-
随着工业化和城市化的快速发展,城市道路交通愈加发达,机动车保有量逐年增加[1],这极大加剧了道路积尘污染. 道路积尘是大气颗粒物(PM10和PM2.5)的主要来源之一,其成分复杂,包含重金属、多环芳烃、微塑料和碳质组分等颗粒态污染物[2]. 研究表明,水溶性离子易与水结合而具有表面活性剂的作用[3]. 道路积尘中颗粒态污染物会依附在水溶性离子表面从而进入人体,其毒性和被人体吸收的效率会在水溶性离子的催化作用下得到增强,对人体健康产生严重危害[4-5]. 此外,道路积尘具有较强的吸湿能力,能够直接影响大气环境及大气降水的酸碱度. 其中,水溶性离子的消光系数与雾霾污染程度呈正相关,二次离子(NO3−、SO42−、NH4+)对大气能见度有较强影响[6]. 因此,分析道路积尘的水溶性无机离子组成特征及其排放源对大气污染防治至关重要.
目前,国内学者开展了大量关于道路积尘负荷和排放特征的研究. 如刘俊芳等[7]探讨了北京市丰台区不同环线区域内车流量和道路积尘负荷的变化规律,发现车流量与道路积尘负荷、排放强度呈反向关系. 郭硕等[8]研究了石家庄市夏季机动车道道路积尘负荷及排放因子,结果表明车速对再悬浮的PM2.5浓度影响较大,对再悬浮的PM10浓度影响较小. 杨乃旺等[9]基于积尘负荷法对西安市4种类型道路的道路积尘排放特征研究发现,扬尘排放系数在次干路最大,支路次之,快速路和主干路最小. 杨德容等[10]采用AP-42排放因子模型与地理统计分析相结合的方法对成都市区及郊区道路积尘进行研究,发现中心城区中天府广场附近道路扬尘中PM10和PM2.5排放量较大,主要受道路密度和车辆流量影响. 已有研究对理解道路积尘的积尘负荷和排放特征有重要的意义,然而对道路积尘水溶性离子的污染特征及来源分析仍未见报道. 特别是作为“2+26”城市京津冀大气污染传输通道上的安阳市,道路积尘方面的研究少之又少.
近几十年,安阳市工业生产规模和机动车保有量逐年递涨,加剧了大气污染. 2015—2020年,安阳市PM2.5和PM10的年平均浓度在河南省18个省辖市中排名皆在前三,远超《环境空气质量标准》(GB 3095—2012)二级标准限值[11]. 因此,本研究以安阳市夏季道路积尘为研究对象,通过比值法分析道路积尘中水溶性离子的组成和污染特征,使用地理统计分析和正定矩阵模型确定道路积尘中水溶性离子来源,以期为安阳市探究大气污染源头和治理措施提出提供数据支持.
安阳市夏季道路积尘水溶性离子污染特征及来源分析
Pollution characteristics and source analysis of water-soluble ions in road dust in Anyang city during summer
-
摘要: 为了解安阳市夏季道路积尘水溶性离子污染特征及来源,于2020年5月使用手持式便携吸尘器采集70个城市道路积尘样品,经离子色谱仪测定其中10种水溶性离子(F−、Cl−、NO2−、NO3−、SO42−、K+、Na+、Ca2+、Mg2+、NH4+),用比值分析法和相关性分析法分析其污染特征,结合地理统计分析和正定矩阵模型判断其主要来源. 结果表明,Ca2+、SO42−、NO3−、Cl−、K+在安阳市道路积尘水溶性离子中占比较大,其中Ca2+占比最高,SO42−和NO3−次之. 在3种道路类型中,Ca2+在快速路、主干道和次干道的占比分别为53.0%、45.3%和 45.9%;SO42−在快速路、主干道和次干道的占比分别为16.7%、17.5%和 18.5%. NO3−/ SO42−的比值为0.79,说明固定源的贡献更大;水溶性阴阳离子相关性斜率(0.42)小于1,道路积尘呈碱性. 安阳市道路积尘中Ca2+与SO42−,Na+与Mg2+和Cl−空间分布相似,其高值区主要集中在研究区域的西北部和西南部. 安阳市夏季道路积尘中水溶性离子的主要来源为机动车尾气源、燃煤源、农业源、混合源、扬尘源和生物质燃烧源,其贡献率分别为12.8%、19.1%、16.6%、14.7%和19.0%. 以期为安阳市探究道路积尘污染源头和治理措施提出提供数据支持.Abstract: To understand the pollution characteristics and sources of water-soluble ions in road dust in Anyang City during summer, 70 road dust samples were collected by a hand-held portable vacuum cleaner in May 2020 in this study, and 10 water-soluble ions (F−、Cl−、NO2−、NO3−、SO42−、K+、Na+、Ca2+、Mg2+、NH4+) were measured by ion chromatography. Ratio analysis and correlation analysis were used to analyze the pollution characteristics, and geographical statistical analysis and positive matrix factorization model were used to determine the main sources of water-soluble ions. The results showed that Ca2+、SO42−、NO3−、Cl−、K+ accounted for a large proportion of water-soluble ions in road dust from Anyang City, and Ca2+ accounted for the highest proportion, followed by SO42−and NO3−. Among the three types of roads, Ca2+ accounts for 53.0%, 45.3% and 45.9% of expressways, main roads and secondary roads respectively. SO42−accounted for 16.7%, 17.5% and 18.5% of expressways, main roads and secondary roads, respectively. The ratio of NO3−/ SO42−was 0.79, which showed that the contribution of stationary sources was greater than mobile exhaust. The correlation slope of water-soluble anion and anion (0.42) is less than 1, indicating that road dust was alkaline. The spatial distribution of Ca2+ and SO42−, Na+ and Mg2+ and Na+ and Cl− in road dust of Anyang City were similar, and the high-value areas were mainly concentrated in the northwest and southwest of the study area. The main sources of water-soluble ions in road dust in Anyang City were vehicle exhaust sources, coal sources, agricultural sources, mixed sources, dust sources and biomass combustion sources, and their contribution rates were 12.8%, 19.1%、16.6%, 14.7% and 19.0%, respectively. To provide data support for Anyang city to explore the source of road dust and put forward control measures.
-
Key words:
- Anyang city /
- road dust /
- water-soluble ions /
- spatial distribution /
- sources analysis.
-
表 1 水溶性离子相关性分析
Table 1. Correlation analysis of water-soluble ions
F− Cl− NO2− NO3− SO42− Na+ NH4+ K+ Mg2+ Ca2+ F− 1 Cl− 0.23 1 NO2− 0.07 0.16 1 NO3− −0.04 −0.02 −0.09 1 SO42− 0.13 0.58** 0.19 0.41** 1 Na+ 0.42** 0.89** 0.22 0.03 0.60** 1 NH4+ −0.10 −0.16 0.06 0.57** 0.42** −0.07 1 K+ 0.09 0.37** 0.42** −0.03 0.33** 0.45** 0.243* 1 Mg2+ 0.15 0.61** 0.25* 0.46** 0.55** 0.51** 0.349** 0.56** 1 Ca2+ 0.10 0.35** 0.12 0.47** 0.70** 0.49** 0.22 0.14 0.19 1 **:在0.01级别(双尾),相关性显著;*:在0.05级别(双尾),相关性显著.
**: At 0.01 level (double tail), the correlation is significant; *: At 0.05 level (two-tailed), the correlation is significant. -
[1] 郭硕, 肖捷颖, 刘娟, 等. 石家庄市冬季城市道路积尘负荷排放特征研究 [J]. 环境科学与技术, 2017, 40(2): 163-167. GUO S, XIAO J Y, LIU J, et al. Silt loading characteristic of Shijiazhuang City paved road in winter based on sample plot method [J]. Environmental Science & Technology, 2017, 40(2): 163-167(in Chinese).
[2] WANG G H, WANG H, YU Y J, et al. Chemical characterization of water-soluble components of PM10 and PM2.5 atmospheric aerosols in five locations of Nanjing, China [J]. Atmospheric Environment, 2003, 37(21): 2893-2902. doi: 10.1016/S1352-2310(03)00271-1 [3] 刘芳, 黄科瑞. 百色市右江区大气PM10中水溶性无机离子的化学特征与来源 [J]. 环境污染与防治, 2012, 34(6): 57-60,109. LIU F, HUANG K R. Chemical characters and source identification of water-soluble inorganic ions in PM10 in Youjiang district of Baise [J]. Environmental Pollution & Control, 2012, 34(6): 57-60,109(in Chinese).
[4] 刀谞, 张霖琳, 王超, 等. 京津冀冬季与夏季PM2.5/PM10及其水溶性离子组分区域性污染特征分析 [J]. 环境化学, 2015, 34(1): 60-69. doi: 10.7524/j.issn.0254-6108.2015.01.2014032603 DAO X, ZHANG L L, WANG C, et al. Characteristics of mass and ionic compounds of atmospheric particles in winter and summer of Beijing-Tianjin-Hebei area, China [J]. Environmental Chemistry, 2015, 34(1): 60-69(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.01.2014032603
[5] 任丽红, 周志恩, 赵雪艳, 等. 重庆主城区大气PM10及PM2.5来源解析 [J]. 环境科学研究, 2014, 27(12): 1387-1394. REN L H, ZHOU Z E, ZHAO X Y, et al. Source apportionment of PM10 and PM2.5 in urban areas of Chongqing [J]. Research of Environmental Sciences, 2014, 27(12): 1387-1394(in Chinese).
[6] 王琨, 贾琳琳, 黄丽坤, 等. 严重雾霾期大气PM2.5和PM10中水溶性离子污染特征 [J]. 哈尔滨工业大学学报, 2014, 46(12): 53-58. WANG K, JIA L L, HUANG L K, et al. Pollution characteristics of water-soluble ions in PM2.5 and PM10 under severe haze days [J]. Journal of Harbin Institute of Technology, 2014, 46(12): 53-58(in Chinese).
[7] 刘俊芳, 樊守彬, 郭秀锐, 等. 基于车载移动监测的北京市丰台区道路扬尘源排放特征 [J]. 环境科学学报, 2021, 41(11): 4423-4429. LIU J F, FAN S B, GUO X R, et al. Emission characteristics of fugitive dust sources on roads in Fengtai District, Beijing based on vehicle-mounted mobile monitoring [J]. Acta Scientiae Circumstantiae, 2021, 41(11): 4423-4429(in Chinese).
[8] 郭硕, 肖捷颖, 安塞, 等. 利用快速检测法研究石家庄道路交通扬尘排放特征 [J]. 环境污染与防治, 2019, 41(2): 206-210. GUO S, XIAO J Y, AN S, et al. Characteristics of road dust emission in Shijiazhuang based on TRAKER system [J]. Environmental Pollution & Control, 2019, 41(2): 206-210(in Chinese).
[9] 杨乃旺, 宋文斌, 闫东杰, 等. 基于积尘负荷的西安市铺装道路扬尘排放研究 [J]. 环境科学学报, 2021, 41(4): 1259-1266. YANG N W, SONG W B, YAN D J, et al. Emission characteristics of pavement road dust in Xi’an based on dust load method [J]. Acta Scientiae Circumstantiae, 2021, 41(4): 1259-1266(in Chinese).
[10] 杨德容, 叶芝祥, 杨怀金, 等. 成都市铺装道路扬尘排放清单及空间分布特征研究 [J]. 环境工程, 2015, 33(11): 83-87. YANG D R, YE Z X, YANG H J, et al. Emission inventory and spatial distribution of paved road fugitive dust in Chengdu in Sichuan Province [J]. Environmental Engineering, 2015, 33(11): 83-87(in Chinese).
[11] 河南省生态环境厅. 河南省环境状况公报[EB/OL]. [2020-08-22]. http://sthjt.henan.gov.cn/xxgk/zfxxgk/xxgkml/ztfl/hjzlxx/hnshjzkgb/ [12] 安阳统计局. 2020年安阳市统计年鉴[M]. 2020. Anyang Bureau of Statistics. 2020 Anyang Statistical Yearbook[M]. 2020(in Chinese).
[13] 宋盈. 安阳市大气环境现状及其影响因素的研究[D]. 西安: 西安工程大学, 2012. SONG Y. The study on the atmospheric environmental status and the development factors of Anyang[D]. Xi'an: Xi'an Polytechnic University, 2012 (in Chinese).
[14] 安阳市人民政府. 2019年安阳市概览[M]. 2019. Anyang Municipal People's Government. Overview of Anyang City in 2019[M]. 2019(in Chinese).
[15] 杜小申, 燕丽, 贺晋瑜, 等. 安阳市典型工业源PM2.5排放特征及减排潜力估算 [J]. 环境科学, 2019, 40(5): 2043-2051. DU X S, YAN L, HE J Y, et al. PM2.5 emission characteristics and estimation of emission reduction potential from typical industrial sources in Anyang [J]. Environmental Science, 2019, 40(5): 2043-2051(in Chinese).
[16] 安阳市自然资源和规划局. 安阳市城市总体规划(2011-2020)[M]. 2019. Anyang Natural Resources and Planning Bureau. Anyang City Master Plan (2011-2020)[M]. 2019(in Chinese).
[17] 王欣玉, 任雅琪, 王丽丽, 等. 不同类型建筑垃圾堆场大气降尘中水溶性离子污染特征 [J]. 环境科学学报, 2021, 41(11): 4415-4422. WANG X Y, REN Y Q, WANG L L, et al. Pollution characteristics of water-soluble ions in atmospheric dustfall of different types of construction waste dumps [J]. Acta Scientiae Circumstantiae, 2021, 41(11): 4415-4422(in Chinese).
[18] CERAR S, MEZGA K, ŽIBRET G, et al. Comparison of prediction methods for oxygen-18 isotope composition in shallow groundwater [J]. Science of the Total Environment, 2018, 631/632: 358-368. doi: 10.1016/j.scitotenv.2018.03.033 [19] HOU D Y, O'CONNOR D, NATHANAIL P, et al. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review [J]. Environmental Pollution, 2017, 231: 1188-1200. doi: 10.1016/j.envpol.2017.07.021 [20] OLIVER M A, WEBSTER R. Kriging: A method of interpolation for geographical information systems [J]. International Journal of Geographical Information Systems, 1990, 4(3): 313-332. doi: 10.1080/02693799008941549 [21] YU W W, LIU R M, XU F, et al. Identifications and seasonal variations of sources of polycyclic aromatic hydrocarbons (PAHs) in the Yangtze River Estuary, China [J]. Marine Pollution Bulletin, 2016, 104(1/2): 347-354. [22] PAATERO P, TAPPER U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values [J]. Environmetrics, 1994, 5(2): 111-126. doi: 10.1002/env.3170050203 [23] PAATERO P. Least squares formulation of robust non-negative factor analysis [J]. Chemometrics and Intelligent Laboratory Systems, 1997, 37(1): 23-35. doi: 10.1016/S0169-7439(96)00044-5 [24] CHEN X D, LU X W. Contamination characteristics and source apportionment of heavy metals in topsoil from an area in Xi’an city, China [J]. Ecotoxicology and Environmental Safety, 2018, 151: 153-160. doi: 10.1016/j.ecoenv.2018.01.010 [25] 张晟玮. 济南市道路灰尘中重金属污染研究[D]. 西安: 陕西师范大学, 2019. ZHANG S W. Study on heavy metal pollution in road dust in Jinan city[D]. Xi'an: Shaanxi Normal University, 2019 (in Chinese).
[26] LANG Y H, LI G L, WANG X M, et al. Combination of Unmix and PMF receptor model to apportion the potential sources and contributions of PAHs in wetland soils from Jiaozhou Bay, China [J]. Marine Pollution Bulletin, 2015, 90(1/2): 129-134. [27] TAN J H, DUAN J C, MA Y L, et al. Long-term trends of chemical characteristics and sources of fine particle in Foshan City, Pearl River Delta: 2008–2014 [J]. Science of the Total Environment, 2016, 565: 519-528. doi: 10.1016/j.scitotenv.2016.05.059 [28] 周盼, 秦伟, 郭硕, 等. 石家庄冬季道路积尘水溶性离子污染特征及来源分析 [J]. 环境化学, 2018, 37(5): 952-958. doi: 10.7524/j.issn.0254-6108.2017110103 ZHOU P, QIN W, GUO S, et al. Pollution characteristics and Source analysis of water-soluble ions in the paved road dust in Shijiazhuang during winter [J]. Environmental Chemistry, 2018, 37(5): 952-958(in Chinese). doi: 10.7524/j.issn.0254-6108.2017110103
[29] 李少洛. 济南市降尘污染特征及组分来源解析[D]. 济南: 山东建筑大学, 2019. LI S L. Characteristics and source analysis of dust pollution in Jinan city[D]. Jinan: Shandong Jianzhu University, 2019 (in Chinese).
[30] ZHANG F W, XU L L, CHEN J S, et al. Chemical compositions and extinction coefficients of PM2.5 in peri-urban of Xiamen, China, during June 2009–May 2010 [J]. Atmospheric Research, 2012, 106: 150-158. doi: 10.1016/j.atmosres.2011.12.005 [31] 陶俊, 张仁健, 董林, 等. 夏季广州城区细颗粒物PM2.5和PM1.0中水溶性无机离子特征 [J]. 环境科学, 2010, 31(7): 1417-1424. TAO J, ZHANG R J, DONG L, et al. Characterization of water-soluble inorganic ions in PM2.5 and PM1.0 in summer in Guangzhou [J]. Environmental Science, 2010, 31(7): 1417-1424(in Chinese).
[32] TAO J, ZHANG L M, ENGLING G, et al. Chemical composition of PM2.5 in an urban environment in Chengdu, China: Importance of springtime dust storms and biomass burning [J]. Atmospheric Research, 2013, 122: 270-283. doi: 10.1016/j.atmosres.2012.11.004 [33] 陈诚, 陈辰, 汤莉莉, 等. 江苏沿江城市PM10和PM2.5中水溶性离子特征及来源分析 [J]. 环境化学, 2014, 33(12): 2123-2135. doi: 10.7524/j.issn.0254-6108.2014.12.001 CHEN C, CHEN C, TANG L L, et al. Characteristics and sources analysis of water-soluble ions in PM10 and PM2.5 in cities along the Yangtze River of Jiangsu Province [J]. Environmental Chemistry, 2014, 33(12): 2123-2135(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.12.001
[34] KHAN M F, SHIRASUNA Y, HIRANO K, et al. Characterization of PM2.5, PM2.5–10 and PM>10 in ambient air, Yokohama, Japan [J]. Atmospheric Research, 2010, 96(1): 159-172. doi: 10.1016/j.atmosres.2009.12.009 [35] 曹双, 吴丹, 陈利珍, 等. 中国大气气溶胶中水溶性离子的污染特征 [J]. 环境科学与技术, 2016, 39(8): 103-115. CAO S, WU D, CHEN L Z, et al. Characteristics of water-soluble inorganic ions of aerosol in China: A review [J]. Environmental Science & Technology, 2016, 39(8): 103-115(in Chinese).
[36] WANG Y, ZHUANG G S, TANG A H, et al. The ion chemistry and the source of PM2.5 aerosol in Beijing [J]. Atmospheric Environment, 2005, 39(21): 3771-3784. doi: 10.1016/j.atmosenv.2005.03.013 [37] 张金, 姬亚芹, 邢雅彤, 等. 天津市高校夏季道路扬尘PM2.5中水溶性离子污染特征及来源 [J]. 环境科学学报, 2020, 40(5): 1604-1610. ZHANG J, JI Y Q, XING Y T, et al. Characteristics and sources of water-soluble ions in road dust PM2.5 during summer in university campuses of Tianjin [J]. Acta Scientiae Circumstantiae, 2020, 40(5): 1604-1610(in Chinese).
[38] 陈筱佳, 程金平, 江璇, 等. 上海市中心城区主干道道路扬尘组分特征及来源解析 [J]. 环境污染与防治, 2015, 37(6): 10-13. CHEN X J, CHENG J P, JIANG X, et al. Study on the chemical compositions characteristics and source apportionment in road dust of main roads in Shanghai central district [J]. Environmental Pollution & Control, 2015, 37(6): 10-13(in Chinese).
[39] 武媛媛, 李如梅, 彭林, 等. 运城市道路扬尘化学组成特征及来源分析 [J]. 环境科学, 2017, 38(5): 1799-1806. WU Y Y, LI R M, PENG L, et al. Chemical compositions and source apportionment of road dust in Yuncheng [J]. Environmental Science, 2017, 38(5): 1799-1806(in Chinese).
[40] 沈振兴, 李丽珍, 杜娜, 等. 西安市春季大气细粒子的质量浓度及其水溶性组分的特征 [J]. 生态环境, 2007, 16(4): 1193-1198. SHEN Z X, LI L Z, DU N, et al. Mass concentration and water-soluble ions in spring aerosol (PM2.5) at Xi’an [J]. Ecology and Environment, 2007, 16(4): 1193-1198(in Chinese).
[41] 薛国强, 朱彬, 王红磊. 南京市大气颗粒物中水溶性离子的粒径分布和来源解析 [J]. 环境科学, 2014, 35(5): 1633-1643. XUE G Q, ZHU B, WANG H L. Size distributions and source apportionment of soluble ions in aerosol in Nanjing [J]. Environmental Science, 2014, 35(5): 1633-1643(in Chinese).
[42] 耿彦红, 刘卫, 单健, 等. 上海市大气颗粒物中水溶性离子的粒径分布特征 [J]. 中国环境科学, 2010, 30(12): 1585-1589. GENG Y H, LIU W, SHAN J, et al. Characterization of major water-soluble ions in size-fractionated particulate matters in Shanghai [J]. China Environmental Science, 2010, 30(12): 1585-1589(in Chinese).
[43] 邱婷, 周家斌, 肖经汗, 等. 武汉市秋、冬季大气PM2.5中水溶性离子污染特征及来源分析 [J]. 环境污染与防治, 2015, 37(4): 17-20. QIU T, ZHOU J B, XIAO J H, et al. Characteristics and sources apportionment of water-soluble ions in PM2.5 in autumn and winter of Wuhan [J]. Environmental Pollution & Control, 2015, 37(4): 17-20(in Chinese).
[44] YE B M, JI X L, YANG H Z, et al. Concentration and chemical composition of PM2.5 in Shanghai for a 1-year period [J]. Atmospheric Environment, 2003, 37(4): 499-510. doi: 10.1016/S1352-2310(02)00918-4 [45] 安阳统计局. 2018年安阳市统计年鉴[M]. 2018. Anyang Bureau of Statistics. 2018 Anyang Statistical Yearbook[M]. 2018(in Chinese).