上海市不同微环境室内灰尘中有机磷酸酯污染特征及健康风险评价

周佳敏, 赵静, 韦旭, 顾卫华, 白建峰. 上海市不同微环境室内灰尘中有机磷酸酯污染特征及健康风险评价[J]. 环境化学, 2023, 42(7): 2317-2327. doi: 10.7524/j.issn.0254-6108.2022102608
引用本文: 周佳敏, 赵静, 韦旭, 顾卫华, 白建峰. 上海市不同微环境室内灰尘中有机磷酸酯污染特征及健康风险评价[J]. 环境化学, 2023, 42(7): 2317-2327. doi: 10.7524/j.issn.0254-6108.2022102608
ZHOU Jiamin, ZHAO Jing, WEI Xu, GU Weihua, BAI Jianfeng. The pollution characteristics and health risk assessment of organophosphate esters in indoor dust from different microenvironments in Shanghai[J]. Environmental Chemistry, 2023, 42(7): 2317-2327. doi: 10.7524/j.issn.0254-6108.2022102608
Citation: ZHOU Jiamin, ZHAO Jing, WEI Xu, GU Weihua, BAI Jianfeng. The pollution characteristics and health risk assessment of organophosphate esters in indoor dust from different microenvironments in Shanghai[J]. Environmental Chemistry, 2023, 42(7): 2317-2327. doi: 10.7524/j.issn.0254-6108.2022102608

上海市不同微环境室内灰尘中有机磷酸酯污染特征及健康风险评价

    通讯作者: Tel:021-50215021,E-mail:zhaojing@sspu.edu.cn
  • 基金项目:
    国家重点研发计划项目(2019YFC1906101)和长江水环境教育部重点实验室开放课题(YRWEF202106)资助.

The pollution characteristics and health risk assessment of organophosphate esters in indoor dust from different microenvironments in Shanghai

    Corresponding author: ZHAO Jing, zhaojing@sspu.edu.cn
  • Fund Project: National Key Research and Development Program of China (2019YFC1906101) and Foundation of Key Laboratory of Yangtze River Water Environment, Ministry of Education (Tongji University), China (YRWEF202106).
  • 摘要: 作为一类新兴污染物,有机磷酸酯(OPEs)的环境污染状况及其潜在的健康风险受到国内外的广泛关注. 本研究以室内灰尘作为研究对象,在上海市高校(教室、研究生办公室和宿舍)、办公楼、公共场所(商场、街边商铺和地铁站)和家庭等8种不同微环境采集样品,利用气质联用仪(GC-MS)测定灰尘中10种OPEs(TMPP、EHDPP、TPHP、TPPO、TBOEP、TNBP、TEHP、TCIPP、TDCIPP和TCEP)的含量,并采用 US EPA 推荐的健康风险评模型,结合中国人群的暴露参数,整合生活和工作/学习两类暴露场景,综合评价室内灰尘中OPEs对不同职业人群的健康风险. 研究表明,上海市室内灰尘中OPEs的总含量范围为127—16828 ng·g−1,其中研究生办公室和办公楼灰尘中OPEs的总含量比其他微环境高1—2个数量级. 绝大多数微环境包括地铁站、商场、街边商铺、宿舍和研究生办公室灰尘中以Cl-OPEs为主,其中TCIPP是主要污染物;在办公楼、家庭和教室中以Alkyl-OPEs为主,其中教室的主要污染物为TNBP和TCIPP,办公楼和家庭的主要污染物为TEHP. 职业人群OPEs的主要暴露途径均为手口摄入,但是不同职业人群摄入OPEs的主要暴露源存在差异,生活环境室内灰尘是商场、街边商铺和地铁工作人员以及高校本科生的主要暴露源;工作/学习环境室内灰尘是办公室工作人员和高校研究生的主要暴露源. 此外,在生活和工作/学习环境中,人类暴露于灰尘中OPEs的非致癌风险和致癌风险均在可接受范围内.
  • 近年来,我国农村生活污水治理作为农村人居环境整治的重要内容,越发受到人们的重视,《农村人居环境整治提升五年行动方案(2021—2025年)》明确指出了对提高农村生活污水治理率、推进农村厕所革命的要求。其中,探讨污水排放特征是农村生活污水治理的重要一环,农村生活污水排放特征是指农村居民生活产生的污水排入环境中时水温、水量和水质等特点,其揭示了农村地区排放污水的污染物负荷情况和变化规律,帮助农村地区更加科学地选用和设计适宜的污水治理工艺模式和处理设施规模,也为农村生活污水的治理规划提供基础数据[1-3]。目前,关于农村生活污水排污特征的研究,多集中于太湖、巢湖以及三峡等重要流域周围的普通农村地区,且主要以农户为研究对象进行抽查调研,如程方奎等[4]入户调研了太湖流域的3个样本家庭,采用源分类的方法探讨了污水中污染物负荷的特点,何源等[5]以巢湖地区典型农户家庭为调研对象,研究了每户产生黑水和灰水水量以及产污系数,彭绪亚等[6]探讨了三峡库区18户典型农户的污水产生量与污染物负荷情况,并研究了地域、收入水平和季节等因素对其的影响。

    城郊型村镇,是指位于城乡结合部的村镇地区[3],处于城乡要素相互融合的过渡性地带[7]。近年来,随着城镇化的快速发展,越来越多农村地区被纳入城市建设的规划范围,城乡结合部的面积不断扩大,城郊型村镇作为一类典型的农村地区也逐渐引起人们的关注[3,7-8]。不同于普通农村地区,城郊型村镇具有较高密度的人群和相对发达的经济,境内居民生活水平普遍更高且产业类型更为多样[9-10],然而,同时城郊型村镇也面临滞后的基础设施建设无法与日益增加的污染排放相匹配的现状,农户改厕、污水收集管网和处理设施建设等工作进展较为缓慢,使得城郊型村镇的环境污染问题较为突出[11-12]。目前,城郊型村镇的生活污水治理多套用普通农村地区或城市的治理模式,针对该典型农村地区生活污水排放特征的研究也较为薄弱[3,13]。因此,本研究以北方地区黄河流域下的一个典型城郊型村镇——山西省晋城市巴公镇为研究对象,探讨了该镇区内集中收集的农村生活污水排入环境中时的水温、水量和水质特点,了解该城郊型村镇生活污水排放特征和污染负荷情况,补充该类典型农村地区生活污水治理的基础数据,从而帮助更科学的选择城郊型村镇污水治理工艺模式,推进后续农村生活污水治理项目。

    山西省晋城市巴公镇位于山西省东南部,全镇辖38个行政村、2个社区,总面积112 km2,人口6.2×104人;地貌以山地丘陵为主,年平均气温约10 ℃,年降水量618.3 mm,四季分明,雨热同期;境内主要河道有巴公南河、巴公北河等8条[14]。巴公镇作为典型城郊型村镇,境内煤、铁资源丰富,社会经济发展和居民生活水平均较普通农村地区更高,居民住宅楼分布集中,地面硬质化比例较高,基础设施建设较为完善。另外,境内“改水、改厕、改污”工作同步进行中,自来水供应基本实现全覆盖,农户厕所改造和污水管道铺设工作还在持续推进,管道收集方式采用雨污合流制,目前建成区已有污水处理厂2座。

    本研究依据巴公镇生活污水治理工作的推进情况,以巴公一村、二村、三村和四村的部分区域为研究对象,具体覆盖范围由北到南依次为巴原街、科工贸大街和南环街两侧的居民居住区(图1),居民产生的生活污水通过地埋式污水管道集中收集,统一汇入南环街东南侧排污口,经过简单的土壤渗滤处理后排入荒地。值得注意的是,由于研究区内持续进行的农户厕所改造和污水管道铺设工作,笔者探讨研究区排污特征主要分为3个阶段:1) 2021年10月—2022年7月,管道扩建前期,排污口主要收集了科工贸大街两侧的居民生活污水;2) 2022年8月—2022年11月,管道扩建后期,污水管道新接入南环街和巴原街两侧的居民生活污水,排污口污水水量增大;3)2022年12月—2023年3月,集中改厕后期,研究区内改厕率提高,排放污水中污染物浓度提高。

    图 1  巴公镇研究区污水收集示意图
    Figure 1.  Sewage collection diagrammatic map of Bagong study area

    根据实地调研,截至2023年3月,巴公镇研究区总面积约0.88 km2,总人口约5 000人,研究区内除一般居民住宅楼外,还有商场1座、小型餐馆约60个、洗浴中心2个、住宿学校2所、医院1座以及若干其他商铺,根据其污水产生的特点,污水来源主要可分为普通居民生活用水、餐饮行业用水、洗浴中心用水和降水4种类型。其中,1)普通居民生活用水,包括一般居民生活用水、住校学生用水和普通商铺用水,污水收集方式分为2种:已完成厕所改造的农户,居民生活产生的厕所污水先收集至化粪池中沉淀发酵,上清液再与居民洗漱、洗浴和餐厨污水共同汇入污水管道;未完成厕所改造的农户,居民产生的生活污水只有灰水进入污水管道。2)餐饮行业用水,包括研究区内60个餐馆用水和2所学校食堂用水,产生污水首先经过隔油池初步处理,并过滤食物残渣后进入污水管道,排放量约50~80 m3·d−1。3)洗浴中心用水,指研究区内2个洗浴中心的用水,主要分为淋浴用水和浴池用水两方面,产生污水直接排入管道,排放量约5~15 m3·d−1。4)降水,主要集中在每年雨季6月—9月,直接汇入污水管道随居民生活污水共同排出。经过初步测算,巴公镇研究区在非雨季期间,排放生活污水水量约80%~90%来自普通居民生活用水,5%~10%来自餐饮行业用水,1%~5%来自洗浴中心用水。

    采样点设置于研究区内南环街东南侧的排污口处,从2021年10月—2023年3月,持续一年半监测排污口水温、水量和水质的基本情况,监测频率为每月2~3次,具体采样日期避开降水天气,尽量降低非雨季期间降水对研究区污水排污特征的影响。水温检测采用一般的水温计测量,水量检测采用旋浆式流速仪结合管道污水断面面积进行估算,水质检测通过实地采样后带回实验室分析测定。

    水质检测,选用聚丙烯无菌采样瓶采集水样,将水样于4 ℃的条件下低温保存,并于采样后的第2天进行水质检测。综合山西省《农村生活污水处理设施水污染物排放标准》(DB 14/726-2019)和山西省《污水综合排放标准》(DB 14/1928-2019),研究选用TN、NH4+-N、TP、COD作为水质检测指标,TN采用碱性过硫酸钾消解紫外分光光度法测定(HJ 636-2012),NH4+-N采用纳氏试剂分光光度法测定(HJ 535-2009),TP采用钼酸铵分光光度法测定(GB 11893-1989),COD采用重铬酸盐法测定(HJ 828-2017)。

    2021年10月—2023年3月,巴公镇研究区排放的污水月平均水温和月平均气温变化如图2所示。根据巴公镇月平均气温的变化情况,可将当地的四季时段划分为春季3—5月、夏季6—8月、秋季9—11月和冬季12月—翌年2月,其中2022年和2023年的1月份月平均气温(分别为-0.5和-1.0 ℃)最低,2022年8月份月平均气温(24.5 ℃)最高。同时,巴公镇研究区排放的生活污水水温与当地气温呈现相同的变化趋势,污水在冬季12月—翌年2月的平均温度较低,夏季6月—8月的平均温度较高,其中2022年和2023年1月的平均水温(分别为10.1和10.5 ℃)最低,2022年7月平均水温(22.5 ℃)最高。污水水温是研究农村生活污水排放特征的重要内容之一,其作为控制微生物生长代谢的重要参数,很大程度上影响了后续采取农村生活污水处理工艺的运行效果[15]。一般情况下污水处理中微生物反应的适宜水温在15~35 ℃[16],该范围内温度越高、微生物活性越高,处理效果越好,反之温度越低、处理效果越差,而当污水水温降至5 ℃以下,生物脱氮除磷效果基本丧失[17]。本研究中,巴公镇研究区排放的生活污水水温全年基本保持在10 ℃以上,且每年5月—10月期间,污水水温升至15~25 ℃,表明巴公镇研究区排放污水水温全年保持在较高水平[11],保证了农村生活污水处理中微生物的活性以及冬季低温条件下的城郊型村镇生活污水处理工艺的除污效果[18]

    图 2  污水水温和环境气温随时间的变化
    Figure 2.  Variation of sewage and atmospheric temperature with time

    巴公镇研究区排放污水水温的影响因素可以分为自然因素和人为因素两个方面。自然因素主要指环境气温对污水水温的影响,如图2所示,巴公镇区污水月平均水温和月平均气温随时间的变化趋势基本一致,双变量Pearson检验结果表明,研究区气温和产生的污水水温呈显著正相关关系(R=0.955,P<0.01),进一步回归表明,巴公镇研究区排放污水水温的变化速率约为环境温度变化速率的0.4倍,揭示了巴公镇研究区管道收集排放的污水水温与环境气温之间的变化关系。人为因素主要包括居民生活习惯和人为基础设施的影响,根据实地调研,巴公镇作为城郊型村镇,经济发展迅速,居民生活水平较高,供热基础设施建设较为完善,热水器使用普遍,因此冬季用水温度较高,使得产生的污水水温也较高[19];另外,巴公镇研究区生活污水采用的地埋式集中污水管道的收集方法,对污水也有很好的保温效果[20],使得巴公镇研究区排污口的生活污水在冬季也能基本保持在10 ℃以上。

    1)污水水量整体特征分析。2021年10月—2023年3月,巴公镇研究区污水排放量变化为150~600 m3·d−1,波动范围较大。由于受到2022年8月人为管道扩建和2022年12月农户集中改厕的影响,研究区污水水量特征分析分为3个时期进行探讨,分别为2021年10月—2022年7月管道扩建前期、2022年8月—2022年11月管道扩建后期和2022年12月—2023年3月集中改厕后期。图3为巴公镇研究区月均污水排放量和月总降水量的年变化图。2021年10月—2022年7月,污水管道扩建前,排放污水主要来自研究区内科工贸大街两侧的居民生活污水,污水排放量为150~500 m3·d−1,其中2021年10月—2022年2月受冬季居民用水习惯的影响,冬季气温下降、居民用水量减少[21-22],研究区污水水量呈现逐渐降低的趋势,2月份污水平均排放量只有150 m3·d−1左右,后续随气温回暖、污水水量逐渐回升;2022年3月的污水水量,对比2022年2月和4月呈现较为明显的升高趋势(水量提高了30~80 m3·d−1),根据实地调研记录,分析原因为疫情封控影响,研究区内采取停课、停工、停产的措施,所有农户居家隔离、不得外出,导致3月居民生活用水明显增加,污水排放量也呈现明显升高趋势[23];2022年6月开始,巴公镇研究区进入雨季,雨污合流的污水收集模式,使得降水成为雨季污水水量的主要影响因素[24]图3表明2022年6月和7月,研究区污水平均排放量随当月降水量迅速上升,从非雨季的200~300 m3·d−1升高至接近500 m3·d−1。2022年8月—2022年11月,管道扩建后,新进巴原街和南环街两侧的居民生活污水,使得污水排放量进一步提高,排除2022年8月和9月降水的主要影响,污水水量整体从管道扩建前的200~300 m3·d−1升高至管道扩建后的400~500 m3·d−1。2022年12月—2023年3月,集中改厕后,巴公镇研究区内改厕率提升,更多村户产生的黑水收入污水管道,水量进一步升高,非雨季污水水量提升至500 m3·d−1以上。以上研究结果表明,巴公镇研究区污水排放量的影响因素主要包括自然因素和人为因素两个方面,自然因素是指雨季降水使得研究区污水排放量明显升高[3,11];人为因素主要包括居民生活习惯、疫情管控、污水管道扩建和农户改厕的影响,其中污水管道建设和农户改厕作为巴公镇基础设施建设和污水治理工作的重要内容之一,仍在持续推进中,成为非雨季影响研究区污水排放量的主要因素。

    图 3  污水水量与降水量随时间的变化
    Figure 3.  Variation of sewage quantity and precipitation with time

    根据前期调研,2021年10月—2022年7月,污水管道扩建前,巴公镇研究区覆盖约2 200人;2022年8月—2023年3月,污水管道扩建后,研究区覆盖人数提升至约5 000人。根据监测所得巴公镇研究区污水排放量数据,估算当地人均每日生活污水排放量,结果表明:雨季期间,巴公镇研究区内人均每日生活污水排放量约120~227 L·(人·d)−1;非雨季期间,巴公镇研究区内人均每日生活污水排放量约91~136 L·(人·d)−1。按照《城市排水工程规划规范》(GB 50318—2017),城镇生活污水排放系数为0.7~0.9,由于本研究区内地表硬化率高、污水收集设施较为完善,因此,一般取生活污水排放系数为0.8[3],从而计算得出巴公镇研究区非雨季人均每日用水量为113~170 L·(人·d)−1。对比普通农村地区,晋城市巴公镇下的来村非雨季人均每日生活污水排放量只有约41 L·(人·d)−1,隔壁山西省运城市下农村地区居民日用水量为60~100 L·(人·d)−1[25]。以上结果表明巴公镇研究区作为经济条件较好和居民生活水平较高的城郊型村镇,人均每日用水量和污水排放量均较普通农村地区水平更高。

    2)降水对污水水量的影响分析。巴公镇降水量主要集中在每年的夏季6—9月,雨热同期,2022年6月进入雨季,巴公镇研究区排放污水水量随降水的进行呈现明显上升趋势,污水排放量从非雨季的200~300 m3·d−1升高至雨季300~500 m3·d−1,提升近1倍。研究区内雨污合流的污水收集模式,使得污水排放量受到较为明显的气候影响,雨季期间随降雨量增大出现明显提升,旱季期间又恢复正常水平[11]。进一步探讨巴公镇研究区月降水量与管道污水排放量的关系,对管道扩建前2021年10月—2022年7月的污水水量和降水量进行相关性分析,结果表明相关系数为0.972(P<0.01),表明巴公镇研究区污水管道排放量与降水量呈显著正相关关系,且回归分析得出:月均污水水量=205.28+0.847×月总降水量(图4(a))。2022年8月—2023年3月,除降水量外,研究区污水排放量进一步受到污水管道扩建和农户集中改厕的明显影响,在2022年8月和2022年12月出现2个峰值,降水量与管道污水排放量之间的关系发生改变;综合2次基础设施建设的影响,进一步分析巴公镇研究区月降水量与管道污水排放量的关系,结果表明研究区月均污水水量依然与月总降水量的呈显著正相关关系(R=0.930,P<0.01),且回归分析得出:月均污水水量=563.32+1.678×月总降水量(图4(b)),表明随着污水管道扩建和改厕工作的推进、研究区污水水量随降水量的变化幅度增大。本研究结果初步揭示了巴公镇研究区内,合流制管道收集的污水排放量与当地降水量之间的关系,定量地说明降水对合流制污水管道排放量的影响,有助于更科学预测巴公镇研究区内管道排放的污水水量负荷,设置合适的污水处理工艺与处理规模。

    图 4  污水水量与降水量的回归分析
    Figure 4.  Linear regression analysis of sewage quantity and precipitation

    1)污水污染物浓度整体特征分析。巴公镇研究区污水中污染物的浓度如表1所示,经过2021年10月—2023年3月一年半的水质检测分析,巴公镇研究区排放的污水中TN、NH4+-N、TP、耗氧有机污染物(以COD计)4项污染物的平均浓度分别为36.4、34.0、2.5和131.0 mg·L−1,且各项指标的波动幅度较大,变化范围均在5倍以上,COD值的波动范围甚至达到10倍以上。有研究表明,华北地区一般农户产生污水的水质情况为:NH4+-N浓度20.0~90.0 mg·L−1,TP浓度2.0~6.5 mg·L−1,COD值为200.0~450.0 mg·L−1[26],城市生活污水处理厂的进水浓度更是达到了NH4+-N浓度20.0~146.0 mg·L−1,TP浓度2.6~24.2 mg·L−1,COD值100.0~1 570.0 mg·L−1[4],对比本研究结果,巴公镇研究区污水中各项污染物浓度均处于较低水平。分析原因,一般情况下农村生活污水中NH4+-N浓度代表了人畜排泄物的情况,NH4+-N浓度越高、污水中黑水占比越高[27],然而本研究中,截至2023年3月巴公镇研究区的改厕率仅为50%左右,许多村民依然使用旱厕,导致污水管道中黑水收集较少,因此污水中TN和NH4+-N浓度较低;污水中的P主要来源于日常用水中洗涤剂的使用,特别是厨房洗碗水和洗衣用水[28],本研究中TP的浓度为0.7~4.4 mg·L−1,说明巴公镇研究区内居民对于洗涤剂的使用量较低;生活污水中耗氧有机污染物主要来源依次为厕所黑水和厨房用水两方面[29],因此,研究区较低的改厕率也影响了污水中的COD值;另外,巴公镇研究区采用的雨污合流的污水管道收集模式,以及仍在不断推进的改厕工作,使得本研究中TN、NH4+-N、TP、COD 4项污染物浓度波动范围较大。

    表 1  污水中污染物浓度
    Table 1.  The concentration of pollutants in sewage mg·L−1
    统计结果TNNH4+-NTPCOD
    范围10.6~60.110.0~56.50.7~4.439.0~469.0
    均值36.434.02.5131.0
     | Show Table
    DownLoad: CSV

    图5为巴公镇研究区排放污水中TN、NH4+-N、TP、COD 4项污染物浓度随时间的变化情况。2021年10月—2023年3月分为管道扩建前、管道扩建后和集中改厕后3个时期。2021年10月—2022年7月,管道扩建前,研究区污水中4种污染物浓度整体均呈逐渐降低的趋势,其中2021年10月—2022年5月非雨季期间,污染物浓度最高的时期为2021年10月—2021年12月,TN和NH4+-N浓度保持在40.0~50.0 mg·L−1,TP浓度和COD值达到3.6 mg·L−1和171.9 mg·L−1,后续除2022年3月外,4项污染物浓度均呈现逐渐降低的趋势;经过实地调研,2022年3月由于疫情影响,巴公镇研究区实施全员封控、不得外出的措施,导致期间居民生活用水量明显提高,加上排放污水中黑水的比例增加,使得污水中污染物浓度整体有所回升[23];雨季2022年6月—7月,TN、NH4+-N、TP、COD 4项污染物浓度受降水影响,继续呈现逐渐降低的趋势,管道扩建之前,巴公镇研究区非雨季污水的污染物浓度为TN 28.8~47.3 mg·L−1、NH4+-N 24.7~45.2 mg·L−1、TP 1.6~3.6 mg·L−1和COD 93.5~171.9 mg·L−1,整体均高于雨季污水的污染物浓度TN(25.0~29.0 mg·L−1)、NH4+-N(23.6~25.5 mg·L−1)、TP(1.9~2.2 mg·L−1)和COD(67.0~91.0 mg·L−1),这与袁晓燕等[3]和陈雪峰等[30]的研究结果一致,雨热同期导致雨季期间居民生活用水增加,以及大量降雨汇入管道对污水产生的稀释作用,使得雨季污水中污染物浓度普遍低于非雨季[31]

    图 5  4项污染物浓度随时间的变化
    Figure 5.  Variation of pollutant concentration with time

    2022年8月—11月,管道扩建后,新进改厕率较低的生活污水,以及雨季降水的影响,使得TN、NH4+-N、TP、COD 4项污染物浓度进一步降低,直至10—11月,随着雨季结束,污水中污染物浓度开始缓慢回升。2022年12月—2023年3月,集中改厕后,由于收集的居民生活污水中,黑水占比进一步增加,导致巴公镇研究区管道排放的污水中TN、NH4+-N和COD值明显提高,进一步证明居民生活污水中TN、NH4+-N和耗氧有机污染物(以COD计)主要来源于厕所黑水[27,29]。以上研究结果表明,居民生活习惯、疫情管控、自然降水、管道扩建以及农户改厕均在一定程度上影响巴公镇研究区排放的污水污染物浓度,其中人为的农户集中改厕工作是影响研究区污水水质的主要因素,其作为巴公镇污水治理工作的重要内容之一,目前仍在持续推进中。

    2)污水水质和水量的相关性分析。研究进一步将巴公镇研究区管道排放的污水水量和TN、NH4+-N、TP、COD 4项污染物浓度进行相关性分析,结果如表2图6所示。在巴公镇研究区排放的生活污水中,TN、NH4+-N和COD值之间均呈显著正相关关系(P<0.01),其中TN与NH4+-N的相关性最强(R=0.993,P<0.01),说明污水中3种污染物浓度总是具有相同的变化趋势,共同升高或共同降低。这是由于生活污水中TN、NH4+-N和耗氧有机污染物(以COD计)的主要来源均为厕所用水[27,29],使得污染物浓度随着污水中黑水的占比发生相同的变化趋势,这与陈茂霞等[11]的研究结果一致;TP浓度与COD值的相关性并不显著,与TN和NH4+-N浓度之间呈显著正相关关系(P<0.01),浓度变化趋势相似。本研究中,巴公镇研究区排放的污水水量与TN、NH4+-N、TP和COD值之间的相关关系均不显著,这与彭绪亚等[6]的研究结果不同。一般情况下污水水量与污染物浓度之间具有负相关关系,污水产生越多、污染物浓度越低,而巴公镇研究区排放污水水量与污染物浓度的相关性并不显著,分析原因可能为,人为的管道扩建和农户改厕工作作为研究区污水水质和水量的主要影响因素,在研究期间持续的推进,打乱了两者之间的变化关系。以上研究结果表明,巴公镇研究区排放的生活污水中,污染物浓度受污水来源等因素的影响,TN、NH4+-N、TP和COD 4项污染物之间具有较强的相关性,变化趋势相近,而水量与水质浓度之间相关关系并不显著。

    表 2  污水水质和水量Pearson相关系数表
    Table 2.  Pearson correlation test results of pollutant concentration and sewage quantity
    指标TNNH4+-NTPCOD污水水量
    TN1
    NH4+-N0.993**1
    TP0.845**0.865**1
    COD0.755**0.754**0.4511
    污水水量0.0320.007-0.1330.0811
      注:**表示在P<0.01水平上显著相关。
     | Show Table
    DownLoad: CSV
    图 6  污水水质和水量散点图矩阵
    Figure 6.  The matrix scatter diagram of pollutant concentration and sewage quantity

    目前,我国常用农村生活污水处理工艺主要分为生物处理技术、生态处理技术和组合处理技术3种[32],生物处理技术指在好氧或厌氧条件下主要通过微生物对污水中的氮、磷和有机物进行降解吸收,常用工艺包括厌氧-好氧法、生物接触氧化法、间歇式活性污泥法、膜生物反应器等[26],此类工艺通常占地面积较小、出水水质较好,但抗冲击能力一般、建设和运行费用较高;生态处理技术指通过植物、动物、微生物和土壤(填料)等因素协同作用,过滤、分解和吸收污水中的污染物,常用工艺包括化粪池、净化沼气池、稳定塘、生态滤池、人工湿地、土壤渗滤系统等[33],此类工艺对污水的抗冲击能力较高、建设和运行费用较低,但通常占地面积较大、出水水质不太稳定;组合处理技术指将生物和生态处理技术进行工艺组合,以提高处理污水能力,其中生物+生态处理技术模式使用最多[32]。另外,我国对于农村生活污水的回用研究越发重视,2018年发布《关于加快制定地方农村生活污水处理排放标准的通知》中鼓励采用生态处理工艺、加强污水回收利用,生活污水中氮、磷元素可作为肥料用于农田灌溉[34]。因此,探讨农村生活污水的治理,需要综合《城镇污水处理厂污染物排放标准》(GB 18918-2002)的一级A标准和《农田灌溉水质标准》(GB 5084-2021),将污水的达标排放和资源化回用进行结合,尽量减少资源浪费。

    本研究中,巴公镇作为典型城郊型村镇,研究区排放的污水水温全年保持在10 ℃以上,非雨季人均每日生活污水排放量约91~136 L·(人·d)−1,较普通农村地区农户用水量更大,研究区生活污水总排放量为150~600 m3·d−1,污染物浓度为TN(10.6~60.1 mg·L−1)、NH4+-N(10.0~56.5 mg·L−1)、TP(0.7~4.4 mg·L−1)和COD(39.0~469.0 mg·L−1),境内采取的合流制污水管道收集模式以及尚未完成的管道扩建和农户改厕工作,使得巴公镇研究区产生的总污水水量较普通农村地区水平更高,而污染物浓度整体较普通农村地区更低,可生化性一般,且整体水量水质变化范围较大。因此,巴公镇研究区的生活污水处理适用于单一生态或生物与生态相结合的处理技术,需要选择对于污水水量和水质波动的抗冲击能力较强、占地面积较小以及建设运营成本较低的污水集中处理工艺;另外,根据研究区附近农田的灌溉需求,可以将农村生活污水的资源化回用纳入污水治理规划中,降低对处理工艺出水水质的要求。综上所述,根据我国常用的生活污水处理技术特点,巴公镇研究区的生活污水治理可以比选采用组合工艺:生物接触氧化法+人工湿地/土壤渗滤系统、厌氧-好氧法+人工湿地/土壤渗滤系统、化粪池+生物滤池/稳定塘+农田回灌等。

    2021年10月—2023年3月,本研究以北方地区黄河流域下的一个典型城郊型村镇——山西省晋城市巴公镇为研究区域,探讨该城郊型村镇内以管道收集农村生活污水排入环境中时水温、水量和水质特点,主要得出以下几项结论。

    1)巴公镇研究区排放的生活污水水温全年基本保持在10 ℃以上,且每年5月—10月期间,污水水温升至15~25 ℃,保证了农村生活污水处理中微生物的活性以及冬季低温条件下的城郊型村镇生活污水处理工艺的除污效果;研究区气温和污水水温呈显著正相关关系(R=0.955,P<0.01),水温的变化速率约为环境气温变化速率的0.4倍。

    2)巴公镇研究区内非雨季人均每日用水量和人均每日生活污水排放量分别为113~170 L·(人·d)−1和91~136 L·(人·d)−1,作为经济条件较好和居民生活水平较高的城郊型村镇,人均每日用水量和污水排放量均较普通农村地区更高;研究区污水总排放量变化范围为150~600 m3·d−1,主要受雨季降水、居民生活习惯、疫情管控、污水管道扩建和农户改厕的影响,其中月均污水水量与月总降水量呈显著正相关关系(P<0.01)。

    3)巴公镇研究区产生的污水中TN、NH4+-N、TP、COD 4项污染物的平均浓度分别为36.4、34.0、2.5和131.0 mg·L−1,整体较普通农村地区水平更低,可生化性一般且波动范围较大;研究期间,人为的农户集中改厕工作是影响巴公镇研究区污水污染物浓度的主要因素;污染物浓度受污水来源等因素的影响,TN、NH4+-N、TP和COD 4项浓度之间具有较强的相关性,变化趋势相近,而水量与水质之间相关关系并不显著。

    4)巴公镇作为典型城郊型村镇,根据其生活污水的排放特征,分析该地区适用于单一生态或生物与生态相结合的处理技术,需要选择对污水水量和水质波动的抗负荷能力较强、占地面积较小以及建设运营成本较低的污水集中处理工艺,如生物接触氧化法+人工湿地/土壤渗滤系统、厌氧-好氧法+人工湿地/土壤渗滤系统、化粪池+生物滤池/稳定塘+农田回灌等。

  • 图 1  不同微环境室内灰尘中OPEs的组成特征

    Figure 1.  Composition profiles of OPEs in indoor dust from different microenvironments

    图 2  不同职业人群在生活和工作/学习环境中对灰尘OPEs日暴露量占比

    Figure 2.  Proportion of daily exposure of OPEs to dust in different occupations in living and working/studying environments

    图 3  不同职业人群暴露于生活和工作/学习环境室内灰尘OPEs的非致癌风险

    Figure 3.  Non-carcinogenic risks for different occupations exposure to OPEs in dusts of living and working/studying environments

    图 4  不同职业人群暴露于生活和工作/学习环境室内灰尘OPEs的致癌风险

    Figure 4.  Carcinogenic risks for different occupations exposure to OPEs in dusts of living and working/studying environments

    表 1  OPEs非致癌经口摄入参考剂量(RfD)和致癌斜率因子(SF)[27]

    Table 1.  OPEs non-carcinogenic intake reference dose (RfD) and carcinogenic slope factor (SF) [27]

    化合物Compounds非致癌经口摄入参考剂量/(ng·kg−1·d−1)RfD致癌斜率因子/(kg·d·ng−1)SF
    TPHP70000
    TBOEP15000
    TCIPP10000
    TMPP200002.00×10−8
    TNBP100009.00×10−9
    TEHP1000003.20×10−9
    TDCIPP200003.10×10−8
    TCEP70002.00×10−8
    化合物Compounds非致癌经口摄入参考剂量/(ng·kg−1·d−1)RfD致癌斜率因子/(kg·d·ng−1)SF
    TPHP70000
    TBOEP15000
    TCIPP10000
    TMPP200002.00×10−8
    TNBP100009.00×10−9
    TEHP1000003.20×10−9
    TDCIPP200003.10×10−8
    TCEP70002.00×10−8
    下载: 导出CSV

    表 2  上海市不同微环境室内灰尘中OPEs的含量(ng·g−1

    Table 2.  Concentrations of OPEs in indoor dust from different microenvironments in Shanghai (ng·g−1

    化合物Compounds检出率/%Detection ratio教室Classroom宿舍Dormitory研究生办公室Graduate office办公楼Office building家庭Residence商场Shopping mall街边商铺Shop地铁站Subway station
    TMPP75.00ND270±48.68314±63.41211±48.58106±15.35102.38±14.0679.87±40.77ND
    TPHP62.50NDND3963±1678111±58.60195±6.3748.06±18.3541.22±20.38ND
    EHDPP50.00ND14.86±4.822450±63.74ND25.89±4.60ND61.78±36.74ND
    TPPO12.50NDND211±114NDNDNDNDND
    ∑Aryl-OPEsND285±51.556938±1692322±107327±30.76150±33.37183±33.02ND
    TNBP87.50660±397210±66.98261±49.34146±51.7149.08±9.0932.99±13.6268.84±9.26ND
    TEHP50.00ND579±40.211203±60312361±12671165±50.84NDNDND
    TBOEP62.50ND417±143594±214332±157126±55.33105±44.24NDND
    ∑Alkyl-OPEs660±3971206±1962058±76812839±10581340±34.16138±34.9568.84±9.26ND
    TDCIPP25.00ND380±148ND1013±152NDNDNDND
    TCIPP100.00434±1391329±1997704±2621472±431232±15.35425±61.05303±42.93127±14.71
    TCEP25.00NDND128±29.01NDNDND33.60±20.55ND
    ∑Cl-OPEs434±1391709±3307832±2332485±583232±15.35425±61.05337±33.44127±14.71
    10OPEs1094±5013200±54116828±269315646±15341899±62.41713±117588±28.68127±14.71
    ND, 未检出. ND, not detected.
    化合物Compounds检出率/%Detection ratio教室Classroom宿舍Dormitory研究生办公室Graduate office办公楼Office building家庭Residence商场Shopping mall街边商铺Shop地铁站Subway station
    TMPP75.00ND270±48.68314±63.41211±48.58106±15.35102.38±14.0679.87±40.77ND
    TPHP62.50NDND3963±1678111±58.60195±6.3748.06±18.3541.22±20.38ND
    EHDPP50.00ND14.86±4.822450±63.74ND25.89±4.60ND61.78±36.74ND
    TPPO12.50NDND211±114NDNDNDNDND
    ∑Aryl-OPEsND285±51.556938±1692322±107327±30.76150±33.37183±33.02ND
    TNBP87.50660±397210±66.98261±49.34146±51.7149.08±9.0932.99±13.6268.84±9.26ND
    TEHP50.00ND579±40.211203±60312361±12671165±50.84NDNDND
    TBOEP62.50ND417±143594±214332±157126±55.33105±44.24NDND
    ∑Alkyl-OPEs660±3971206±1962058±76812839±10581340±34.16138±34.9568.84±9.26ND
    TDCIPP25.00ND380±148ND1013±152NDNDNDND
    TCIPP100.00434±1391329±1997704±2621472±431232±15.35425±61.05303±42.93127±14.71
    TCEP25.00NDND128±29.01NDNDND33.60±20.55ND
    ∑Cl-OPEs434±1391709±3307832±2332485±583232±15.35425±61.05337±33.44127±14.71
    10OPEs1094±5013200±54116828±269315646±15341899±62.41713±117588±28.68127±14.71
    ND, 未检出. ND, not detected.
    下载: 导出CSV

    表 3  不同职业人群对生活和工作/学习环境室内灰尘中OPEs的平均日暴露量(ng·kg−1·d−1

    Table 3.  Daily exposures (ng·kg−1·d−1) of OPEs in indoor dust in residential and working environments for different occupational groups(ng·kg−1·d−1

    TMPPTPHPEHDPPTPPOTNBPTEHPTBOEPTDCIPPTCIPPTCEPΣ10OPFRs
    办公室工作者Office workersADDinh2.49×10−52.63×10−52.44×10−61.50×10−59.85×10−43.54×10−57.17×10−51.26×10−41.29×10−3
    ADDder6.73×10−37.08×10−36.59×10−44.04×10−32.66×10−19.55×10−32.34×10−23.84×10−23.56×10−1
    ADDing1.04×10−11.10×10−11.02×10−26.24×10−24.111.48×10−12.99×10−15.26×10−15.37
    ΣADD1.11×10−11.17×10−11.09×10−26.65×10−24.371.57×10−13.23×10−15.64×10−15.72
    高校本科生UndergraduatesADDinh2.76×10−51.52×10−66.30×10−55.92×10−54.26×10−53.88×10−51.63×10−43.96×10−4
    ADDder7.45×10−34.10×10−41.60×10−21.60×10−21.15×10−21.27×10−24.97×10−21.15×10−1
    ADDing1.15×10−16.34×10−32.63×10−12.47×10−11.78×10−11.62×10−16.81×10−11.65
    ΣADD1.23×10−16.75×10−32.80×10−12.63×10−11.89×10−11.75×10−17.31×10−11.77
    高校研究生PostraduatesADDinh4.74×10−52.49×10−41.56×10−41.33×10−53.79×10−51.35×10−48.00×10−53.88×10−56.20×10−48.05×10−61.39×10−3
    ADDder1.28×10−26.73×10−24.20×10−23.58×10−21.02×10−23.64×10−22.16×10−21.27×10−21.89×10−11.47×10−33.97×10−1
    ADDing1.98×10−11.046.49×10−15.54×10−21.58×10−15.63×10−13.34×10−11.62×10−12.593.36×10−25.78
    ΣADD2.10×10−11.116.91×10−15.90×10−21.68×10−15.99×10−13.55×10−11.75×10−12.783.51×10−26.18
    商场工作人员Shopping mall workersADDinh1.72×10−52.18×10−52.44×10−66.97×10−61.10×10−41.93×10−55.20×10−52.30×10−4
    ADDder4.65×10−35.88×10−36.59×10−41.88×10−32.97×10−25.21×10−31.58×10−26.38×10−2
    ADDing7.20×10−29.10×10−21.02×10−22.91×10−24.59×10−18.06×10−22.17×10−19.58×10−1
    ΣADD7.66×10−29.69×10−21.09×10−23.10×10−24.88×10−18.58×10−22.33×10−11.02
    街边商铺工作人员Shop workersADDinh1.57×10−52.13×10−56.81×10−69.50×10−61.10×10−41.19×10−54.33×10−52.38×10−62.21×10−4
    ADDder4.22×10−35.75×10−31.84×10−32.56×10−32.97×10−23.21×10−31.32×10−24.33×10−46.09×10−2
    ADDing6.53×10−28.89×10−22.84×10−23.96×10−24.59×10−14.96×10−21.81×10−19.92×10−39.21×10−1
    ΣADD6.96×10−29.47×10−23.03×10−24.22×10−24.88×10−15.28×10−21.94×10−11.04×10−29.82×10−1
    地铁站工作人员Subway station workersADDinh1.01×10−51.87×10−52.48×10−64.70×10−61.11×10−41.21×10−53.40×10−51.93×10−4
    ADDder2.74×10−35.03×10−36.68×10−41.27×10−33.01×10−23.25×10−31.04×10−25.34×10−2
    ADDing4.23×10−27.78×10−21.03×10−21.95×10−24.65×10−15.03×10−21.42×10−18.07×10−1
    ΣADD4.51×10−28.29×10−21.10×10−22.09×10−24.95×10−15.36×10−21.52×10−18.61×10−1
    TMPPTPHPEHDPPTPPOTNBPTEHPTBOEPTDCIPPTCIPPTCEPΣ10OPFRs
    办公室工作者Office workersADDinh2.49×10−52.63×10−52.44×10−61.50×10−59.85×10−43.54×10−57.17×10−51.26×10−41.29×10−3
    ADDder6.73×10−37.08×10−36.59×10−44.04×10−32.66×10−19.55×10−32.34×10−23.84×10−23.56×10−1
    ADDing1.04×10−11.10×10−11.02×10−26.24×10−24.111.48×10−12.99×10−15.26×10−15.37
    ΣADD1.11×10−11.17×10−11.09×10−26.65×10−24.371.57×10−13.23×10−15.64×10−15.72
    高校本科生UndergraduatesADDinh2.76×10−51.52×10−66.30×10−55.92×10−54.26×10−53.88×10−51.63×10−43.96×10−4
    ADDder7.45×10−34.10×10−41.60×10−21.60×10−21.15×10−21.27×10−24.97×10−21.15×10−1
    ADDing1.15×10−16.34×10−32.63×10−12.47×10−11.78×10−11.62×10−16.81×10−11.65
    ΣADD1.23×10−16.75×10−32.80×10−12.63×10−11.89×10−11.75×10−17.31×10−11.77
    高校研究生PostraduatesADDinh4.74×10−52.49×10−41.56×10−41.33×10−53.79×10−51.35×10−48.00×10−53.88×10−56.20×10−48.05×10−61.39×10−3
    ADDder1.28×10−26.73×10−24.20×10−23.58×10−21.02×10−23.64×10−22.16×10−21.27×10−21.89×10−11.47×10−33.97×10−1
    ADDing1.98×10−11.046.49×10−15.54×10−21.58×10−15.63×10−13.34×10−11.62×10−12.593.36×10−25.78
    ΣADD2.10×10−11.116.91×10−15.90×10−21.68×10−15.99×10−13.55×10−11.75×10−12.783.51×10−26.18
    商场工作人员Shopping mall workersADDinh1.72×10−52.18×10−52.44×10−66.97×10−61.10×10−41.93×10−55.20×10−52.30×10−4
    ADDder4.65×10−35.88×10−36.59×10−41.88×10−32.97×10−25.21×10−31.58×10−26.38×10−2
    ADDing7.20×10−29.10×10−21.02×10−22.91×10−24.59×10−18.06×10−22.17×10−19.58×10−1
    ΣADD7.66×10−29.69×10−21.09×10−23.10×10−24.88×10−18.58×10−22.33×10−11.02
    街边商铺工作人员Shop workersADDinh1.57×10−52.13×10−56.81×10−69.50×10−61.10×10−41.19×10−54.33×10−52.38×10−62.21×10−4
    ADDder4.22×10−35.75×10−31.84×10−32.56×10−32.97×10−23.21×10−31.32×10−24.33×10−46.09×10−2
    ADDing6.53×10−28.89×10−22.84×10−23.96×10−24.59×10−14.96×10−21.81×10−19.92×10−39.21×10−1
    ΣADD6.96×10−29.47×10−23.03×10−24.22×10−24.88×10−15.28×10−21.94×10−11.04×10−29.82×10−1
    地铁站工作人员Subway station workersADDinh1.01×10−51.87×10−52.48×10−64.70×10−61.11×10−41.21×10−53.40×10−51.93×10−4
    ADDder2.74×10−35.03×10−36.68×10−41.27×10−33.01×10−23.25×10−31.04×10−25.34×10−2
    ADDing4.23×10−27.78×10−21.03×10−21.95×10−24.65×10−15.03×10−21.42×10−18.07×10−1
    ΣADD4.51×10−28.29×10−21.10×10−22.09×10−24.95×10−15.36×10−21.52×10−18.61×10−1
    下载: 导出CSV
  • [1] 王晓伟, 刘景富, 阴永光. 有机磷酸酯阻燃剂污染现状与研究进展 [J]. 化学进展, 2010, 22(10): 1983-1992.

    WANG X W, LIU J F, YIN Y G. The pollution status and research progress on organophosphate ester flame retardants [J]. Progress in Chemistry, 2010, 22(10): 1983-1992(in Chinese).

    [2] CAO Z G, XU F C, COVACI A, et al. Distribution patterns of brominated, chlorinated, and phosphorus flame retardants with particle size in indoor and outdoor dust and implications for human exposure [J]. Environmental Science & Technology, 2014, 48(15): 8839-8846.
    [3] LI J, YU N Y, ZHANG B B, et al. Occurrence of organophosphate flame retardants in drinking water from China [J]. Water Research, 2014, 54: 53-61. doi: 10.1016/j.watres.2014.01.031
    [4] ZHANG Q, WANG Y X, JIANG X X, et al. Spatial occurrence and composition profile of organophosphate esters (OPEs) in farmland soils from different regions of China: Implications for human exposure [J]. Environmental Pollution, 2021, 276: 116729. doi: 10.1016/j.envpol.2021.116729
    [5] YANG F X, DING J J, HUANG W, et al. Particle size-specific distributions and preliminary exposure assessments of organophosphate flame retardants in office air particulate matter [J]. Environmental Science & Technology, 2014, 48(1): 63-70.
    [6] BROMMER S, HARRAD S, van den EEDE N, et al. Concentrations of organophosphate esters and brominated flame retardants in German indoor dust samples [J]. Journal of Environmental Monitoring, 2012, 14(9): 2482-2487. doi: 10.1039/c2em30303e
    [7] 刘小雯, 印红玲, 彭斐, 等. 有机磷酸酯在岷江干流鱼体中的分布 [J]. 生态毒理学报, 2021, 16(6): 213-221.

    LIU X W, YIN H L, PENG F, et al. Distribution of organophosphate esters in specific tissues of fish from main stream of Minjiang River [J]. Asian Journal of Ecotoxicology, 2021, 16(6): 213-221(in Chinese).

    [8] HOU M M, SHI Y L, JIN Q, et al. Organophosphate esters and their metabolites in paired human whole blood, serum, and urine as biomarkers of exposure [J]. Environment International, 2020, 139: 105698. doi: 10.1016/j.envint.2020.105698.
    [9] BLUM A, BEHL M, BIRNBAUM L, et al. Organophosphate ester flame retardants: Are they a regrettable substitution for polybrominated diphenyl ethers? [J]. Environmental Science & Technology Letters, 2019, 6(11): 638-649.
    [10] LI W H, WANG Y, ASIMAKOPOULOS A G, et al. Organophosphate esters in indoor dust from 12 countries: Concentrations, composition profiles, and human exposure [J]. Environment International, 2019, 133: 105178. doi: 10.1016/j.envint.2019.105178
    [11] 万千, 赵静, 韦旭, 等. 电子废弃物拆解车间灰尘中重金属污染特征及职业人群健康风险评价 [J]. 环境化学, 2022, 41(3): 883-892. doi: 10.7524/j.issn.0254-6108.2020110901

    WAN Q, ZHAO J, WEI X, et al. Pollution characteristics of heavy metals in the dust from e-waste dismantling workshop and health risk assessment of occupational population [J]. Environmental Chemistry, 2022, 41(3): 883-892(in Chinese). doi: 10.7524/j.issn.0254-6108.2020110901

    [12] HU Q P, XU L, LIU Y, et al. Co-occurrence and distribution of organophosphate tri- and di-esters in indoor dust from different indoor environments in Guangzhou and their potential human health risk [J]. Environmental Pollution, 2020, 262: 114311. doi: 10.1016/j.envpol.2020.114311
    [13] ALI N, DIRTU A C, van den EEDE N, et al. Occurrence of alternative flame retardants in indoor dust from New Zealand: Indoor sources and human exposure assessment [J]. Chemosphere, 2012, 88(11): 1276-1282. doi: 10.1016/j.chemosphere.2012.03.100
    [14] HE C T, ZHENG J, QIAO L, et al. Occurrence of organophosphorus flame retardants in indoor dust in multiple microenvironments of Southern China and implications for human exposure [J]. Chemosphere, 2015, 133: 47-52. doi: 10.1016/j.chemosphere.2015.03.043
    [15] KADEMOGLOU K, XU F C, PADILLA-SANCHEZ J A, et al. Legacy and alternative flame retardants in Norwegian and UK indoor environment: Implications of human exposure via dust ingestion [J]. Environment International, 2017, 102: 48-56. doi: 10.1016/j.envint.2016.12.012
    [16] BROMMER S, HARRAD S. Sources and human exposure implications of concentrations of organophosphate flame retardants in dust from UK cars, classrooms, living rooms, and offices [J]. Environment International, 2015, 83: 202-207. doi: 10.1016/j.envint.2015.07.002
    [17] MIZOUCHI S, ICHIBA M, TAKIGAMI H, et al. Exposure assessment of organophosphorus and organobromine flame retardants via indoor dust from elementary schools and domestic houses [J]. Chemosphere, 2015, 123: 17-25. doi: 10.1016/j.chemosphere.2014.11.028
    [18] CHEN Y X, LIU Q Y, MA J, et al. A review on organophosphate flame retardants in indoor dust from China: Implications for human exposure [J]. Chemosphere, 2020, 260: 127633. doi: 10.1016/j.chemosphere.2020.127633
    [19] KIM U J, WANG Y, LI W H, et al. Occurrence of and human exposure to organophosphate flame retardants/plasticizers in indoor air and dust from various microenvironments in the United States [J]. Environment International, 2019, 125: 342-349. doi: 10.1016/j.envint.2019.01.065
    [20] GE X, MA S T, ZHANG X L, et al. Halogenated and organophosphorous flame retardants in surface soils from an e-waste dismantling park and its surrounding area: Distributions, sources, and human health risks [J]. Environment International, 2020, 139: 105741. doi: 10.1016/j.envint.2020.105741
    [21] WANG Y, HOU M M, ZHANG Q N, et al. Organophosphorus flame retardants and plasticizers in building and decoration materials and their potential burdens in newly decorated houses in China [J]. Environmental Science & Technology, 2017, 51(19): 10991-10999.
    [22] USEPA. Exposure factors handbook 2011 edition (final report)[R]. EPA/600/R-09/052F. Washington, DC: Environmental Protection Agency, Office of Research Development, 2011.
    [23] 赵秀阁, 段小丽. 中国人群暴露参数手册, 成人卷[M]. 北京: 中国环境出版社, 2013.

    ZHAO X G, DUAN X L. Manual of exposure parameters for Chinese population, Adults[M]. Beijing: China Environmental Science Press, 2013 (in Chinese).

    [24] SUN Y, LIU L Y, SVERKO E, et al. Organophosphate flame retardants in college dormitory dust of northern Chinese Cities: Occurrence, human exposure and risk assessment [J]. Science of the Total Environment, 2019, 665: 731-738. doi: 10.1016/j.scitotenv.2019.02.098
    [25] LI W H, SHI Y L, GAO L H, et al. Occurrence, distribution and risk of organophosphate esters in urban road dust in Beijing, China [J]. Environmental Pollution, 2018, 241: 566-575. doi: 10.1016/j.envpol.2018.05.092
    [26] ZHU Q Q, JIA J B, ZHANG K G, et al. Phthalate esters in indoor dust from several regions, China and their implications for human exposure [J]. Science of the Total Environment, 2019, 652: 1187-1194. doi: 10.1016/j.scitotenv.2018.10.326
    [27] LI J F, ZHANG Z Z, MA L Y, et al. Implementation of USEPA RfD and SFO for improved risk assessment of organophosphate esters (organophosphate flame retardants and plasticizers) [J]. Environment International, 2018, 114: 21-26. doi: 10.1016/j.envint.2018.02.027
    [28] ABDALLAH M A E, COVACI A. Organophosphate flame retardants in indoor dust from Egypt: Implications for human exposure [J]. Environmental Science & Technology, 2014, 48(9): 4782-4789.
    [29] DIRTU A C, ALI N, van den EEDE N, et al. Country specific comparison for profile of chlorinated, brominated and phosphate organic contaminants in indoor dust. Case study for Eastern Romania, 2010 [J]. Environment International, 2012, 49: 1-8. doi: 10.1016/j.envint.2012.08.002
    [30] HE R W, LI Y Z, XIANG P, et al. Organophosphorus flame retardants and phthalate esters in indoor dust from different microenvironments: Bioaccessibility and risk assessment [J]. Chemosphere, 2016, 150: 528-535. doi: 10.1016/j.chemosphere.2015.10.087
    [31] 刘琴, 印红玲, 李蝶, 等. 室内灰尘中有机磷酸酯的分布及其健康风险 [J]. 中国环境科学, 2017, 37(8): 2831-2839. doi: 10.3969/j.issn.1000-6923.2017.08.004

    LIU Q, YIN H L, LI D, et al. Distribution characteristic of OPEs in indoor dust and its health risk [J]. China Environmental Science, 2017, 37(8): 2831-2839(in Chinese). doi: 10.3969/j.issn.1000-6923.2017.08.004

    [32] ALI N, MEHDI T, MALIK R N, et al. Levels and profile of several classes of organic contaminants in matched indoor dust and serum samples from occupational settings of Pakistan [J]. Environmental Pollution, 2014, 193: 269-276. doi: 10.1016/j.envpol.2014.07.009
    [33] ALI N, SHAHZAD K, RASHID M I, et al. Currently used organophosphate and brominated flame retardants in the environment of China and other developing countries (2000–2016) [J]. Environmental Science and Pollution Research, 2017, 24(23): 18721-18741. doi: 10.1007/s11356-017-9336-3
    [34] van der VEEN I, de BOER J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis [J]. Chemosphere, 2012, 88(10): 1119-1153. doi: 10.1016/j.chemosphere.2012.03.067
    [35] HE M J. Organophosphate esters in road dust from a suburban area of Chongqing, China: Characterization of particle size distribution and human exposure [J]. Archives of Environmental Contamination and Toxicology, 2019, 76(4): 630-639. doi: 10.1007/s00244-019-00612-1
    [36] MÖLLER A, XIE Z Y, CABA A, et al. Organophosphorus flame retardants and plasticizers in the atmosphere of the North Sea [J]. Environmental Pollution, 2011, 159(12): 3660-3665. doi: 10.1016/j.envpol.2011.07.022
    [37] van ESCH G J. Flame retardants tris(2-butoxyethyl) phosphate, tris(2-ethylhexyl) phosphate and tetrakis(hydroxymethyl) phosphonium salts[M]. Geneva: World Health Organization, 2000
    [38] CARLSSON H, NILSSON U, ÖSTMAN C. Video display units:   an emission source of the contact allergenic flame retardant triphenyl phosphate in the indoor environment [J]. Environmental Science & Technology, 2000, 34(18): 3885-3889.
    [39] ZHENG X B, XU F C, CHEN K H, et al. Flame retardants and organochlorines in indoor dust from several e-waste recycling sites in South China: Composition variations and implications for human exposure [J]. Environment International, 2015, 78: 1-7. doi: 10.1016/j.envint.2015.02.006
    [40] ZHENG X B, QIAO L, COVACI A, et al. Brominated and phosphate flame retardants (FRs) in indoor dust from different microenvironments: Implications for human exposure via dust ingestion and dermal contact [J]. Chemosphere, 2017, 184: 185-191. doi: 10.1016/j.chemosphere.2017.05.167
  • 加载中
图( 4) 表( 3)
计量
  • 文章访问数:  2917
  • HTML全文浏览数:  2917
  • PDF下载数:  120
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-10-26
  • 录用日期:  2023-03-04
  • 刊出日期:  2023-07-27
周佳敏, 赵静, 韦旭, 顾卫华, 白建峰. 上海市不同微环境室内灰尘中有机磷酸酯污染特征及健康风险评价[J]. 环境化学, 2023, 42(7): 2317-2327. doi: 10.7524/j.issn.0254-6108.2022102608
引用本文: 周佳敏, 赵静, 韦旭, 顾卫华, 白建峰. 上海市不同微环境室内灰尘中有机磷酸酯污染特征及健康风险评价[J]. 环境化学, 2023, 42(7): 2317-2327. doi: 10.7524/j.issn.0254-6108.2022102608
ZHOU Jiamin, ZHAO Jing, WEI Xu, GU Weihua, BAI Jianfeng. The pollution characteristics and health risk assessment of organophosphate esters in indoor dust from different microenvironments in Shanghai[J]. Environmental Chemistry, 2023, 42(7): 2317-2327. doi: 10.7524/j.issn.0254-6108.2022102608
Citation: ZHOU Jiamin, ZHAO Jing, WEI Xu, GU Weihua, BAI Jianfeng. The pollution characteristics and health risk assessment of organophosphate esters in indoor dust from different microenvironments in Shanghai[J]. Environmental Chemistry, 2023, 42(7): 2317-2327. doi: 10.7524/j.issn.0254-6108.2022102608

上海市不同微环境室内灰尘中有机磷酸酯污染特征及健康风险评价

    通讯作者: Tel:021-50215021,E-mail:zhaojing@sspu.edu.cn
  • 1. 上海第二工业大学资源与环境工程学院,上海,201209
  • 2. 上海电子废弃物资源化协同创新中心,上海,201209
基金项目:
国家重点研发计划项目(2019YFC1906101)和长江水环境教育部重点实验室开放课题(YRWEF202106)资助.

摘要: 作为一类新兴污染物,有机磷酸酯(OPEs)的环境污染状况及其潜在的健康风险受到国内外的广泛关注. 本研究以室内灰尘作为研究对象,在上海市高校(教室、研究生办公室和宿舍)、办公楼、公共场所(商场、街边商铺和地铁站)和家庭等8种不同微环境采集样品,利用气质联用仪(GC-MS)测定灰尘中10种OPEs(TMPP、EHDPP、TPHP、TPPO、TBOEP、TNBP、TEHP、TCIPP、TDCIPP和TCEP)的含量,并采用 US EPA 推荐的健康风险评模型,结合中国人群的暴露参数,整合生活和工作/学习两类暴露场景,综合评价室内灰尘中OPEs对不同职业人群的健康风险. 研究表明,上海市室内灰尘中OPEs的总含量范围为127—16828 ng·g−1,其中研究生办公室和办公楼灰尘中OPEs的总含量比其他微环境高1—2个数量级. 绝大多数微环境包括地铁站、商场、街边商铺、宿舍和研究生办公室灰尘中以Cl-OPEs为主,其中TCIPP是主要污染物;在办公楼、家庭和教室中以Alkyl-OPEs为主,其中教室的主要污染物为TNBP和TCIPP,办公楼和家庭的主要污染物为TEHP. 职业人群OPEs的主要暴露途径均为手口摄入,但是不同职业人群摄入OPEs的主要暴露源存在差异,生活环境室内灰尘是商场、街边商铺和地铁工作人员以及高校本科生的主要暴露源;工作/学习环境室内灰尘是办公室工作人员和高校研究生的主要暴露源. 此外,在生活和工作/学习环境中,人类暴露于灰尘中OPEs的非致癌风险和致癌风险均在可接受范围内.

English Abstract

  • 有机磷酸酯(organophosphate esters, OPEs)主要作为阻燃剂和增塑剂被广泛生产和使用. 随着溴代阻燃剂(brominated flame retardants, BFRs)在全球范围内被逐步禁用,其主要替代品OPEs的产量大幅增加[1],被广泛用于建筑材料、电子产品、家装饰品和纺织品等行业. 由于OPEs是物理添加型阻燃剂,易经过挥发、浸出、产品使用摩损等方式释放进入环境[2],OPEs环境问题引起国内外的广泛关注. 作为一类新兴环境污染物,OPEs在全球环境中普遍存在. 目前已有大量研究表明在水体、土壤、空气和灰尘等各种环境介质中检测到OPEs[3-6]. 此外,在生物体、人体血液和尿液中也检测出了OPEs及其代谢产物[7-8]. 毒理学研究结果显示,部分OPEs会影响生物内分泌、神经系统和生殖功能,并且具有溶血作用、致畸性和潜在致癌毒性[9].

    灰尘既是室内材料释放的有机污染物的首要聚集地,同时也是室外污染物进入室内后的汇,且被公认为是室内环境污染的有效指示物[10-11]. 研究证实各类微环境室内灰尘中均存在不同程度的OPEs污染,包括家庭[12-14]、办公室[15]、教室[16-17]等. 一项对中国室内灰尘中OPEs污染状况的调研显示[18],办公室和电子废物拆解车间室内灰尘OPEs的含量高于家庭、高校宿舍和其他微环境. 由于室内特殊的环境条件,如更少的阳光直射等,室内灰尘中聚积的OPEs可能比在其他环境介质中半衰期更长,因而具有更强的持留性和人群暴露机会. 室内灰尘中的OPEs可通过手口摄入、呼吸吸入和皮肤接触等途径被人体吸收[19],造成潜在的健康风险.

    本研究以室内灰尘作为研究对象,在上海市高校(教室、研究生办公室和宿舍)、办公楼、公共场所(商场、街边商铺和地铁站)和家庭等8种不同微环境采集样品,探究不同微环境室内灰尘中OPEs的含量和组分特征,同时整合生活和工作/学习两类暴露场景,综合评估室内灰尘中OPEs对不同职业人群的健康风险.

    • 仪器:气质谱联用仪(日本岛津公司,TQ8040 NX);固相萃取仪(美国Supelco公司);旋转蒸发仪(郑州长城科工贸有限公司,R-1001M).

      试剂:9种OPEs标准品购自美国Accustandard公司,包括3种氯代烷基磷酸酯(Cl-OPEs),包括磷酸三(2-氯乙基)酯(TCEP)、磷酸三(1-氯-2-丙基)酯(TCIPP)、磷酸三(1,3-二氯-2-丙基)酯(TDCIPP);3种烷基磷酸酯(Alkyl-OPEs),包括磷酸三丁酯(TNBP)、磷酸三(2-丁氧乙基)酯(TBOEP)、磷酸三(2-乙基己酯)(TEHP),以及3种芳基磷酸酯(Aryl-OPEs),包括磷酸2-乙基己基二苯基(EHDPP)、三苯基氧磷(TPPO)、磷酸三甲基苯(TMPP). 还有1种Aryl-OPEs标准品磷酸三苯酯(TPHP)从梯希爱(上海)化成工业发展有限公司购买. 替代物内标(TCEP-d12、TCIPP-d18、TPHP-d15)和内标物六甲基苯(HMB)从英国剑桥同位素实验室购买.

    • 本研究以室内灰尘作为研究对象,2021年12月在上海市高校(教室、研究生办公室和宿舍)、办公楼、公共场所(商场、街边商铺和地铁站)和家庭等8种不同微环境共采集24个样品,每种微环境各3个样品. 软毛刷经超纯水清洗烘干后再用正己烷清洗一遍,放置通风橱内晾干后装入自封袋密封备用,采样前尽量避免打开. 选用五点采样法对室内地表灰尘样品进行收集,尽量对室内地面全面采集,以便反映实际情况. 灰尘使用软毛刷采集,干净的铝箔纸包裹严实装入自封袋保存,装入低于4 ℃的保温箱尽快转移至实验室. 所有灰尘样品过 200 目不锈钢筛后,于-20 ℃的冰箱避光保存.

    • 基于现有文献[20-21],优化后OPEs前处理方法如下:称取0.50(±0.0002)g灰尘样品于聚四氟乙烯离心管中,加入15 mL丙酮/正己烷(1:1,V:V)的萃取液,以及替代物内标(TPHP-d15、TCIPP-d18和TCEP-d12),常温超声20 min,并以3500 r·min−1离心7 min. 收集上清液,重复上述步骤3次.

      将萃取液旋蒸至近干,加入2 mL正己烷回溶待用. 用8 mL乙酸乙酯和6 mL正己烷分别对固相萃取净化小柱进行活化,随后将萃取液转移至固相萃取小柱中. 待目标物与小柱填料充分接触后,先用10 mL正己烷进行淋洗,弃去该部分洗脱液;然后再用8 mL乙酸乙酯对小柱进行洗脱,获得目标组份. 最后将含有目标组分的乙酸乙酯溶液旋蒸至近干,定容至1 mL,过滤(0.22 μm),加入20 μL内标(10 μg·mL−1 HMB),涡旋1 min后转移到棕色色谱瓶中以备仪器分析.

    • 本研究采用岛津GCMS-TQ8040 NX对样品进行检测,选择电子轰击电离(EI),色谱柱为DB-5MS(柱长30 m,内径0.25 mm,液膜厚度0.25 μm),采用SIM模式进行样品的检测. 升温程序为:起始温度为70 ℃,保留2 min,然后以15 ℃∙min−1升温至300 ℃,保留5 min. 进样口温度为300 ℃,载气为高纯氦气,柱流速为1 mL∙min−1,离子源温度为230 ℃,四极杆温度为150 ℃,辅助加热区温度为280 ℃,进样量为1 μL,不分流进样,溶剂延迟时间为7.0 min.

    • 实验中设置方法空白、空白加标、基质加标及平行样对数据进行质量控制. 仪器的检出限(LOD)和定量限(LOQ)分别为0.0036—0.1091 ng·L−1和0.0119—0.3636 ng·L−1. 方法空白中目标化合物均低于LOD,对样品检测值无影响. 灰尘样品中替代物内标TCEP-d12、TCIPP-d18和TPHP-d15的回收率范围分别为82.6%—110.4%、85.5%—113.2%和80.8%—119.8%. OPEs单体的相对标准偏差(RSD)小于10%,目标化合物的回收率范围为87%—102%.

    • 本研究采用美国环保署(US EPA)建立的暴露评估模型[22],结合《中国人群暴露参数手册(成人卷)》[23]及相关研究[24-26]所提供的暴露参数,评估灰尘中OPEs通过呼吸吸入、皮肤接触和手口摄入3种暴露途径对不同职业人群的暴露水平及潜在的健康风险.

    • 呼吸吸入:

      式中,ADDinh为呼吸吸入的日均暴露量,ng·kg−1·d−1Cdust为灰尘中OPEs的平均含量,ng·g−1Rinh为呼吸速率,16.3 m3·d-1[23];EF为年暴露频率,办公室工作人员、商场工作人员和街边商铺工作人员的工作/学习环境和生活环境分别取136.85 d·a−1和182.47 d·a−1,高校本科生和研究生分别取121.65 d·a−1和197.68 d·a−1,地铁工作人员分别取180 d·a−1和185 d·a-1[23];ED为暴露年限,高校本科生和研究生分别取4 a和3 a,其他职业取24 a[22];PEF为颗粒物消除因子,取1.36×109 m3·kg-1[25];BW为平均体重,63.5 kg[23];AT为平均暴露时间,a,AT非致癌风险=ED×365,AT致癌风险=average lifetime×365[23,26],其中average lifetime为平均期望寿命,80.26 a[23];CF为换算系数,取1×10−3 g·mg−1.

      皮肤接触:

      式中,ADDder为皮肤接触的日均暴露量,ng·kg−1·d−1;SA为皮肤接触面积,2100 cm2[23];ABS为皮肤吸收因子,0.01 mg·cm−2·d-1[24];AF为皮肤吸收比例,TCEP、TDCIPP、TCIPP分别为0.104,0.186和0.174,其他OPE单体为0.154[24].

      手口摄入:

      式中,ADDing为手口摄入的日均暴露量,ng·kg−1·d−1;Ring为手-口摄入速率,50 mg·d-1[23].

      总日均暴露量:

      式中,ΣADDW和ΣADDR分别为职业人群在工作/学习环境(教室、研究生办公室、办公楼、商场、街边商铺和地铁站)和生活环境(宿舍和家庭)中的总日均暴露量,ng·kg−1·d−1.

    • 非致癌风险评价采用非致癌危害指数法,根据公式(5)和(6)计算非致癌风险商数(HQ)和非致癌危险指数(HI):

      式中,ADD非致癌为3种暴露途径下OPEs日均暴露量,ng·kg−1·d−1;RfD为非致癌经口摄入参考剂量,ng·kg−1·d−1. 评价标准:HI<1,表示非致癌风险可忽略;HI≥1,表示有非致癌风险,数值越大说明风险越高.

      致癌风险的评价采用致癌风险指数法,根据公式(7)和(8)计算致癌风险指数(CR):

      式中,ADD致癌为3种暴露途径下OPEs终身平均日暴露量,ng·kg−1·d−1;SF为致癌斜率因子,kg·d·ng−1. 评级标准:CRT<10−6,表示致癌风险可忽略;CRT>10−6,表示有致癌风险,数值越大说明风险越高. 本研究评价了TPHP、TBOEP、TCIPP、TMPP、TNBP、TEHP、TDCIPP和TCEP的非致癌风险,TMPP、TNBP、TEHP、TDCIPP和TCEP的致癌风险. OPEs的RfD和SF参考值如表1所示.

    • 上海市8类不同微环境室内灰尘中10种OPEs的检出率和含量见表2. 10种OPEs在各微环境室内灰尘中均有不同程度地检出,表明OPEs是室内环境中普遍存在的污染物. TCIPP的检出率最高为100%;其次是TNBP、TMPP、TPHP和TBOEP,检出率分别为87.5%、75%、62.5%和62.5%;EHDPP、TEHP、TDCIPP、TCEP和TPPO检出率较低,分别为50.0%、50.0%、25.0%、25.0%和12.5%.

      上海市8类不同微环境室内灰尘中Σ10OPEs含量分布存在显著差异(P<0.05). 研究生办公室和办公楼灰尘中Σ10OPEs含量最高,分别为(16828±2693)ng·g−1和(15646±1534)ng·g−1,其次是宿舍((3200±541)ng·g−1)、家庭((1899±62.41) ng·g−1)和教室((1094±501) ng·g−1),与研究生办公室和办公楼相比低1个数量级;商场((713±117)ng·g−1)、街边商铺((588±28.68) ng·g−1)和地铁站((127±14.71)ng·g−1)灰尘中Σ10OPEs含量较低,与研究生办公室和办公楼相比低2个数量级.

      有研究[2]表明,北京办公室(17600 ng·g−1)与本研究中研究生办公室和办公楼的含量相当. 在研究生办公室和办公楼室内灰尘中检出的OPEs含量在全球处于中等污染水平,低于发达国家英国(69730 ng·g−1[16],高于发展中国家埃及(522 ng·g−1[28]. 在宿舍和家庭室内灰尘中检出的OPEs含量在全球处于较低污染水平,明显低于罗马尼亚(8360 ng·g−1[29]、德国(3000 ng·g−1[6]和新西兰(5510 ng·g−1[13],但在我国范围内高于南京(1340 ng·g−1[30]. 在教室灰尘中OPEs含量在全球处于较低污染水平,远低于日本(281800 ng·g−1[17]和英国(97820 ng·g−1[16],与我国成都高校教室(1837 ng·g−1[31]相比,污染水平相当. 国内外对于商场、街边商铺和地铁站的研究较少,本研究中商场和街边商铺中OPEs的含量接近于巴基斯坦商店的OPEs含量(300 ng·g−1[32],而在我国范围内,远低于南京公共环境灰尘中的含量(12900 ng·g−1[30].

    • 就3种不同类型OPEs而言,不同微环境室内灰尘中Aryl-OPEs、Alkyl-OPEs和Cl-OPEs的占比有所差别(图1). 绝大多数微环境包括地铁站、商场、街边商铺、宿舍和研究生办公室室内灰尘中以Cl-OPEs为主,占比分别为100%、59.6%、57.2%、53.4%和46.5%;而办公楼、家庭和教室室内灰尘中以Alkyl-OPEs为主,占比分别为82.1%、70.6%和60.3%. 现有研究结果表明Cl-OPEs是室内灰尘样品中的主要污染物[33],与本研究的结果基本一致. 这主要是因为Cl-OPEs的生产量和使用量超过非Cl-OPEs,以及其在环境中持久存在[12]. 值得注意的是,Aryl-OPEs在研究生办公室灰尘中的占比为41.2%,与Cl-OPEs占比相当. Aryl-OPEs常被添加在电子设备中作为阻燃剂[34],而研究生办公室正是电子产品密集使用的场所;此外,这2类OPEs的主要化合物具有较低的蒸汽压,因此可能同样通过产品磨损进入到环境中[35]. 同样地,Aryl-OPEs和Cl-OPEs在我国成都高校办公室灰尘中也占据着主导地位,占比分别为44%和43%[31]. 此外,本研究中关于教室和家庭的研究结果与日本[17]的研究相一致,即在教室和家庭室内灰尘中Alkyl-OPEs是主要污染物,分别占Σ9OPEs的97.1%和94.1%.

      就各OPEs单体而言,绝大多数微环境包括地铁站、商场、街边商铺、研究生办公室、宿舍和教室室内灰尘中TCIPP是最主要的OPEs,占比分别为100%、59.6%、51.5%、45.8%、41.5%和39.7%. TCIPP常被报道是室内灰尘中最主要的OPEs单体[10,16]. 自20世纪60年代中期,TCIPP的使用量持续增长,一方面由于TCIPP的毒性相对于TCEP较弱,逐步替代TCEP;另一方面,TCIPP因价格较低而被广泛生产并在PVC和聚氨酯泡沫等产品中广泛使用[18,34,36]. 但是与TCIPP相比,教室灰尘中TNBP的占比相对更高,为60.3%,这可能与其使用的建筑和装修材料相关. 目前已有研究已经证实TCIPP和TNBP是中国建筑和装修材料中最主要的OPEs单体[21]. 办公楼和家庭灰尘中TEHP是最主要的OPEs,占比分别为79.0%和61.4%. 这可能与TEHP在地板油、合成橡胶、PVC塑料制品(如窗户框)和漆器等产品的使用有关[37],因为TEHP不仅可用作增塑剂,也用作油漆和地板蜡中的抗发泡剂. 此外,除TCIPP外,TPHP也是研究生办公室灰尘中的一大特征污染物,这可能与TPHP在电子产品中的使用密切相关[38]. 目前已有研究证实TPHP在我国南方电子废弃物拆解厂灰尘中作为含量最高的污染物被广泛检出,占Σ8OPEs的45.0%—50.9%[39].

    • 本研究评估了不同职业人群(包括高校研究生、高校本科生、办公室工作人员、商场工作人员、街边商铺工作人员和地铁工作人员)在生活和工作/学习环境中通过手口摄入、皮肤接触和呼吸摄入3种暴露途径对室内灰尘中OPEs的平均日暴露量(表3). 结果表明,ADDing>ADDder>ADDinh,且ADDing比ADDder和ADDinh的日暴露量高1—4个数量级. 手口摄入是职业人群对室内环境灰尘中OPEs的主要暴露途径,与以往的研究结果一致[15,40]. 不同职业人群暴露量从高到低排序为:高校研究生(6.18 ng·kg−1·d−1)>办公室工作人员(5.72 ng·kg−1·d−1)>高校本科生(1.77 ng·kg−1·d−1)>商场工作人员(1.02 ng·kg−1·d−1)>街边商铺工作人员(9.82×10−1 ng·kg−1·d−1)>地铁工作人员(8.61×10−1 ng·kg−1·d−1). 本研究中ADD值普遍低于其他国家室内日暴露量(埃及20.9 ng·kg−1·d-1[28]、挪威70 ng·kg−1·d-1[15]和英国785 ng·kg−1·d-1[15]),高校研究生和办公室人员的日暴露量与中国其他地区(哈尔滨5.22 ng·kg−1·d-1[24]和广州4.95—8.08 ng·kg−1·d-1[14])相当.

      不同职业人群摄入OPEs的主要暴露源存在一定差异(图2). 生活环境灰尘是地铁站工作人员、高校本科生、街边商铺和商场摄入OPEs的主要暴露源,这4种职业人群对生活环境灰尘中OPEs的摄入量分别占两种环境总摄入量的93.9%、82.6%、81.1%和78.0%. 而工作/学习环境灰尘是办公室工作人员和高校研究生摄入OPEs的主要暴露源,这2种职业人群对工作/学习环境中灰尘OPEs的摄入量分别占两种环境总摄入量的86.1%和76.4%.

    • 总体上(图3),各职业人群不同暴露途径的HQ值排序为:HQing > HQder > HQinh. 各类OPEs中,TCIPP是对非致癌风险的主要贡献者,TCIPP的HI比其他OPEs的HI高1—2个数量级. 6种职业人群暴露于生活和工作/学习环境室内灰尘HI值排序依次为:高校研究生(3.64×10−4)>办公室工作人员(1.41×10−4)>高校本科生(1.31×10−4)>商场工作人员(4.22×10−5)>街边商铺工作人员(3.83×10−5)>地铁站工作人员(2.93×10−5). 综上,高校研究生暴露于生活和工作/学习环境室内灰尘中OPEs的非致癌风险水平高于其他职业者,但是各种职业人群的HI值均远小于1,表明生活和工作/学习环境灰尘中OPEs对6种职业人群造成的非致癌风险可忽略.

    • 总体上(图4),各职业人群不同暴露途径的CR值排序为:CRing > CRder > CRinh. 各类OPEs中,TEHP对办公室工作人员、商场工作人员、街边商铺工作人员和地铁工作人员的致癌风险更高,而对高校本科生和高校研究生具有更高风险的是TDCIPP. 6种职业人群的总致癌风险指数CRT排序依次为:办公室工作人员(8.02×10−9)>街边商铺工作人员(1.06×10−9)>商场工作人员(1.01×10−9)>地铁站工作人员(7.99×10-10)>高校本科生(5.6×10-10)>高校研究生(3.86×10-10). 所有OPEs的致癌风险CR值均比1×10−6低3—4个数量级,表明生活和工作/学习环境灰尘中OPEs对不同职业人群造成的致癌风险均在可接受的范围内.

    • (1)OPEs是上海市室内灰尘中普遍存在的环境污染物,但是不同微环境中OPEs的污染水平和组成特征存在一定差异. 研究生办公室和办公楼灰尘中OPEs的含量远高于其他室内环境. 绝大多数微环境包括地铁站、商场、街边商铺、宿舍和研究生办公室灰尘中以Cl-OPEs为主,其中TCIPP是主要污染物;在办公楼、家庭和教室中以Alkyl-OPEs为主,其中教室的主要污染物为TNBP和TCIPP,办公楼和家庭的主要污染物为TEHP.

      (2)在生活和工作/学习环境中,手口摄入是人类暴露于灰尘中OPEs的主要暴露途径,但是不同职业人群摄入OPEs的主要暴露源存在一定差异,生活环境室内灰尘是商场、街边商铺和地铁站的工作人员以及高校本科生的主要暴露源;相反地,工作环境室内灰尘是办公室工作人员和高校研究生的主要暴露源.

      (3)在生活和工作/学习环境中,人类暴露于灰尘中OPEs的非致癌风险和致癌风险均在可接受范围内,但是不同职业人群面临的非致癌风险和致癌风险均存在一定差异.

    参考文献 (40)

返回顶部

目录

/

返回文章
返回