-
随着我国城市化水平的不断推进和基础设施的不断完善,城市污水处理能力逐渐提升,而污泥作为污水处理的副产物其产量也不断增加。污泥组成成分十分复杂,是一种由高度分散的絮凝体组成的稳定复杂胶体结构[1],特别是污泥细胞和EPS具有高度亲水性使污泥含水率高 (二沉池污泥的含水率可高达98%以上[2]) ,因此实现其有效的处理、处置及资源化利用,如填埋或焚烧,则必须建立在高效的污泥脱水基础之上。
传统的污泥脱水技术,如板框脱水法,需预先将湿污泥与化学调理剂 (如氯化铁、氧化钙等) 混合,通过试剂与胞外聚合物相互作用,实现污泥细胞的溶解及絮体颗粒的沉降,经这种方法调理后的污泥饼含水率仍高达75%~85%[3-4]。近些年,基于电化学原理而形成的污泥调理方法被认为是一种更清洁和高效的污泥脱水技术[1,5-6]。在电场作用下,污泥絮体不仅可以通过电极放电被直接破坏和分解,由电场作用形成的电势差更可以极化每一个污泥粒子而促使细胞的电渗析脱水[7-8]。为进一步改善污泥絮体的凝聚作用,强化污泥絮体的孔道结构与脱水功能,以铁、铝等作为可牺牲性阳极材料的电絮凝技术进一步提高了电化学法在调理污泥、强化污泥脱水过程中的作用。
电絮凝作为一种新型的电化学污泥预处理方法,虽然可以在一定程度上改变污泥粒子的稳态结构并增强其团聚性,使污泥颗粒粒径增加、流变性降低、脱水孔道结构增强[9],但由于有限的污泥极板接触面积和较弱的电极催化活性[10],电絮凝对絮体颗粒和细胞的破解效果仍然有限。目前,已经有学者通过将电絮凝与氧化法耦合以增强污泥絮体的破解、EPS的降解和细胞水的释放,如利用双阳极电极 (可牺牲性阳极和DSA电极) 的电絮凝耦合直接氧化法和利用向体系中投加H2O2的电絮凝耦合间接氧化法[11-12],均取得了令人满意的污泥调理效果。然而,由于2种氧化方法的作用机制存在较大差异,在电极上的直接氧化和基于溶液相中形成强氧化性中间体对污泥絮体的分解,尤其是不同EPS结构中蛋白和多糖的降解与结合水的释放等均存在显著的差异,而影响其预处理的最佳条件,目前还尚未有较系统性的报道。
因此,本研究比较了电絮凝耦合DSA电极和电絮凝耦合H2O2对调理污泥强化污泥脱水的影响。以CST和泥饼MC为指标对2种耦合技术的操作参数进行对比和优化,拟得到2种耦合法的最优预处理条件;以絮体改变和溶胞程度方面探究2种耦合技术对污泥的预处理机制;以各层级水中EPS的成分改变、污泥颗粒粒径等指标的变化以及自由基猝灭实验揭示2种耦合工艺的各自作用机理;最后,通过对沉淀过程中的铁形态分析,结合脱水泥饼的扫描电子显微镜 (SEM) 观察,解释2种耦合工艺在电絮凝过程中的差异。
电絮凝耦合DSA或过氧化氢强化污泥脱水性能的比较与机理分析
Comparison and mechanism of electric flocculation coupled with DSA or hydrogen peroxide to enhance sludge dewatering performance
-
摘要: 为解决电絮凝法调理污泥期间电场无法有效破解污泥絮体、改善污泥脱水问题,分别将电絮凝与尺寸稳定阳极 (DSA,Dimensionally-stable anodes) 电极、H2O2进行耦合,比较和分析2种耦合工艺对污泥过滤性能、絮体破解程度、胞外聚合物 (EPS) 组分改变和污泥脱水性能的差异。结果表明,电絮凝耦合H2O2形成的间接氧化体系中,由于电致·OH在非均相体系中能无选择性地破坏污泥絮体、破解污泥细胞并降解胞外聚合物 (EPS),从而促使阳极释放的铁离子通过吸附架桥、网捕等作用与絮体碎片和EPS片段重聚并沉淀,使15 min内污泥毛细吸水时间 (CST) 和污泥含水率 (MC) 分别下降了73.9%和31.4%;然而电絮凝耦合DSA直接氧化法同期的污泥CST和MC仅分别下降了64.9%和26.4%。此外,间接氧化法可以同时降解松散结合层 (LB-EPS) 和紧密结合层 (TB-EPS) ,破坏EPS蛋白质亲水基团与水的作用力,并改善传统电化学法主要降解LB-EPS的不足,实现了提高电化学方法在同步污泥破解与沉降脱水方面的双重效能。本研究结果可为电化学预处理改善污泥脱水提供参考。Abstract: Abstract Aiming to solve the problems that traditional electric field cannot effectively crack the sludge flocs and improve the sludge dewatering during sludge conditioning by electric flocculation, coupling electric flocculation with DSA (Dimensionally Stable Anodes) electrode and H2O2 was used and their effects were compared. The differences was evaluated in terms of sludge filtration performance, floc breaking degree, changes in the composition of extracellular polymers (EPS). Results showed that in indirect oxidation systems (electro-coagulation with H2O2), the electro-generated ·OH could selectively destroy the sludge flocs, break sludge cells and degrade the extracellular polymer (EPS), causing the dissolution and degradation of EPS. The system could also promote the quick release of ferric ions and generate polyferric substance, enhancing the reunion and sediment of EPS fragments. In this circumstance, the CST and MC of sewage sludge could be decreased by 73.9% and 31.4% respectively within 15 min. However, the sludge CST and MC with DSA coupled direct oxidation just realized 64.9% and 26.4% reduction. The indirect oxidation could degrade both loosely bound layer (LB-EPS) and tightly bound (TB-EPS), destroying the interactions between hydrophilic groups of EPS protein and water and thus improving the drawbacks of direct oxidation. The results of this study would provide a reference for electrochemical pretreatment to improve sludge dewatering.
-
表 1 污泥中EPS含量和组成
Table 1. EPS content and composition in sludge
mg·L-1 污泥样品 S-EPS LB-EPS TB-EPS 原污泥 124.01 148.90 864.01 电絮凝耦合DSA 278.14 98.00 609.80 电絮凝耦合H2O2 302.40 64.30 440.24 表 2 不同耦合工艺处理污泥SCOD增长的动力学分析
Table 2. Table 2 Kinetic analysis of SCOD growth of sludge treated by different coupled processes
10−3 min−1 耦合工艺类型 阶段一 阶段二 表观速率常数 表观速率常数 电絮凝耦合DSA电极 −23.9 −1.3 电絮凝耦合H2O2 −34.71 3.9 表 3 不同处理下活性污泥样品S-EPS、LB-EPS和TB-EPS的EEM荧光强度
Table 3. EEM fluorescence intensities of S-EPS, LB-EPS and TB-EPS of sludge sample under different treatment systems
调理方法 S-EPS LB-EPS TB-EPS TPN APN HA FA TPN APN HA FA TPN APN HA FA 原污泥 972 965 107 112 4 284 3 569 223 429 9 999 7 326 361 1 343 电絮凝耦合DSA 1 442 1 167 125 379 3 876 3 358 201 397 8 680 7 216 342 1 273 电絮凝耦合H2O2 1 775 1 547 565 531 3 536 2 876 142 245 3 771 2 963 198 437 KI 1 765 1 503 567 528 3 514 2 873 140 243 3 759 2 961 199 433 i-PrOH 1 583 1 391 364 415 3 678 3 043 171 302 6 425 5 712 256 934 TBA 1 507 1 344 332 391 3 699 3 147 165 311 6 501 5 796 263 1 008 表 4 不同污泥EPS样品蛋白质二级结构比例
Table 4. Protein secondary structure ratio of different sludge EPS samples
% 调理方法 不同二级结构的分数比例 β-折叠 无规卷曲 α-螺旋 β-转角 α-螺旋/(β-折叠+无规卷曲) 原污泥 59.85 12.82 18.64 8.69 25.65 电絮凝耦合DSA 69.89 9.23 14.08 6.80 17.80 电絮凝耦合H2O2 30.46 4.05 6.01 2.88 17.41 表 5 不同调理污泥方法的经济能耗对比
Table 5. Comparison of economic energy consumption of different sludge conditioning methods
不同的方法调理污泥 单位能耗/
(kWh·L−1)电耗成本 数据来源 成本估算/ (¥·t −1 DS) EZP(电解/电凝和零价铁活化过硫酸盐氧化) 0.015 0 318.255 ¥·t −1 DS [58] — E+Fe (电氧化+Fe2+) 0.018 0 630.78 ¥·t −1 DS [59] — 电化学与处理 0.005 0 5 kWh·m−3 [60] — 电化学与处理 0.009 2 7 ¥·m−3 [61] — ECP-EF (电化学过氧化-电Fenton) 0.065 2 0.23 ¥·L−1×29% [11] — 电絮凝耦合DSA调理 0.003 6 105.15 ¥·t −1 DS 本研究 105.15 电絮凝耦合H2O2 0.002 2 62.51 ¥·t −1 DS 本研究 90.11 -
[1] YUAN H P, YAN X F, YANG C F, et al. Enhancement of waste activated sludge dewaterability by electro-chemical pretreatment[J]. Journal of Hazardous Materials, 2011, 187(1): 82-88. [2] 甄广印, 吴太朴, 陆雪琴, 等. 高级氧化污泥深度脱水技术研究进展[J]. 环境污染与防治, 2019, 41(9): 1108-1113+1119. doi: 10.15985/j.cnki.1001-3865.2019.09.020 [3] LIANG J, GU H, ZHANG S, et al. Novel insight into sludge dewaterability mechanism using polymeric aluminium ferric chloride and anaerobic mesophilic digestion treatment under ultrahigh pressure condition[J]. Separation and Purification Technology, 2020, 234: 116137. [4] 徐慧敏, 何国富, 熊南安, 等. 双频超声波促进剩余污泥的破解[J]. 环境工程学报, 2017, 11(4): 2452-2456. doi: 10.12030/j.cjee.201510194 [5] WU B, DAI X, CHAI X. Critical review on dewatering of sewage sludge: Influential mechanism, conditioning technologies and implications to sludge re-utilizations[J]. Water Research, 2020, 180: 115912. [6] LV H, LIU D, ZHANG Y, et al. Effects of temperature variation on wastewater sludge electro-dewatering[J]. Journal of Cleaner Production, 2019, 214: 873-880. [7] DONG Y, YUAN H, GE D, et al. A novel conditioning approach for amelioration of sludge dewaterability using activated carbon strengthening electrochemical oxidation and realized mechanism[J]. Water Research, 2022, 220: 118704. [8] XIAO J, YUAN H, HUANG X, et al. Improvement of the sludge dewaterability conditioned by biological treatment coupling with electrochemical pretreatment[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96: 453-462. [9] 施钦, 刘宇川, 谭学才, 等. 电絮凝法调理剩余污泥CST的影响因素分析[J]. 化工技术与开发, 2021, 50(11): 45-48. doi: 10.3969/j.issn.1671-9905.2021.11.013 [10] 陆香玉, 俞海祥, 陈亚, 等. 化学絮凝与电絮凝调理污泥脱水性能影响作用的对比研究[J]. 环境科学学报, 2022, 42(03): 257-267. doi: 10.13671/j.hjkxxb.2021.0441 [11] OLVERA-VARGAS H, ZHENG X, GARCIA-RODRIGUEZ O, et al. Sequential “electrochemical peroxidation – Electro-Fenton” process for anaerobic sludge treatment[J]. Water Research, 2019, 154: 277-286. [12] GHARIBI H, SOWLAT M H, MAHVI A H, et al. Performance evaluation of a bipolar electrolysis/electrocoagulation (EL/EC) reactor to enhance the sludge dewaterability[J]. Chemosphere, 2013, 90(4): 1487-1494. [13] CAI M, WANG Q, WELLS G, et al. Improving dewaterability and filterability of waste activated sludge by electrochemical Fenton pretreatment[J]. Chemical Engineering Journal, 2019, 362: 525-536. [14] FR/OLUND B, GRIEBE T, NIELSEN P H. Enzymatic activity in the activated-sludge floc matrix[J]. Applied Microbiology and Biotechnology, 1995, 43(4): 755-761. [15] DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric Method for Determination of Sugars and Related Substances[J]. Analytical Chemistry, 1956, 28(3): 350-356. [16] 李洁. 电解强化剩余污泥脱水及机理研究[D]. 南京: 南京大学, 2018. [17] CHEN Y, LU A, LI Y, et al. Naturally Occurring Sphalerite As a Novel Cost-Effective Photocatalyst for Bacterial Disinfection under Visible Light[J]. Environmental Science & Technology, 2011, 45(13): 5689-5695. [18] YU H, GU L, ZHANG D, et al. Enhancement of sludge dewaterability by three-dimensional electrolysis with sludge-based particle electrodes[J]. Separation and Purification Technology, 2022, 287: 120599. [19] 董红钰. 铁盐混凝剂中铁形态对混凝—超滤联用工艺的影响[D]. 济南: 山东大学, 2015. [20] HU S, ZHAO W, HU J, et al. Integration of electrochemical and calcium hypochlorite oxidation for simultaneous sludge deep dewatering, stabilization and phosphorus fixation[J]. Science of The Total Environment, 2021, 750: 141408. [21] GE D, YUAN H, XIAO J, et al. Insight into the enhanced sludge dewaterability by tannic acid conditioning and pH regulation[J]. Science of The Total Environment, 2019, 679: 298-306. [22] PENG H, ZHONG S, XIANG J, et al. Characterization and secondary sludge dewatering performance of a novel combined aluminum-ferrous-starch flocculant (CAFS)[J]. Chemical Engineering Science, 2017, 173: 335-345. [23] 谭鑫. 电化学沉淀磷酸铵镁-电氧化一体化对高氮磷废水脱氮除磷研究[D]. 2020. [24] 黄雪琪, 靖波, 陈文娟, 等. 电絮凝过程中倒极消除极板钝化[J]. 环境工程学报, 2019, 13(11): 2661-2667. doi: 10.12030/j.cjee.201901028 [25] 王丽苹. Fe0/H2O2类芬顿法对污泥脱水性能的改善及机理分析[D]. 广州: 华南理工大学, 2018. [26] 戴常超, 陈大宏, 刘峻峰, 等. 强化电絮凝技术的基础、现状和未来展望[J]. 工业水处理, 2022, 42(01): 1-14. doi: 10.19965/j.cnki.iwt.2020-1164 [27] 谢琦莹. 无机铁盐及铁基MOFs去除富营养化水体中磷的应用基础研究[D]. 昆明: 云南大学, 2018. [28] MASIHI H, BADALIANS GHOLIKANDI G. Employing Electrochemical-Fenton process for conditioning and dewatering of anaerobically digested sludge: A novel approach[J]. Water Research, 2018, 144: 373-382. [29] BADALIANS GHOLIKANDI G, ZAKIZADEH N, MASIHI H. Application of peroxymonosulfate-ozone advanced oxidation process for simultaneous waste-activated sludge stabilization and dewatering purposes: A comparative study[J]. Journal of Environmental Management, 2018, 206: 523-531. [30] SARI ERKAN H, ONKAL ENGIN G. A comparative study of waste activated sludge disintegration by electrochemical pretreatment process combined with hydroxyl and sulfate radical based oxidants[J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103918. [31] ZENG Q, HAO T, YUAN Z, et al. Dewaterability enhancement and sulfide mitigation of CEPT sludge by electrochemical pretreatment[J]. Water Research, 2020, 176: 115727. [32] 王璠, 李建新, 崔帅, 等. 钛基金属氧化物电极的失活机制及改进方法的研究进展[J]. 山东化工, 2021, 50(12): 52-54+57. [33] GUAN B, YU J, FU H, et al. Improvement of activated sludge dewaterability by mild thermal treatment in CaCl2 solution[J]. Water Research, 2012, 46(2): 425-432. [34] MAHMOUD A, OLIVIER J, VAXELAIRE J, et al. Electrical field: A historical review of its application and contributions in wastewater sludge dewatering[J]. Water Research, 2010, 44(8): 2381-2407. [35] 赵学雷, 霍志保, 蔡俊. 污泥电化学脱水研究进展[J]. 化工设计通讯, 2020, 46(12): 185-188. [36] 秦雅鑫. Fe(Ⅲ)/H2O2类Fenton体系中Fe(Ⅲ)/Fe(Ⅱ)循环调控及其降解除草剂甲草胺性能的研究[D]. 武汉: 华中师范大学, 2016. [37] CAO B, WANG R, ZHANG W, et al. Carbon-based materials reinforced waste activated sludge electro-dewatering for synchronous fuel treatment[J]. Water Research, 2019, 149: 533-542. [38] RUIZ-HERNANDO M, MARTíN-DíAZ J, LABANDA J, et al. Effect of ultrasound, low-temperature thermal and alkali pre-treatments on waste activated sludge rheology, hygienization and methane potential[J]. Water Research, 2014, 61: 119-129. [39] BAZRAFSHAN E, MOHAMMADI L, ANSARI-MOGHADDAM A, et al. Heavy metals removal from aqueous environments by electrocoagulation process– a systematic review[J]. Journal of Environmental Health Science and Engineering, 2015, 13(1): 74. [40] BRILLAS E, SIRéS I, OTURAN M A. Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton's Reaction Chemistry[J]. Chemical Reviews, 2009, 109(12): 6570-6631. [41] ÖZCAN A, ŞAHIN Y, OTURAN M A. Complete removal of the insecticide azinphos-methyl from water by the electro-Fenton method – A kinetic and mechanistic study[J]. Water Research, 2013, 47(3): 1470-1479. [42] 罗玮. 铁系化合物活化H2O2/O2在分析和有机污染物降解中的应用[D]. 武汉: 华中科技大学, 2010. [43] KIM T, KIM T-K, ZOH K-D. Removal mechanism of heavy metal (Cu, Ni, Zn, and Cr) in the presence of cyanide during electrocoagulation using Fe and Al electrodes[J]. Journal of Water Process Engineering, 2020, 33: 101109. [44] SHAO L, HE P, YU G, et al. Effect of proteins, polysaccharides, and particle sizes on sludge dewaterability[J]. Journal of Environmental Sciences, 2009, 21(1): 83-88. [45] NIU T, ZHOU Z, REN W, et al. Effects of potassium peroxymonosulfate on disintegration of waste sludge and properties of extracellular polymeric substances[J]. International Biodeterioration & Biodegradation, 2016, 106: 170-177. [46] TAO N, HU L, FANG D, et al. Supplementation of tea polyphenols in sludge Fenton oxidation improves sludge dewaterability and reduces chemicals consumption[J]. Water Research, 2022, 218: 118512. [47] GAO S, WANG Y, ZHANG D, et al. Insight to peroxone-Fe(III) joint conditioning-horizontal electro-dewatering process on water reduction in activated sludge: Performance and mechanisms[J]. Journal of Hazardous Materials, 2021, 402: 123441. [48] LIU X, ZHAI Y, LIU G, et al. Mechanistic insights into enhanced waste activated sludge dewaterability with Cu(II) and Cu(II)/H2O2 treatment: Radical and non-radical pathway[J]. Chemosphere, 2022, 288: 132549. [49] DONG Y, YUAN H, BAI L, et al. A comprehensive study on simultaneous enhancement of sludge dewaterability and elimination of polycyclic aromatic hydrocarbons by Fe2+ catalyzing O3 process[J]. Science of The Total Environment, 2022, 819: 152015. [50] ZHANG W, DAI X, DONG B, et al. New insights into the effect of sludge proteins on the hydrophilic/hydrophobic properties that improve sludge dewaterability during anaerobic digestion[J]. Water Research, 2020, 173: 115503. [51] LIANG J, ZHANG L, YAN W, et al. Mechanistic insights into a novel nitrilotriacetic acid-Fe0 and CaO2 process for efficient anaerobic digestion sludge dewatering at near-neutral pH[J]. Water Research, 2020, 184: 116149. [52] DING A, LIN W, CHEN R, et al. Improvement of sludge dewaterability by energy uncoupling combined with chemical re-flocculation: Reconstruction of floc, distribution of extracellular polymeric substances, and structure change of proteins[J]. Science of The Total Environment, 2022, 816: 151646. [53] LI Y, PAN L, ZHU Y, et al. How does zero valent iron activating peroxydisulfate improve the dewatering of anaerobically digested sludge?[J]. Water Research, 2019, 163: 114912. [54] LI Y, XU Q, LIU X, et al. Peroxide/Zero-valent iron (Fe0) pretreatment for promoting dewaterability of anaerobically digested sludge: A mechanistic study[J]. Journal of Hazardous Materials, 2020, 400: 123112. [55] 田宝珍, 汤鸿霄. Ferron逐时络合比色法测定Fe(Ⅲ)溶液聚合物的形态[J]. 环境化学, 1989, 8(4): 27-34. [56] 高乔枫. 外加静电场强化三氯化铁絮凝效能关键技术研究[D]. 秦皇岛: 燕山大学, 2021. [57] 崔蒙蒙. 水铁矿对含磷废水的吸附性能及机理分析[D]. 苏州: 苏州科技大学, 2017. [58] LI Y, YUAN X, WU Z, et al. Enhancing the sludge dewaterability by electrolysis/electrocoagulation combined with zero-valent iron activated persulfate process[J]. Chemical Engineering Journal, 2016, 303: 636-645. [59] HU S, HU J, LIU B, et al. In situ generation of zero valent iron for enhanced hydroxyl radical oxidation in an electrooxidation system for sewage sludge dewatering[J]. Water Research, 2018, 145: 162-171. [60] SONG L-J, ZHU N-W, YUAN H-P, et al. Enhancement of waste activated sludge aerobic digestion by electrochemical pre-treatment[J]. Water Research, 2010, 44(15): 4371-4378. [61] ZENG Q, ZAN F, HAO T, et al. Electrochemical pretreatment for stabilization of waste activated sludge: Simultaneously enhancing dewaterability, inactivating pathogens and mitigating hydrogen sulfide[J]. Water Research, 2019, 166: 115035.