinogenic intake reference dose (RfD) and carcinogenic slope factor (SF) [27]
化合物
Compounds非致癌经口摄入参考剂量/(ng·kg−1·d−1)
RfD致癌斜率因子/(kg·d·ng−1)
SFTPHP 70000 — TBOEP 15000 — TCIPP 10000 — TMPP 20000 2.00×10−8 TNBP 10000 9.00×10−9 TEHP 100000 3.20×10−9 TDCIPP 20000 3.10×10−8 TCEP 7000 2.00×10−8 表 2 上海市不同微环境室内灰尘中OPEs的含量(ng·g−1)
Table 2. Concentrations of OPEs in indoor dust from different microenvironments in Shanghai (ng·g−1)
化合物
Compounds检出率/%
Detection
ratio教室
Classroom宿舍
Dormitory研究生办公室
Graduate
office办公楼
Office
building家庭
Residence商场
Shopping
mall街边商铺
Shop地铁站
Subway
stationTMPP 75.00 ND 270±48.68 314±63.41 211±48.58 106±15.35 102.38±14.06 79.87±40.77 ND TPHP 62.50 ND ND 3963±1678 111±58.60 195±6.37 48.06±18.35 41.22±20.38 ND EHDPP 50.00 ND 14.86±4.82 2450±63.74 ND 25.89±4.60 ND 61.78±36.74 ND TPPO 12.50 ND ND 211±114 ND ND ND ND ND ∑Aryl-OPEs ND 285±51.55 6938±1692 322±107 327±30.76 150±33.37 183±33.02 ND TNBP 87.50 660±397 210±66.98 261±49.34 146±51.71 49.08±9.09 32.99±13.62 68.84±9.26 ND TEHP 50.00 ND 579±40.21 1203±603 12361±1267 1165±50.84 ND ND ND TBOEP 62.50 ND 417±143 594±214 332±157 126±55.33 105±44.24 ND ND ∑Alkyl-OPEs 660±397 1206±196 2058±768 12839±1058 1340±34.16 138±34.95 68.84±9.26 ND TDCIPP 25.00 ND 380±148 ND 1013±152 ND ND ND ND TCIPP 100.00 434±139 1329±199 7704±262 1472±431 232±15.35 425±61.05 303±42.93 127±14.71 TCEP 25.00 ND ND 128±29.01 ND ND ND 33.60±20.55 ND ∑Cl-OPEs 434±139 1709±330 7832±233 2485±583 232±15.35 425±61.05 337±33.44 127±14.71 ∑10OPEs 1094±501 3200±541 16828±2693 15646±1534 1899±62.41 713±117 588±28.68 127±14.71 ND, 未检出. ND, not detected. 表 3 不同职业人群对生活和工作/学习环境室内灰尘中OPEs的平均日暴露量(ng·kg−1·d−1)
Table 3. Daily exposures (ng·kg−1·d−1) of OPEs in indoor dust in residential and working environments for different occupational groups(ng·kg−1·d−1)
TMPP TPHP EHDPP TPPO TNBP TEHP TBOEP TDCIPP TCIPP TCEP Σ10OPFRs 办公室
工作者
Office
workersADDinh 2.49×10−5 2.63×10−5 2.44×10−6 — 1.50×10−5 9.85×10−4 3.54×10−5 7.17×10−5 1.26×10−4 — 1.29×10−3 ADDder 6.73×10−3 7.08×10−3 6.59×10−4 — 4.04×10−3 2.66×10−1 9.55×10−3 2.34×10−2 3.84×10−2 — 3.56×10−1 ADDing 1.04×10−1 1.10×10−1 1.02×10−2 — 6.24×10−2 4.11 1.48×10−1 2.99×10−1 5.26×10−1 — 5.37 ΣADD 1.11×10−1 1.17×10−1 1.09×10−2 — 6.65×10−2 4.37 1.57×10−1 3.23×10−1 5.64×10−1 — 5.72 高校
本科生
UndergraduatesADDinh 2.76×10−5 — 1.52×10−6 — 6.30×10−5 5.92×10−5 4.26×10−5 3.88×10−5 1.63×10−4 — 3.96×10−4 ADDder 7.45×10−3 — 4.10×10−4 — 1.60×10−2 1.60×10−2 1.15×10−2 1.27×10−2 4.97×10−2 — 1.15×10−1 ADDing 1.15×10−1 — 6.34×10−3 — 2.63×10−1 2.47×10−1 1.78×10−1 1.62×10−1 6.81×10−1 — 1.65 ΣADD 1.23×10−1 — 6.75×10−3 — 2.80×10−1 2.63×10−1 1.89×10−1 1.75×10−1 7.31×10−1 — 1.77 高校
研究生
PostraduatesADDinh 4.74×10−5 2.49×10−4 1.56×10−4 1.33×10−5 3.79×10−5 1.35×10−4 8.00×10−5 3.88×10−5 6.20×10−4 8.05×10−6 1.39×10−3 ADDder 1.28×10−2 6.73×10−2 4.20×10−2 3.58×10−2 1.02×10−2 3.64×10−2 2.16×10−2 1.27×10−2 1.89×10−1 1.47×10−3 3.97×10−1 ADDing 1.98×10−1 1.04 6.49×10−1 5.54×10−2 1.58×10−1 5.63×10−1 3.34×10−1 1.62×10−1 2.59 3.36×10−2 5.78 ΣADD 2.10×10−1 1.11 6.91×10−1 5.90×10−2 1.68×10−1 5.99×10−1 3.55×10−1 1.75×10−1 2.78 3.51×10−2 6.18 商场工
作人员
Shopping mall
workersADDinh 1.72×10−5 2.18×10−5 2.44×10−6 — 6.97×10−6 1.10×10−4 1.93×10−5 — 5.20×10−5 — 2.30×10−4 ADDder 4.65×10−3 5.88×10−3 6.59×10−4 — 1.88×10−3 2.97×10−2 5.21×10−3 — 1.58×10−2 — 6.38×10−2 ADDing 7.20×10−2 9.10×10−2 1.02×10−2 — 2.91×10−2 4.59×10−1 8.06×10−2 — 2.17×10−1 — 9.58×10−1 ΣADD 7.66×10−2 9.69×10−2 1.09×10−2 — 3.10×10−2 4.88×10−1 8.58×10−2 — 2.33×10−1 — 1.02 街边商铺
工作人员
Shop
workersADDinh 1.57×10−5 2.13×10−5 6.81×10−6 — 9.50×10−6 1.10×10−4 1.19×10−5 — 4.33×10−5 2.38×10−6 2.21×10−4 ADDder 4.22×10−3 5.75×10−3 1.84×10−3 — 2.56×10−3 2.97×10−2 3.21×10−3 — 1.32×10−2 4.33×10−4 6.09×10−2 ADDing 6.53×10−2 8.89×10−2 2.84×10−2 — 3.96×10−2 4.59×10−1 4.96×10−2 — 1.81×10−1 9.92×10−3 9.21×10−1 ΣADD 6.96×10−2 9.47×10−2 3.03×10−2 — 4.22×10−2 4.88×10−1 5.28×10−2 — 1.94×10−1 1.04×10−2 9.82×10−1 地铁站
工作人员
Subway
station
workersADDinh 1.01×10−5 1.87×10−5 2.48×10−6 — 4.70×10−6 1.11×10−4 1.21×10−5 — 3.40×10−5 — 1.93×10−4 ADDder 2.74×10−3 5.03×10−3 6.68×10−4 — 1.27×10−3 3.01×10−2 3.25×10−3 — 1.04×10−2 — 5.34×10−2 ADDing 4.23×10−2 7.78×10−2 1.03×10−2 — 1.95×10−2 4.65×10−1 5.03×10−2 — 1.42×10−1 — 8.07×10−1 ΣADD 4.51×10−2 8.29×10−2 1.10×10−2 — 2.09×10−2 4.95×10−1 5.36×10−2 — 1.52×10−1 — 8.61×10−1 -
[1] 王晓伟, 刘景富, 阴永光. 有机磷酸酯阻燃剂污染现状与研究进展 [J]. 化学进展, 2010, 22(10): 1983-1992. WANG X W, LIU J F, YIN Y G. The pollution status and research progress on organophosphate ester flame retardants [J]. Progress in Chemistry, 2010, 22(10): 1983-1992(in Chinese).
[2] CAO Z G, XU F C, COVACI A, et al. Distribution patterns of brominated, chlorinated, and phosphorus flame retardants with particle size in indoor and outdoor dust and implications for human exposure [J]. Environmental Science & Technology, 2014, 48(15): 8839-8846. [3] LI J, YU N Y, ZHANG B B, et al. Occurrence of organophosphate flame retardants in drinking water from China [J]. Water Research, 2014, 54: 53-61. doi: 10.1016/j.watres.2014.01.031 [4] ZHANG Q, WANG Y X, JIANG X X, et al. Spatial occurrence and composition profile of organophosphate esters (OPEs) in farmland soils from different regions of China: Implications for human exposure [J]. Environmental Pollution, 2021, 276: 116729. doi: 10.1016/j.envpol.2021.116729 [5] YANG F X, DING J J, HUANG W, et al. Particle size-specific distributions and preliminary exposure assessments of organophosphate flame retardants in office air particulate matter [J]. Environmental Science & Technology, 2014, 48(1): 63-70. [6] BROMMER S, HARRAD S, van den EEDE N, et al. Concentrations of organophosphate esters and brominated flame retardants in German indoor dust samples [J]. Journal of Environmental Monitoring, 2012, 14(9): 2482-2487. doi: 10.1039/c2em30303e [7] 刘小雯, 印红玲, 彭斐, 等. 有机磷酸酯在岷江干流鱼体中的分布 [J]. 生态毒理学报, 2021, 16(6): 213-221. LIU X W, YIN H L, PENG F, et al. Distribution of organophosphate esters in specific tissues of fish from main stream of Minjiang River [J]. Asian Journal of Ecotoxicology, 2021, 16(6): 213-221(in Chinese).
[8] HOU M M, SHI Y L, JIN Q, et al. Organophosphate esters and their metabolites in paired human whole blood, serum, and urine as biomarkers of exposure [J]. Environment International, 2020, 139: 105698. doi: 10.1016/j.envint.2020.105698. [9] BLUM A, BEHL M, BIRNBAUM L, et al. Organophosphate ester flame retardants: Are they a regrettable substitution for polybrominated diphenyl ethers? [J]. Environmental Science & Technology Letters, 2019, 6(11): 638-649. [10] LI W H, WANG Y, ASIMAKOPOULOS A G, et al. Organophosphate esters in indoor dust from 12 countries: Concentrations, composition profiles, and human exposure [J]. Environment International, 2019, 133: 105178. doi: 10.1016/j.envint.2019.105178 [11] 万千, 赵静, 韦旭, 等. 电子废弃物拆解车间灰尘中重金属污染特征及职业人群健康风险评价 [J]. 环境化学, 2022, 41(3): 883-892. doi: 10.7524/j.issn.0254-6108.2020110901 WAN Q, ZHAO J, WEI X, et al. Pollution characteristics of heavy metals in the dust from e-waste dismantling workshop and health risk assessment of occupational population [J]. Environmental Chemistry, 2022, 41(3): 883-892(in Chinese). doi: 10.7524/j.issn.0254-6108.2020110901
[12] HU Q P, XU L, LIU Y, et al. Co-occurrence and distribution of organophosphate tri- and di-esters in indoor dust from different indoor environments in Guangzhou and their potential human health risk [J]. Environmental Pollution, 2020, 262: 114311. doi: 10.1016/j.envpol.2020.114311 [13] ALI N, DIRTU A C, van den EEDE N, et al. Occurrence of alternative flame retardants in indoor dust from New Zealand: Indoor sources and human exposure assessment [J]. Chemosphere, 2012, 88(11): 1276-1282. doi: 10.1016/j.chemosphere.2012.03.100 [14] HE C T, ZHENG J, QIAO L, et al. Occurrence of organophosphorus flame retardants in indoor dust in multiple microenvironments of Southern China and implications for human exposure [J]. Chemosphere, 2015, 133: 47-52. doi: 10.1016/j.chemosphere.2015.03.043 [15] KADEMOGLOU K, XU F C, PADILLA-SANCHEZ J A, et al. Legacy and alternative flame retardants in Norwegian and UK indoor environment: Implications of human exposure via dust ingestion [J]. Environment International, 2017, 102: 48-56. doi: 10.1016/j.envint.2016.12.012 [16] BROMMER S, HARRAD S. Sources and human exposure implications of concentrations of organophosphate flame retardants in dust from UK cars, classrooms, living rooms, and offices [J]. Environment International, 2015, 83: 202-207. doi: 10.1016/j.envint.2015.07.002 [17] MIZOUCHI S, ICHIBA M, TAKIGAMI H, et al. Exposure assessment of organophosphorus and organobromine flame retardants via indoor dust from elementary schools and domestic houses [J]. Chemosphere, 2015, 123: 17-25. doi: 10.1016/j.chemosphere.2014.11.028 [18] CHEN Y X, LIU Q Y, MA J, et al. A review on organophosphate flame retardants in indoor dust from China: Implications for human exposure [J]. Chemosphere, 2020, 260: 127633. doi: 10.1016/j.chemosphere.2020.127633 [19] KIM U J, WANG Y, LI W H, et al. Occurrence of and human exposure to organophosphate flame retardants/plasticizers in indoor air and dust from various microenvironments in the United States [J]. Environment International, 2019, 125: 342-349. doi: 10.1016/j.envint.2019.01.065 [20] GE X, MA S T, ZHANG X L, et al. Halogenated and organophosphorous flame retardants in surface soils from an e-waste dismantling park and its surrounding area: Distributions, sources, and human health risks [J]. Environment International, 2020, 139: 105741. doi: 10.1016/j.envint.2020.105741 [21] WANG Y, HOU M M, ZHANG Q N, et al. Organophosphorus flame retardants and plasticizers in building and decoration materials and their potential burdens in newly decorated houses in China [J]. Environmental Science & Technology, 2017, 51(19): 10991-10999. [22] USEPA. Exposure factors handbook 2011 edition (final report)[R]. EPA/600/R-09/052F. Washington, DC: Environmental Protection Agency, Office of Research Development, 2011. [23] 赵秀阁, 段小丽. 中国人群暴露参数手册, 成人卷[M]. 北京: 中国环境出版社, 2013. ZHAO X G, DUAN X L. Manual of exposure parameters for Chinese population, Adults[M]. Beijing: China Environmental Science Press, 2013 (in Chinese).
[24] SUN Y, LIU L Y, SVERKO E, et al. Organophosphate flame retardants in college dormitory dust of northern Chinese Cities: Occurrence, human exposure and risk assessment [J]. Science of the Total Environment, 2019, 665: 731-738. doi: 10.1016/j.scitotenv.2019.02.098 [25] LI W H, SHI Y L, GAO L H, et al. Occurrence, distribution and risk of organophosphate esters in urban road dust in Beijing, China [J]. Environmental Pollution, 2018, 241: 566-575. doi: 10.1016/j.envpol.2018.05.092 [26] ZHU Q Q, JIA J B, ZHANG K G, et al. Phthalate esters in indoor dust from several regions, China and their implications for human exposure [J]. Science of the Total Environment, 2019, 652: 1187-1194. doi: 10.1016/j.scitotenv.2018.10.326 [27] LI J F, ZHANG Z Z, MA L Y, et al. Implementation of USEPA RfD and SFO for improved risk assessment of organophosphate esters (organophosphate flame retardants and plasticizers) [J]. Environment International, 2018, 114: 21-26. doi: 10.1016/j.envint.2018.02.027 [28] ABDALLAH M A E, COVACI A. Organophosphate flame retardants in indoor dust from Egypt: Implications for human exposure [J]. Environmental Science & Technology, 2014, 48(9): 4782-4789. [29] DIRTU A C, ALI N, van den EEDE N, et al. Country specific comparison for profile of chlorinated, brominated and phosphate organic contaminants in indoor dust. Case study for Eastern Romania, 2010 [J]. Environment International, 2012, 49: 1-8. doi: 10.1016/j.envint.2012.08.002 [30] HE R W, LI Y Z, XIANG P, et al. Organophosphorus flame retardants and phthalate esters in indoor dust from different microenvironments: Bioaccessibility and risk assessment [J]. Chemosphere, 2016, 150: 528-535. doi: 10.1016/j.chemosphere.2015.10.087 [31] 刘琴, 印红玲, 李蝶, 等. 室内灰尘中有机磷酸酯的分布及其健康风险 [J]. 中国环境科学, 2017, 37(8): 2831-2839. doi: 10.3969/j.issn.1000-6923.2017.08.004 LIU Q, YIN H L, LI D, et al. Distribution characteristic of OPEs in indoor dust and its health risk [J]. China Environmental Science, 2017, 37(8): 2831-2839(in Chinese). doi: 10.3969/j.issn.1000-6923.2017.08.004
[32] ALI N, MEHDI T, MALIK R N, et al. Levels and profile of several classes of organic contaminants in matched indoor dust and serum samples from occupational settings of Pakistan [J]. Environmental Pollution, 2014, 193: 269-276. doi: 10.1016/j.envpol.2014.07.009 [33] ALI N, SHAHZAD K, RASHID M I, et al. Currently used organophosphate and brominated flame retardants in the environment of China and other developing countries (2000–2016) [J]. Environmental Science and Pollution Research, 2017, 24(23): 18721-18741. doi: 10.1007/s11356-017-9336-3 [34] van der VEEN I, de BOER J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis [J]. Chemosphere, 2012, 88(10): 1119-1153. doi: 10.1016/j.chemosphere.2012.03.067 [35] HE M J. Organophosphate esters in road dust from a suburban area of Chongqing, China: Characterization of particle size distribution and human exposure [J]. Archives of Environmental Contamination and Toxicology, 2019, 76(4): 630-639. doi: 10.1007/s00244-019-00612-1 [36] MÖLLER A, XIE Z Y, CABA A, et al. Organophosphorus flame retardants and plasticizers in the atmosphere of the North Sea [J]. Environmental Pollution, 2011, 159(12): 3660-3665. doi: 10.1016/j.envpol.2011.07.022 [37] van ESCH G J. Flame retardants tris(2-butoxyethyl) phosphate, tris(2-ethylhexyl) phosphate and tetrakis(hydroxymethyl) phosphonium salts[M]. Geneva: World Health Organization, 2000 [38] CARLSSON H, NILSSON U, ÖSTMAN C. Video display units: an emission source of the contact allergenic flame retardant triphenyl phosphate in the indoor environment [J]. Environmental Science & Technology, 2000, 34(18): 3885-3889. [39] ZHENG X B, XU F C, CHEN K H, et al. Flame retardants and organochlorines in indoor dust from several e-waste recycling sites in South China: Composition variations and implications for human exposure [J]. Environment International, 2015, 78: 1-7. doi: 10.1016/j.envint.2015.02.006 [40] ZHENG X B, QIAO L, COVACI A, et al. Brominated and phosphate flame retardants (FRs) in indoor dust from different microenvironments: Implications for human exposure via dust ingestion and dermal contact [J]. Chemosphere, 2017, 184: 185-191. doi: 10.1016/j.chemosphere.2017.05.167