-
长江流域是中国第一大流域,覆盖19个省级行政单位,以21%的国土面积承载了全国的40%的人口和经济总量[1-2]。长江流域的中下游人口密度、经济发展程度在改革开放以来均位居我国前列,随之而来的环境压力也不容忽视。随着经济高速发展,排放到长江的污染物总量和强度都在逐年上升,排放到长江的污水量同样占到全国污水总量的40%[1]。长江及其支流监控断面主要水质因子为高锰酸盐指数 (CODMn) 、氨氮 (NH3-N) 等耗氧物质[3]。根据《中国生态环境统计年报》,2008年长江流域接纳的COD和NH3-N负荷分别占到全国的40.2%和40.9%;到2020年,COD和NH3-N负荷仍然分别占据全国的37.3%和42.8%,长江流域的污染排放强度长期以来达到全国平均水平的1.5~2倍[1]。高强度污染物排放,造成长江流域水体耗氧物质的浓度升高[4],溶解氧 (dissolved oxygen, DO) 下降。
DO是地表水监控的基本指标,对于维持水生生态系统正常功能具有重要意义[5]。空气中的氧气溶解和水生植物的光合作用是补充水中DO的主要途径。大气溶氧主要受到气压、温度、水体盐度的影响,此外流量增加也有利于DO恢复[6]。人口密度高、工业发达区域排放的大量有机物质和氮磷含量高的污水进入受纳水体后,一方面会带来营养物质不断积累,引起浮游植物和藻类吸收NH3-N大量生长繁殖[7],造成水体底部造成缺氧,水体富营养化愈演愈烈[8];另一方面,NH3-N和有机物等耗氧物质进入水体后,NH3-N的硝化过程,有机物的降解过程会消耗大量溶解氧[9]。低DO状态的水体中,水质的变化还会引起沉积物中NH3-N的释放[10]。此外,DO低于3 mg∙L−1的缺氧水体会对水体中鱼类的呼吸作用产生影响,抑制鱼类的基因表达,从而导致鱼类和甲壳动物的死亡[11-12],进而破坏生态系统的稳定性和生物多样性。
伴随着长江流域中下游人口和用水量的激增,给水处理系统造成巨大压力,也意味着流域内大量污水排入长江[13]。随污水排放的耗氧污染物导致的水环境危机在流域经济快速发展的过程中已有显现,DO较低、CODMn和NH3-N负荷高为水体恶化的标志[14-15],CODMn和NH3-N与地表水的水质密切相关[16]。为探求长江流域多年的水质变化及其主要原因,本研究利用长江流域2008至2018年间重点监测断面的DO、CODMn和NH3-N质量浓度数据,分析了长江流域重点河段监控断面的DO以及耗氧污染物CODMn和NH3-N的时空变化特征,结合对沿岸污水排放数据的统计和相关性分析,探讨水质变化的关键驱动因素,总结长江流域过去的水污染防治成果,为制定未来的污染物控制目标制定提供参考。
基于溶解氧和耗氧污染物变化的长江流域水质改善过程分析 (2008—2018年)
Recovery process analysis of water quality in the Yangtze River Basin based on changes of dissolved oxygen and oxygen-consuming substances (2008-2018)
-
摘要: 长江流域以21%国土面积承载了我国40%以上的人口和经济总量。基于长江流域水质监测数据,利用统计和相关性分析方法,分析了长江流域重点断面溶解氧 (DO) 和耗氧污染物 (CODMn和NH3-N) 指标的多年时空变化趋势,探讨了流域水质恢复规律和特征。结果表明:在2008—2018年,长江流域水体的水质整体上呈现好转趋势,重点断面中Ⅰ~Ⅲ类水质占比之和上升,达到95.9%,增加了3.4%。其中,在重点监控断面中年DO平均值逐年升高,大于7.5 mg∙L−1的断面数量占比2018年已经达到85.7%,长江上游区域增加最为明显;年CODMn平均值稳定处于Ⅲ类水限值内;年NH3-N平均值呈现下降趋势,优于地表水Ⅱ类水质标准值 (< 0.5 mg∙L−1) 的断面数量占比已经达到95.2%,下游下降最为明显 (下降13%) 。相关性分析结果表明,DO与CODMn和NH3-N均呈负相关,相关系数分别为−0.40和−0.44;CODMn和NH3-N呈正相关,相关系数为0.36,NH3-N已成为长江流域水体主要耗氧污染物。长江流域水体DO恢复与耗氧污染物减排密切相关,尤其是对高浓度NH3-N的控制。长江干流沿线省市的城市环境基础设施投资多年平均占比超过全国的50%,2018年的污水排放量比2008年增加37.9%,平均污水处理率增加23.3%,未处理污水量减少了77.8%。本研究结果表明,长江流域水体耗氧污染得到有效控制,干流水质呈现逐步好转态势,可为制定长江流域污染物控制目标提供参考。Abstract: The Yangtze River basin, with 21% of its land area supporting more than 40% of China's population and economic aggregate, plays an important role. The temporal and spatial trends of dissolved oxygen (DO) and oxygen consuming pollutants (CODMn and NH3-N) of the Yangtze River Basin were studied, and the process of water quality restoration was analyzed through statistics and correlation analysis. The results showed that from 2008 to 2018, the overall water quality of the Yangtze River Basin showed an improvement trend year by year. The total proportion of class Ⅰ~Ⅲ water quality in key sections increased to 95.9%, increasing by 3.4%. Among them, the annual average concentration of DO in key sections increased, and the number of sections greater than 7.5 mg∙L−1 accounted for 85.7% in 2018, with the most obvious increase in the upstream. The annual average concentration of CODMn was stable within the limit of class Ⅲ water. The average annual concentration of NH3-N showed a downward trend, and the proportion of sections lower than 0.5 mg∙L−1 reached 95.2%, with the most obvious decrease (13%) in the downstream. Correlation analysis showed that DO was negatively correlated with CODMn and NH3-N, with correlation coefficients of −0.40 and −0.44, respectively. CODMn was positively correlated with NH3-N, and the correlation coefficient was 0.36. NH3-N had become the main oxygen consumption pollutant in the water body of the Yangtze River Basin. Water DO recovery in the Yangtze River Basin was closely related to the reduction of oxygen consumption pollutants, especially the control of high concentration of NH3-N. Investment in urban environmental infrastructure in the Yangtze River Basin has accounted for more than 50% of the total country emission on average for many years. In 2018, urban sewage discharge in the Yangtze River Basin was 37.9% higher than that in 2008, the average sewage treatment rate increased by 23.3 percent, and the amount of untreated sewage decreased by 77.8 percent. Therefore, with the progress of water pollution control and treatment in China, oxygen pollution in the main water bodies of the Yangtze River basin has been effectively controlled and water quality has shown gradual improvement accordingly.
-
Key words:
- the Yangtze River Basin /
- water quality /
- DO /
- CODMn /
- NH3-N /
- water pollution control
-
-
[1] 中华人民共和国环境保护部, 中华人民共和国国家发展和改革委员会, 中华人民共和国水利部. 长江经济带生态环境保护规划[EB/OL]. [2017-07-13]. https://www.mee.gov.cn/gkml/hbb/bwj/201707/t20170718_418053.html. [2] 曾刚, 曹贤忠, 朱贻文. 长江经济带城市协同发展格局与前景[J]. 长江流域资源与环境, 2022, 31(8): 1685-1693. [3] 中华人民共和国水利部. 三峡工程公报(2020)[EB/OL]. [2021-11-30]. http://www.mwr.gov.cn/sj/tjgb/sxgcgb/202111/t20211130_1553255.html. [4] TANG W Z, PEI Y S, ZHENG H, et al. Twenty years of China's water pollution control: Experiences and challenges. Chemosphere (Oxford)[J]. 2007, 295: 133875–133875. [5] KANNEL P. R, LEE S, LEE Y. S, et al. Application of water quality indices and dissolved oxygen as indicators for river water classification and urban impact assessment[J]. Environmental Monitoring and Assessment, 2007, 132(1): 93-110. [6] ONABULE O A, MITCHELL S B, & COUCEIRO F. The effects of freshwater flow and salinity on turbidity and dissolved oxygen in a shallow macrotidal estuary: A case study of Portsmouth Harbour[J]. Ocean & Coastal Management, 2020, 191: 105179. [7] PAN X, TANG L, FENG J, et al. Experimental research on the degradation coefficient of ammonia nitrogen under different hydrodynamic conditions[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104(2): 288-292. doi: 10.1007/s00128-019-02781-0 [8] XU J, YIN K, LEE J H, et al. Long-term and seasonal changes in nutrients, Phytoplankton Biomass, and dissolved oxygen on Deep Bay, Hong Kong[J]. Estuaries and Coasts, 2010, 33(2): 399-416. doi: 10.1007/s12237-009-9213-5 [9] 潘向忠, 高玉蓉, 李佳, 等. 钱塘江杭州段水体中溶解氧现状及其影响因素[J]. 环境保护科学, 2011, 37(4): 13-16. doi: 10.3969/j.issn.1004-6216.2011.04.005 [10] 郭建宁, 卢少勇, 金相灿, 等. 低溶解氧状态下河网区不同类型沉积物的氮释放规律[J]. 环境科学学报, 2010, 30(3): 614-620. [11] HLADYZ S, WATKINS S C, WHITWORTH K L, et al. Flows and hypoxic blackwater events in managed ephemeral river channels[J]. Journal of Hydrology, 2011, 401(1/2): 117-125. [12] 宋银都, 曾萌冬 周昊天, 等. 不同溶解氧水平对鳜呼吸代谢酶及其基因表达量的影响[J]. 水产科学, 2022, 41(3): 438-444. doi: 10.16378/j.cnki.1003-1111.20183 [13] POLONENKO L M, HAMOUDA M A, & MOHAMED M M. Essential components of institutional and social indicators in assessing the sustainability and resilience of urban water systems: Challenges and opportunities[J]. Science of the Total Environment, 2020, 708: 135159. doi: 10.1016/j.scitotenv.2019.135159 [14] 雷沛, 王超, 张洪, 等. 重庆市重污染次级河流伏牛溪水污染控制与水质改善[J]. 环境工程学报, 2019, 13(1): 95-108. doi: 10.12030/j.cjee.201712099 [15] 张洪, 林超 雷沛, 等. 海河流域河流耗氧污染变化趋势及氧亏分布研究[J]. 环境科学学报, 2015, 35(8): 2324-2335. [16] YOU Q H, FANG N, LIU L L, et al. Effects of land use, topography, climate and socio-economic factors on geographical variation pattern of inland surface water quality in China[J]. PloS One, 2020, 14(6): e0217840. [17] GEMMER M, JIANG T, SU B, et al. Seasonal precipitation changes in the wet season and their influence on flood/drought hazards in the Yangtze River Basin, China[J]. Quaternary International, 2008, 186(1): 12-21. doi: 10.1016/j.quaint.2007.10.001 [18] 续衍雪, 魏明海 张雨航, 等. 基于水质的长江经济带生态补偿资金分配测算研究[J]. 环境保护科学, 2021, 47(5): 13-15. [19] YANG S, HAO H, LIU B, et al. Influence of socioeconomic development on river water quality: A case study of two river basins in China[J]. Environmental Science and Pollution Research, 2021, 28(38): 53857-53871. doi: 10.1007/s11356-021-14338-y [20] LIU S, FU R, LIU Y, et al. Spatiotemporal variations of water quality and their driving forces in the Yangtze River Basin, China, from 2008 to 2020 based on multi-statistical analyses[J]. Environmental Science and Pollution Research, 2022, 29(46): 1-14. [21] 刘壮, 魏峣 陈强, 等. 长江黄河上游地表水溶解氧时空分布特征研究——以四川省为例[J/OL]. 环境保护科学: 1-9 2-11-02].https://doi.org/10.16803/j.cnki.issn.1004-6216.2022070002.
[22] 袁静. 浅析赣江滁槎断面水质状况[J]. 江西能源, 2007(4): 19-22. [23] 沈忱, 吕平毓, 冯顺新, 等. 向家坝水库蓄水对下游江段溶解氧饱和度影响研究[J]. 淡水渔业, 2014, 44(6): 31-36. doi: 10.3969/j.issn.1000-6907.2014.06.006 [24] 张婷婷, 张建 杨芳, 等. 温度对污水脱氮系统污染物去除效果及氧化亚氮释放的影响[J]. 环境科学, 2012, 33(4): 1283-1287. [25] PERNET-COUDRIER B, Qi W, Liu H, et al. Sources and pathways of nutrients in the semi-arid region of Beijing–Tianjin, China[J]. Environmental Science & Technology, 2012, 46(10): 5294-5301. [26] 黄炜惠, 马春子, 李文攀, 等. 我国地表水溶解氧时空变化及其对全球变暖的响应[J]. 环境科学学报, 2021, 41(5): 1970-1980. [27] HUANG J C, ZHANG Y J, BING H J, et al. Characterizing the river water quality in China: Recent progress and on-going challenges[J]. Water Research (Oxford), 2021, 201: 117309. doi: 10.1016/j.watres.2021.117309 [28] REN F, SUN Y, LIU J, et al. A modified dynamic DEA model to assess the wastewater treatment efficiency: perspective from Yangtze River and non-Yangtze River Basin[J]. Scientific Reports, 2022, 12(1): 1-15. doi: 10.1038/s41598-021-99269-x [29] XU T, CHANG F, HE X, et al. Influence of cascade hydropower development on water quality in the Middle Jinsha River on the upper reach of the Yangtze River[J]. Water, 2022, 14(12): 1943. doi: 10.3390/w14121943 [30] 程元辉, 毛宇鹏, 张洪. 珠江三角洲地区人为氮磷净输入特征及污染管控建议[J]. 环境工程学报, 2022, 16(6): 2049-2060. doi: 10.12030/j.cjee.202111035 [31] 雷沛, 王超, 张洪, 等. 重庆园博园龙景湖水质保持及其上游流域水污染治理方案[J]. 环境工程学报, 2019, 13(2): 481-495. doi: 10.12030/j.cjee.201806048