-
镉 (Cd) 是一种毒性较强且具有生物蓄积性的重金属。土壤中的Cd易通过农作物吸收、转运,影响食品安全和人体健康[1-3]。贵州省地处中国西南喀斯特中心,生态环境脆弱[4]。贵州省土壤Cd来源主要有2个方面:一是矿山、冶炼及农药等的人为来源;二是含矿岩系风化成土过程等的自然来源[5]。贵州省土壤中Cd背景值为0.66 mg·kg−1,高于全国Cd背景值的0.097 mg·kg−1[6]。黔西北矿产资源种类丰富[7],已发现32种矿产100余处矿床矿点[8]。六盘水市水城区位于该区域。矿冶等人类活动叠加Cd高背景值的影响,加剧了水城区农用地土壤中Cd累积,使得区域农产品安全问题突出[9]。本课题组前期调查发现,该区域有超过一半的农作物种植于Cd质量分数高于0.3 mg·kg−1的耕地上。这些作物的潜在Cd暴露风险较高[10]。
我国现行土壤质量标准《土壤环境质量农用地土壤风险管控标准 (试行) 》 (GB 15618-2018) 规定了农用地土壤重金属Cd的风险筛选值 (risk screening value,RSV) 和风险管制值 (risk intervention valve,RIV) 。当农用地土壤中重金属质量分数≤RSV时,土壤评价等级为“优先保护”等级,即表明土壤中重金属对农产品质量安全、农作物生长或土壤生态环境的风险低,一般情况下可忽略。当农用地土壤中重金属质量分数介于RSV和RIV之间时,土壤评价等级为“安全利用”等级,即表明土壤中重金属对农产品质量安全、农作物生长或土壤生态环境可能存在风险,需加强土壤环境监测和农产品的协同监测。当农用地土壤中重金属>RIV时,土壤评价等级为“严格管控”等级,即表明该农用地上种植的可食用性农产品不符中国质量安全标准,将不被允许继续种植可食用农作物。该标准在湖南[11]、福建[12]、江苏[13]等地区均能较准确地对重金属污染土壤进行分类。但由于中国地缘辽阔,不同地区农田土壤环境质量差异较大,同时不同区域土壤重金属污染来源复杂,采用现行标准对高Cd背景值土壤的评价并不完全适用[14-15]。这或将制约地方政府对农用地的精确分类和管理。
本研究以黔西北六盘水市水城区水稻、玉米和蔬菜种植农用地为研究对象,系统采集164组土壤-农产品协同监测样品,在厘清该区域农田土壤和农作物可食部位中Cd的累积状况及分布特征的基础上,讨论现行标准对该区域土壤评价的适宜性,并基于物种敏感度分布曲线,提出黔西北农田土壤Cd的健康风险基准值建议,以期为黔西北高Cd背景值农用地的精准分类和管理提供新思路。
-
研究区位于贵州省西部的六盘水市水城区,属云贵高原东侧一、二级台地斜坡。东经104°33’~105°15’,北纬26°03’~26°55’,总面积3 054.92 km2。水城区位于我国西南典型喀斯特地貌区,气候类型属于亚热带季风性湿润气候。在低纬度高海拔等因素的作用下,水城区气候温暖湿润,年均气温约14 ℃,7月最高温约22 ℃。叶菜蔬菜、玉米、水稻是全区的主要粮食作物。六盘水农用土壤中重金属Cd平均质量分数为0.26 mg·kg−1,属于全国土壤重金属地质高背景值区域[6,10]。
-
采用ArcGIS 10.8软件在农作物主要种植区随机布设了164组土壤-作物协同监测点位。其中,水稻22组、玉米105组、叶菜蔬菜37组 (图1) 。在2019年6月—2020年2月,采集土壤和农作物样品,每对样品均为设置点所在区域实际田块最长对角线3个平行样品的混合样。土壤和农作物样品带回实验室后,土样经过自然晾干、去除根茎碎石、研磨,分别过0.149 mm尼龙网筛,分装室温保存备用。植株可食部分样品先用自来水清洗干净,再用去离子水冲洗3~5次,在105 ℃下杀青30 min,并于75 ℃恒温烘干至恒重,打碎研磨并通过0.149 mm尼龙筛后分装室温保存备用。土壤的pH采用pH计 (pHs-3c, INESA Scientific, China) 进行测定,水土质量比为2.50 : 1。所有样品采用微波消解法[16]进行消解,消解液采用电感耦合等离子体质谱仪 (ICP-MS, Thermo Fisher Scientific, USA) 对样品中Cd元素进行分析。
-
所有实验化学品均为优级纯等级,使用去离子水。所有的玻璃器皿和器皿都经过清洗,在硝酸溶液 (HNO3,体积分数为10%) 中浸泡一晚,然后用去离子水冲洗并在使用前干燥。实验材料分别有土壤 (GBW07408 (GSS-8) ) 、大米 (GBW10045 (GSB-23) ) 、玉米 (GBW10012 (GSB-3) ) 、叶菜蔬菜 (GBW10014 (GSB-5) ) 标准物质和空白样品。土壤、大米、玉米和叶菜蔬菜的回收率分别为100.91%~107.23%、103.64%~114.82%、97.65%~109.90%和104.30%~106.13%。
所有数据采用SPSS 19.0进行分析,数据表示为 (平均值±标准差) (n = 3) ,所有图形均使用OriginPro 2019软件处理。
-
采用地累积指数法 (Igeo) 评价研究区土壤重金属污染评价[17],其计算式为式 (1) 。
式中:Cs为土壤中重金属Cd的测试质量分数,mg·kg−1;Bn为黔西北重金属Cd的背景值 (mg·kg−1)。本研究采用贵州省重金属Cd背景浓度值作为参比值。地质累积指数法等级分类可分为7个级别:Igeo < 0,污染级别为0级,表示无污染;0 ≤ Igeo < 1,污染级别为1级,表示无污染到中度污染;1 ≤ Igeo < 2,污染级别为2级,表示中度污染;2 ≤Igeo < 3,污染级别为3级,表示中度污染到强污染;3 ≤Igeo < 4,污染级别为4级,表示强污染;4 ≤ Igeo < 5,污染级别为5级,表示强污染到极强度污染;Igeo ≥ 5,污染级别为6级,表示极强污染。
-
健康风险基准值采用敏感性分布曲线法 (species sensitivity distribution curve,SSD) 推导[18]。SSD曲线通过概率分布函数将不同物种间的毒理数据外推,实现污染物在生物群落甚至生态系统水平上的风险评估[19]。目前,SSD曲线已被应用于重金属污染土壤的环境基准值的推导,并取得较好结果[20]。主要步骤有3步:1) 通过对实地采集的农作物样品及其对应土壤中重金属Cd质量分数的分析,计算出农作物可食用部分的富集系数 (Bioconcentration factor,BCF) 作为概率分布指标;2) 采用Log-logistic型分布拟合SSD曲线;3) 参照《食品安全国家标准食品中污染物限量》中规定的各类农作物的Cd质量分数限值,反推计算得出基于保护95%和5%作物类别安全的HC5和HC95,并将HC5和HC95定义为土壤安全生产的临界值和警戒值[21]。
农作物可食用部分的富集系数 (BCF) 为每个农作物品种与其生态环境中污染物总量的浓度比值,其计算式为式 (2) 。
式中:Ci为农作物中重金属Cd质量分数,mg·kg−1;Cs表示土壤重金属Cd质量分数,mg·kg−1。
农作物的1/BCF对土壤中重金属Cd的富集效应的敏感分布遵循“S”型曲线分布,拟合SSD曲线方程见式 (3) 。
式中:x为1/BCF;y为农作物样品Cd的累积分布概率,a、b、x0为常数。
通过以上方程反推得到农田土壤Cd安全基准值,其计算式见式 (4) 。
农田土壤Cd安全基准估算值 (Ce) ,其计算式见式 (5) 。
根据《食品安全国家标准食品中污染物限量》 (GB2762-2017) 标准,大米、玉米、叶菜蔬菜中Cd的标准限值 (Cf) 分别为0.20、0.10和0.20 mg·kg−1。
-
研究区土壤pH和Cd质量分数统计结果如表1所示。区域内土壤整体呈中性偏酸,土壤中Cd平均质量分数较高,均显著高于贵州省土壤Cd背景值 (0.66 mg·kg−1) 。3种土壤Cd质量分数的变异系数均偏大,且水稻田>玉米地>叶菜蔬菜地,即表明研究区部分点位土壤异常偏高,可能受到了一定的人为污染。从分布率来看,土壤Cd质量分数高于贵州省土壤Cd背景值质量分数的点位有153个,占比93.29%,有75.61%的点位数土壤Cd质量分数高于背景值2倍以上,仅有11个点位土壤Cd质量分数小于背景值。比较3种土壤间的Cd质量分数,叶菜蔬菜土壤Cd质量分数相对较高,其算术平均值分别为水稻和玉米土壤Cd算术平均值的16.41倍和5.05倍。因此,几种作物中Cd算术平均值大小顺序为:叶菜蔬菜土>>玉米土>水稻土。
对照中国现行农用地土壤Cd污染风险筛选标准 (GB 15618-2018) ,研究区土壤Cd质量分数超标情况异常严重,水稻、玉米和叶菜蔬菜土壤的点位超标率均超过了90%,分别为90.91%、99.05%和100% (图2) 。对水稻而言,仅有3个水稻土壤样品Cd质量分数小于土壤RSV (黑色虚线),占比13.64%;有16个样品Cd质量分数介于RSV和土壤RIV (灰色实线) 之间,占比72.73%;大于RIV的样品数量为4个。对玉米而言,仅有1个玉米土壤样品Cd质量分数小于RSV (灰色虚线) ,有58个介于RSV和RIV之间,大于RIV的数量为46个,分别占总数的0.95%、55.24%和43.81%。全部的叶菜蔬菜土壤Cd质量分数高于RSV,其中有75.68%的点位高于RIV。
-
尽管研究区内90%以上土壤点位Cd质量分数高于土壤RSV (图1) ,但农产品调查结果尚较乐观 (图3) 。164份农产品样品中Cd质量分数整体偏低,水稻籽粒、玉米籽粒、叶菜蔬菜Cd质量分数的中值分别为0.030、0.021、0.054 mg·kg−1,平均值分别为0.057、0.032、0.080 mg·kg−1,范围分别为0.007 0~0.24、0.014~0.21、0.004 0~0.45 mg·kg−1。根据食品安全国家标准给出的大米、谷物和叶菜蔬菜的限量阈值建议 (Cd = 0.2 mg·kg−1、0.1 mg·kg−1和0.2 mg·kg−1) ,超过95%的农产品样品Cd质量分数均未超过阈值,仅有2个水稻籽粒样品 (图3 (a) ) 、4个玉米籽粒样品 (图3 (b) ) 和2个叶菜蔬菜样品 (图3 (c) ) 超过了对应限量阈值。
-
地累积指数表明研究区农用地表层土壤Cd污染较轻 (表2) ,其土壤中Cd元素地累积指数均值为0.077,所有点位中无污染点位的比例近一半,超过95%点位属于无污染到中度污染范围。
-
借鉴ROMKENS等[22]提出的土壤标准适宜性评价方法,验证现行土壤标准在研究区农用地土壤环境安全性划分的适宜性,结果如表3所示。当土壤Cd质量分数≤RSV时,现行农用地土壤Cd的RSV合适率为100%,第Ⅰ类决策错误的概率 (土壤评价结果为“安全利用”等级,但农作物可食部位Cd质量分数超出限量标准,假阴性) 为0。当土壤Cd质量分数介于RSV和RIV之间时,农作物可食部位Cd质量分数的合格比例超出97%。当土壤Cd质量分数大于RIV时,第Ⅱ类决策错误的概率 (土壤评价结果为“严格管控”等级,但农作物可食部位Cd质量分数未超出限量标准,假阳性) 高达92.31%,仅有不到8%的样品适宜于现行的农用地土壤Cd评价程序。总的来说,现行土壤标准在研究区农用地土壤环境安全性划分的准确性差强人意,特别是当土壤Cd质量分数高于现行标准中的土壤RIV时 (>RIV) ,164份土壤-农产品样品中有72份样品不适应现行农用地土壤Cd风险管控标准,占总数的43.90%。
-
为解决上述评价结果错误率高的问题,利用物种敏感度分布曲线法 (SSD) 推导农作物合理种植土壤的生态安全阈值。采用Logistic分布模型对1/BCF值和水稻籽粒、玉米籽粒和叶菜蔬菜Cd累积概率进行拟合 (图4) 。通过拟合所得公式,以及食品安全国家标准中水稻籽粒、玉米籽粒和叶菜蔬菜Cd的标准限值,反推计算得出3种作物基于保护95%和5%作物类别安全的临界值 (HC5) 和警戒值 (HC95) 。结果显示,研究区水稻、玉米和叶菜蔬菜种植土壤的HC5值和HC95值分别为0.7和20.9 mg·kg−1、2.4和48.5 mg·kg−1、2.5和151.2 mg·kg−1。当土壤Cd质量分数低于HC5值时 (基于不同农作物) ,土壤污染评价结果为风险低,可以保护95%农产品可食部位Cd质量分数低于国家食品中污染物的限量标准。这一结果是现行标准中土壤Cd的RSV (0.3 mg·kg−1) 的2.3~8.3倍;此外,推导结果表明研究区农田土壤Cd的HC95达到20.9~151.2 mg·kg−1。这表明在此土壤Cd质量分数下才会出现95%农作物超过国家食品中污染物限量标准的情况,明显高于现行土壤标准中土壤Cd的RIV (1~4 mg·kg−1) 。
为验证推导阈值的适宜性,将上述阈值重新评价研究区农用地,结果如图5所示。推导阈值下的适宜性比率整体从56.1%提高至98.8%。对水稻而言,所有土壤样品Cd质量分数均未超过HC95,阈值适应性为100%。当玉米土壤样品Cd质量分数低于HC5时,不适应数为2,占比3.6%。仅有1个玉米土壤样品Cd质量分数超过HC95,阈值适应性为97.1%。当叶菜蔬菜土壤Cd质量分数未超过HC5时,所有对应点位的叶菜蔬菜均低于食品安全限量标准。仅有1对蔬菜样品不适应推导阈值,阈值适应性为97.3%。综上所述,与现行土壤标准相比,推导阈值能更好地评价研究区农用地的实际暴露风险。
-
黔西北水城区农田土壤中的Cd来源复杂。含矿岩系风化成土、长期淋滤作用及铅锌冶炼等人为活动导致了土壤中重金属累积[23]。贵州省是典型Cd地球化学高背景区,其背景值是全国Cd背景值的6.8倍[6]。含矿岩系风化成土过程是导致贵州土壤Cd高累积的主要原因[24]。地球化学高地质背景土壤的成土母质主要分为两类:一类是二叠系黑色岩系 (含煤层) 等富含重金属的母岩;另一类是贵州广泛存在的碳酸盐岩[14]。黔西北是典型喀斯特地貌的山区[25],水城区出露地层以二叠系、石炭系发育最好[26]。风化成土过程可能是该区域高地质背景土壤Cd的主要来源。同时,黔西北矿产资源丰富,是亚洲最大的铅锌矿成矿带之一。自清代以来的土法炼锌向周围环境释放了大量Cd,并遗留了数以万计的铅锌废渣[27]。据不完全统计,黔西北长达300多年的土法冶炼遗留的铅锌废渣量达到了2×107 t[28]。这些Cd通过大气沉降、废渣还田、地表径流等过程扩大了污染范围,逐渐对区域农田、河流造成了严重的土壤重金属污染。
在本研究中,研究区域农用地土壤Cd质量分数超标率高达98%,而165个农产品中仅有8个超过对应限量。这与前人在西南喀斯特地貌区域内的研究结果相似[29-30]。推测可能与喀斯特地貌区域碳酸盐岩风化成土导致土壤中重金属有效性较低有关[31]。尽管本研究未对土壤中Cd的赋存形态进行测定,但现有研究证实了黔西北地区土壤中重金属形态的“低活性”特征[31-32]。由于喀斯特地区岩系中含有大量的碳酸钙 (CaCO3) ,CaCO3中的Ca2+很易与一些金属阳离子 (如Cd2+) 交换,降低Cd的交换态和有效态质量分数[33]。此外,研究区土壤pH普遍较高,土壤pH的升高会使带负电荷的土壤胶体对带正电荷的重金属离子吸附能力增加[34];而且土壤中的Fe、Mn等离子与OH−结合形成羟基化合物为重金属离子提供了更多吸附位点[35]。另外,碳酸盐岩风化的石灰土盐基饱和度和酸碱缓冲潜力大[36],也进一步延缓了土壤的酸化进程[37]。地累积指数结果也显示研究区土壤Cd污染并没有那么严重 (表2) ,推测自然来源可能是土壤中Cd的主要来源。此外,还观测到在土壤pH较低时,土壤标准的第Ⅱ类决策错误率大大增加 (表3) 。4种不同pH水平下 (pH小于5.5、5.5~6.5、6.5~7.5、大于7.5) 标准的适宜性分析结果错误个数分别为18、39、14、1,分别占比50.00%、60.00%、31.82%、5.26%。这表明在较低pH的土壤中,现行土壤标准对研究区土壤评价的情况更加复杂,值得后续深入研究。
在环境基准值的推导中,3种农作物土壤Cd临界值 (HC5) 为土壤RSV的2.3~8.3倍 (表3) ,土壤Cd临界值 (HC5) 表示当土壤Cd质量分数小于等于该值时可保证95%的种植农作物可食部位Cd质量分数将低于国家食品标准。这表明现行农用地土壤标准对研究区农用地土壤而言偏严[33]。胡立志等[30]探讨了贵州喀斯特地貌区域辣椒质量安全的土壤风险阈值,推算出3种不同pH水平 (pH小于6.5、介于6.5~7.5、大于7.5) 下土壤Cd风险阈值分别为RSV的3.33、4.21和4.17倍。刘娟等[38]在滇东6个市 (州) 农用地土壤也得到了相似研究结果,其推导出的土壤临界值是现行土壤标准中RSV的56.5~394倍,警戒值远高于现行土壤标准的RIV。各国现行农用地土壤分类管理策略大多是根据重金属总量划分[39],但土壤中重金属总量并不能代表其生物有效性,土壤中重金属的赋存形态、土壤理化性质 (如pH、有机质、全碳、土壤粘粒质量分数) 等都是影响其生物有效性的重要因素[40-41]。此外,3种农作物的土壤Cd临界值和警戒值存在明显差异,可能是受到不同地块土壤中Cd污染程度和土壤理化性质的影响,也可能与不同作物富集Cd的能力差异有关[38]。通过分析不同的农作物对土壤中Cd的富集能力发现,不同农作物对土壤Cd的吸收能力均表现为水稻高于叶菜蔬菜和玉米。这与宋金茜等[42]的研究结果一致。
现行农用地土壤标准对管控农用地土壤污染风险、保障农产品质量安全及保护土壤环境有着重要作用[43]。但由于中国农用地土壤的异质性、土地类型复杂、重金属来源不同,不同作物对Cd富集能力存在差异,导致现行标准并不能准确地对所有农用地进行正确评价,常常出现“土壤严重重金属超标而农产品不超标”的评价结果偏严的情况[44]。本研究结果亦证实了这一点,不准确的农用地土壤分类管理策略会妨碍地方政府对受污染土壤的分类和管理[45]。因此,应开展区域性的土壤重金属环境基准研究,科学合理的划分区域土壤。将本研究推导的阈值重新评价研究区农用地后,其适应性比率可从56.1%提高至98.8% (图4) 。本研究结果除了为黔西北地方政府实现受污染农用地的精准分类管理提供新思路,也为其他喀斯特地貌区域土壤重金属污染的源解析和土壤污染治理修复提供参考。此外,未来应进行更大规模地开展数据统计分析,更精确地验证模型的准确性,充分考虑种植农作物中可食部位重金属质量分数,结合土壤理化性质和重金属的赋存形态等数据的分析,以制定适应于地方政府的精准分类标准和管理措施。
-
1) 研究区土壤pH整体呈中性偏酸,水稻、玉米和叶菜蔬菜土壤pH平均值分别为6.03、6.35、6.12。土壤重金属Cd总体呈高累积特征,98.17%的土壤样品中Cd质量分数高于中国现行土壤Cd标准RSV。与土壤Cd高质量分数不同,研究区仅有8个农产品中质量分数超过食品安全国家标准,健康风险较小。
2) 164组土壤-农产品样品中有72组样品不适宜现行农用地土壤Cd风险管控标准,占总数的43.9%,采用现行标准对于研究区土壤的评价结果偏严格。
3) 推导出的水稻、玉米和叶菜蔬菜土壤临界值 (HC5) 和警戒值 (HC95) 分别为0.7和20.9 mg·kg−1、2.4和48.5 mg·kg−1、2.5和151.2 mg·kg−1。将上述阈值重新评价研究区农用地,其适应性比率整体从56.1%提高至98.8%。
基于土壤标准适宜性评价与环境基准的黔西北高Cd农用地精准管理新思路
A novel approach to accurate management of agricultural land with high level Cd in northwest Guizhou—based on current soil standards suitability evaluation and study of environmental benchmark
-
摘要: 我国现行土壤标准 (GB 15618-2018) 在高重金属背景值农用地评价的准确性难以满足地方政府对农用地的精准管理。以黔西北水城区高镉 (Cd) 农用地为例,采集了164组土壤-农产品协同监测样品,系统地探讨了现行标准对农用地评价的适应性,并基于物种敏感分布模型 (SSD) 反推区域农用地环境风险基准值。结果表明,研究区土壤Cd质量分数总体呈高累积特征,而农产品可食部位中Cd质量分数整体偏低。164组样品中有72组适应性分析结果为不适宜,假阴性/阳性错误比率为43.90%。推导所得的土壤风险值临界值 (HC5) 和警戒值 (HC95) 分别为:水稻 0.7和20.9 mg·kg−1、玉米 2.4和48.5 mg·kg−1、叶菜蔬菜 2.5和151.2 mg·kg−1。基于上述阈值重新评价研究区农用地,其适应性比率整体从56.10%提高至97.60%。本研究结果可为类似高背景值重金属农用地的精准分类和管理提供新思路。Abstract: The accuracy of China's current soil standard (GB 15618-2018) in the evaluation of agricultural land with high heavy metal content was challenging, which was difficult to meet the accurate management of agricultural land by local government. In this study, 164 pairs of soil-corn samples were collected in Shuicheng District, Northwest Guizhou., the adaptability of current standards to agricultural land evaluation was systematically discussed, and the regional agricultural land environmental risk benchmark value was deduced by means of species sensitive distribution model (SSD). The results showed that the Cd accumulation in the soil of the study area was generally high. However, the Cd content in the edible parts of agricultural products was low as a whole. The results of adaptability analysis of 72 of 164 pairs samples were inappropriate, and the false negative/positive error rate was 43.9%. The hazardous concentration of 5% (HC5) and of 95% (HC95) of soil Cd were: 0.7 and 20.9 mg·kg−1 for rice, 2.4 and 48.5 mg·kg−1for corn, 2.5 and 151.2 mg·kg−1 for leafy vegetables, respectively. After re-evaluating the agricultural land in the study area by the deduced value, the adaptability ratio increased from 56.10% to 97.60%. Those results would provide a positive idea for the accurate classification and management of region with high heavy metals level.
-
油页岩是一种含有有机矿物质的可燃性沉积岩,属于非常规化石能源[1]。油页岩储量丰富,其热解(干馏)衍生的页岩油与原油相似,是石油的理想替代品[2]。油页岩热解产生的热解气和半焦还可作为燃料直接燃烧发电,因此,油页岩具有非常重要的开发价值。
抚顺炉干馏技术是目前国内比较成熟的油页岩热解工艺,其利用高温的干馏气或半焦燃烧烟气即气体热载体提供热量,具有原料适应性广、能处理贫矿、投资小、运行可靠等优势[3]。但是,抚顺炉技术只能处理块状油页岩,对于油页岩开采、运输、破碎及除尘过程中产生的大量直径25 mm以下的小颗粒油页岩无法适用,因而造成了大量的资源浪费和环境污染[4]。因此,如何利用小颗粒油页岩资源成为油页岩开发亟需解决的技术难题。
近年来,国内外对小颗粒油页岩热解技术进行了一系列研究,主要集中于固体热载体工艺,即以半焦燃烧产生的高温页岩灰作为热载体的一种热解工艺。如爱沙尼亚Galoter工艺、加拿大ATP工艺、大工DG工艺、德国Lurigi-Ruhrgas工艺等,但从现有运行效果看,主要存在粉尘量大造成设备堵塞、设备难以稳定运行以及油尘分离困难等问题[5-8],故目前多处在中试或示范阶段。间接加热回转窑热解技术是一种可处理小颗粒油页岩的热解工艺[9],其通过高温烟气对油页岩进行间接加热。由于该工艺不需要与高温热载体混合,故系统中粉尘含量大幅度降低,但目前间接加热工艺多局限于实验室小试研究,其工艺成熟度、装备化程度及处理能力无法满足大规模应用需要,难以指导工程施工[10]。
本研究以小颗粒油页岩间接加热回转窑热解工程项目为例,探讨间接加热热解工艺用于小颗粒油页岩处理的效果;并重点分析间接加热回转窑热解工艺工程应用存在的问题及解决措施,以期为小颗粒油页岩间接加热热解技术的工业化应用提供参考。
1. 材料与方法
1.1 供试原料
本项目实验物料为辽宁地区产生的小颗粒油页岩,物料总量为65 t。如图1所示,油页岩呈颗粒状(15~30 mm)和粉状(<8 mm);经铝甄实验法测得其平均含水率为9.3%、含油率为3.5%、半焦产率为82.3%。
1.2 检测方法
1)铝甄实验。将试样装于铝甄中,在隔绝空气条件下加热到500 ℃,并保持一定的时间。干馏后测定所得油、水、半焦和干馏副产物的收率。
2)热量分析。将一定质量的样品置于密封容器(氧弹)中,通入氧气,点火使之完全燃烧,燃烧所放出的热量传给周围的水,通过测量水升高的温度计算样品能量值及热值。
3)有机质含量。将一定质量的样品置于瓷坩埚中,放入马弗炉中(600 ℃)灼烧1 h,根据样品减少的质量计算有机质含量。
2. 热解设备及工艺流程
2.1 工艺原理
间接加热回转窑热解工艺是采用间接加热的方式将油页岩加热到设定温度,使油页岩中的水分和油母质受热挥发和气化分解,进而从油页岩中脱附出来;脱附出来的油蒸气随水蒸气一同进入后端冷凝设施,使其转移至液相或固相中,最终实现油页岩中油的回收。
间接加热回转窑热解工艺与气体热载体抚顺炉工艺相比,具有采用连续进料、相同规模设备占地面积小、易于安装维护、可处理小颗粒油页岩的优点。由于气体热载体不与油页岩物料直接接触,馏分气体浓度高,故后续气体冷凝负荷小;此外,加热温度和炉腔内含氧量可控,油蒸汽不易发生二次裂解和燃烧,故油回收率高。
与固体热载体ATP及大工工艺相比,间接加热回转窑热解工艺加热速率可控,可避免热固载体工艺加热速率过快导致的油品重质组分过高或油蒸汽的二次裂解;而且无高温物料返混,可降低馏分气体粉尘夹带量。此外,设备内无复杂结构部件,维护操作方便。但间接加热回转窑热解工艺受自身传热方式的局限,相对气体及固体热载体工艺热利用率相对较低。
2.2 设备组成
实验设备采用杰瑞环保科技有限公司针对小颗粒油页岩热解自主研发的间接加热回转窑热解成套设备,整体外观如图2所示。间接加热回转窑热解成套设备由进料系统、热解系统、出料系统、冷凝系统、沉降分离系统、气处理系统、换热系统、散热系统等组成,具体设备组成如表1所示。其中,回转窑设备内部设置清理结构,防止回转窑内壁形成板结层影响传热;回转窑和喷淋头间管路设置清理结构,防止粉尘堵塞管路。成套设备占地20×30 m,设备布局如图3所示。
表 1 间接加热回转窑热解成套设备组成Table 1. Compositions of indirect heating rotary kiln pyrolysis equipment系统名称 设备名称 数量/台 系统名称 设备名称 数量/台 进料系统 进料斗 1 出料系统 螺旋输送机 1 皮带秤 1 出料气锁 1 皮带输送机 1 刮板输送机 1 进料螺旋 1 喷淋螺旋输送机 1 进料气锁 1 冷凝系统 喷淋塔 1 热解系统 回转窑 1 散热系统 闭式冷却塔 1 助燃风机 1 缓存水箱 1 燃烧器 10 循环水泵 2 沉降分离系统 沉降分离罐 1 气体净化系统 气液分离罐 3 工艺水泵 2 高压风机 2 储油罐 1 换热系统 螺旋板式换热器 1 2.3 工艺流程
本项目采用间接加热工艺进行小颗粒油页岩热解工程实验,工艺流程如图4所示。油页岩原料通过进料系统连续进入热解系统中,通过天然气燃烧产生的高温烟气对回转窑中的油页岩进行间接加热;热解后产生的页岩半焦通过出料系统降温除尘后连续排出;油页岩热解产生的高温热解混合油气在冷凝系统中经循环喷淋水进行直接冷凝、除尘;冷凝后的油水混合物通过沉降分离系统进行油、水的分离;分离的回收油通过油罐储存,分离的水经换热系统冷却后进入冷凝系统作为喷淋水循环利用,未冷凝的不凝气经气处理系统净化后经风机引出进入回转窑热解系统作为补充燃料燃烧。
2.4 工程运行过程
将小颗粒油页岩物料以1.5~4.5 t·h−1的进料速度由进料系统连续输送至热解系统进行热解处理,采用天然气燃烧产生的高温烟气对油页岩进行间接加热。其中,回转窑物料腔压力控制在−30~−100 Pa,烟气温度控制在600~800 ℃,物料停留时间20~45 min,出料温度控制在400 ℃以上。热解产生的混合气经冷凝系统降温至70 ℃以下,使热解气中大部分油、水蒸汽冷凝,随后进入沉降分离系统进行进一步分离;页岩半焦经出料系统降温至100 ℃以下后收集储存。系统运行结束后,对收集的半焦、回收油、回收水、底泥进行分析,同时考察回转窑和冷凝设备之间设备管道含尘情况及回转窑设备内板结情况。
3. 工程运行效果分析
3.1 油页岩热解回收物料分析
油页岩蒸发、裂解产生的油水混合气体及携带的粉尘经冷凝后在沉降分离系统进行分离,分离后在沉降分离设备内自下而上分别形成底泥层、回收水层、浮渣和回收油层,具体油、水、固组成如表2所示。65 t油页岩原料产生油组分2.1 t,实际回收油2.0 t。根据铝甄实验结果可知,油页岩热解产油量可达92.3%;本工程实际油回收率为铝甄实验产油量的88%。本研究结果高于抚顺炉工艺(65%)及ATP工艺(70~80)的油回收率[10]。本研究中回转窑设备馏分气体携尘率为1.2 %,此结果远低于固体热载体ATP工艺中的馏分气体携尘率[6]。
表 2 油页岩热解回收物料组成Table 2. Compositions of oil shale pyrolysis recovery materials产物类别 含油率/% 含水率/% 含固率/% 产量/t 底泥 22.7 42.5 34.8 1.5 回收水 <0.01 >99.9 <0.01 4.8 浮渣 13.5 56.6 29.9 0.3 回收油 88.4 2.5 9.1 2.0 3.2 油页岩热解半焦分析
实验过程中,油页岩热解产生的页岩半焦出料温度可稳定保持在450 ℃以上。如图5(a)所示,工程实验页岩半焦呈黑色松散状,与铝甄实验半焦(图5(b))表观性质类似。对油页岩原料和不同处理量条件下的页岩半焦进行有机质含量分析,热解处理后油页岩有机质含量由13.0%降至4.0%以下,不同处理量下(2.0、3.0、4.5 t·h−1)工程实验半焦的有机质含量分别为2.7%、3.5%和4.0%,均低于铝甑实验半焦(4.1%)。这说明,本工程实验实际处理(出料)温度达到甚至高于铝甄实验温度(500 ℃),即在工程实验温度下可以达到铝甄实验的油组分产量,这和油页岩热解回收物料分析中较高的油回收率结果一致。
此外,随着油页岩处理量的提高,半焦有机质含量相应增加。其可能的原因是,随着料层厚度增加,回转窑炉壁辐射热降低,使得物料实际达到的处理温度降低,因而不利于油母质的裂解。当油页岩处理量在4.5 t·h−1时,页岩半焦有机质质量分数可达4.1%,仍低于铝甄实验半焦。这说明,当间接加热回转窑设备处理量达4.5 t·h−1时,仍能保持较高的处理温度及油回收率。然而,若进一步提升油页岩处理量,则需要额外增加热量以提升物料的处理温度。此外,对半焦样品进行热量分析,得到页岩半焦平均热值为400 kJ·kg−1,半焦仍保留一定的热值,可以为进一步的综合利用提供热量。
3.3 油页岩热解能耗分析
对油页岩间接加热回转窑热解工程进行能量消耗统计发现,65 t油页岩原料平均进料量2.8 t·h−1、平均天然气耗量55.8 Nm3·t−1、成套设备平均运行功率181.7 kW、平均电耗64.9 kWh·t−1,不同处理量下具体能耗见图6。如图所示,随着处理量的提高,油页岩热解能耗逐渐降低,热效率逐渐升高。这可能是在低处理量阶段,回转窑内料层厚底低,炉壁热辐射使物料实际达到的温度高于设定处理温度,从而使能耗增加,导致热效率降低。当处理量提高到较高水平时,料层厚度增加,实际物料温度接近控制温度,这和页岩半焦有机质含量结果一致。当处理量提高至4.5 t·h−1时,天然气消耗降至40.1 Nm3·t−1、实际热效率达到41.6%,高于抚顺炉技术(24.9 Nm3·t−1)和ATP技术(22.6 Nm3·t−1)的能耗[5]。这和抚顺炉和ATP技术热解过程中利用了页岩半焦燃烧的热量有关。因此,为进一步降低间接加热回转窑工艺能耗,可在油页岩热解工艺设计时,统筹资源优化配置,在页岩半焦资源化利用时合理利用页岩半焦煅烧产生的高温烟气。同时,由于采用间接加热方式,可根据油页岩综合利用厂区实际情况,利用厂区废高温烟气为间接加热回转窑热解设备提供热量,从而节省天然气资源,最终降低油页岩热解综合成本。此外,还可通过在回转窑燃烧腔设计导流挡板,优化烟气流动方向,降低排烟温度,提升回转窑热效率,最终达到降低综合能耗的目的。
3.4 间接加热回转窑热解成套设备运转状况
在油页岩热解工程实验过程中,间接加热回转窑热解成套设备运转良好,进出料设备运行顺畅,冷凝系统运行稳定。回转窑物料腔维持在−20~−100 Pa微负压运行,无油气泄漏现象发生。如图7(a)所示,回转窑物料腔内壁无板结物料,说明回转窑内清理结构可实现破板结作用,有利于油页岩在回转窑内的传热。如图7(b)所示,热解混合气管道内无粉尘堆积,说明管道内清理结构可在线实现粉尘的有效清理,管道不易堵塞,验证了间接加热回转窑热解设备应用于油页岩热解处理的可行性。此外,间接加热回转窑热解设备安装操作方便,运行稳定。
3.5 存在的问题及改进措施
尽管间接加热回转窑可大幅度降低粉尘携带量,但回收油的含固率仍较高,浮渣和底泥副产物较多。这可能与本工艺采用的直接冷凝方式有关。直接冷凝设备中热解混合气的冷凝和粉尘的沉降同时进行,导致冷凝油和粉尘结合密切,不易分离。因此,为提高回收油品质,降低底泥和浮渣产量,应进一步优化除尘及冷凝工艺,建议后续采用分级冷凝的方式,先对高温热解气进行除尘净化,之后再进行油分的冷凝回收,提高油的分离效率。
此外,间接加热回转窑设备实际处理温度与物料检测控制温度存在一定差异,导致在低处理量时实际处理温度过高,能耗增加。因此,需改进物料检测仪表及布置方式,提高物料温度控制准确度,平衡处理量和能耗的关系。
4. 结论
1)小颗粒油页岩间接加热回转窑热解工艺可使出料温度达到500 ℃以上、热解气粉尘携带量低,油回收率高于同类技术;同时,页岩半焦保留了一定的热值。
2)间接加热回转窑热解设备占地面积小,安装操作方便,无物料板结和管道粉尘堵塞现象;设备运行稳定,维护成本低,可利用厂区废热降低运行成本。
3)间接加热回转窑设备进行油页岩热解存在回收油含固量高以及系统能耗高、热效率低、温度检测存在误差的问题,后期需进一步对除尘冷凝工艺及烟气热量利用进行优化设计。
-
表 1 黔西北水城区农田土壤pH值和Cd质量分数统计特征
Table 1. Statistical characteristics of pH value and Cd content in farmland soil in Shuicheng District of Northwest Guizhou
作物名称 样品数 土壤pH 土壤Cd 范围 平均值 范围/ (mg·kg−1) 平均值/ (mg·kg−1) 变异系数 点位超标率 水稻 22 4.67~7.47 6.03 0.26~3.55 1.16 75.02% 90.91% 玉米 105 4.53~8.09 6.35 0.30~66.50 3.77 184.57% 99.05% 叶菜蔬菜 37 4.35~7.77 6.12 0.70~248.00 19.03 219.93% 100% 表 2 研究区土壤重金属元素地积累指数
Table 2. Geo-accumulation factors of heavy metals in soils in the study area
地累积指数 污染程度 点位数 百分比 Igeo≤0 无污染 81 49.39% 0<Igeo≤1 无污染到中度污染 75 45.73% 1<Igeo≤2 中度污染 7 4.27% 2<Igeo≤3 中度污染到强污染 1 0.61% 3<Igeo 强污染及以上 0 0.00 表 3 农用地土壤Cd风险管控标准在黔西北水稻产地土壤环境质量类别划分的适宜性
Table 3. Suitability of risk control standards for soil Cd contamination of agricultural land in the classification of environmental quality for the rice production areas of Northwest Guizhou
土壤Cd≤RSV RSV<土壤Cd≤RIV 土壤Cd>RIV 土壤 pH RSV RIV NES ES NES ES NES ES 小计 标准合适 假阴性Ⅰ类错误 假阳性Ⅱ类错误 标准合适 pH≤5.5 0.3ab 1.5 0 0 16 0 18 2 36 5.5<pH≤6.5 0.4a/0.3b 2 1 0 21 2 39 2 65 6.5<pH≤7.5 0.6a/0.3b 3 1 0 27 0 14 2 44 pH>7.5 0.8a/0.6b 4 1 0 17 0 1 0 19 注:表中RSV和RIV分别表示土壤环境质量标准 (GB 15618-2018) 中的农用地土壤污染风险筛选值和管制值;NES和ES分别表示农产品不超标样本数和超标样本数;a表示水田土壤,b表示其他土壤。 -
[1] 杨文弢, 张佳, 廖柏寒. Cd胁迫下外源有机肥对土壤中Cd有效性和水稻糙米中Cd含量的影响[J]. 贵州大学学报(自然科学版), 2020, 37(1): 105-111. [2] 盛昕, 顿梦杰, 肖乃川, 等. 不同品种油葵在镉严格管控类耕地的安全利用探索[J]. 环境工程学报, 2021, 15(8): 2711-2720. doi: 10.12030/j.cjee.202105081 [3] 杨文弢, 廖柏寒, 周航, 等. 有机肥施用下水稻不同生育期土壤水稻系统中微量元素与Cd的关系[J]. 安全与环境学报, 2020, 20(5): 1932-1941. [4] 熊康宁, 池永宽. 中国南方喀斯特生态系统面临的问题及对策[J]. 生态经济, 2015, 31(1): 23-30. doi: 10.3969/j.issn.1671-4407.2015.01.006 [5] 陈拙, 吴攀, 孟伟, 等. 喀斯特地区清虚洞组地层风化对土壤重金属累积的影响[J]. 生态学杂志, 2019, 38(12): 3747-3753. doi: 10.13292/j.1000-4890.201912.009 [6] 中国环境监测总站. 中国土壤元素背景值. [S]. 北京: 中国环境科学出版社, 1990. [7] 黄优, 桂祥友. 贵州土地复垦发展现状及其对策研究[J]. 环境工程学报, 2008(2): 285-288. [8] 侯湖平, 黄安平, 张绍良, 等. 矿产资源开发区与生态脆弱区吻合性分析——以贵州省为例[J]. 矿业研究与开发, 2015, 35(1): 103-108. [9] 王春, 陈梓杰, 王莹, 等. 黑色岩系地质高背景区土壤锌富集特征与环境活性[J]. 地球与环境, 2021: 1-8. [10] YANG L Y, YANG W T, Gu S Y, et al. Effects of organic fertilizers on Cd activity in soil and Cd accumulation in rice in three paddy soils from Guizhou province[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107(6): 1161-1166. doi: 10.1007/s00128-021-03326-0 [11] 黄钟霆, 易盛炜, 陈贝贝, 等. 典型锰矿区周边农田土壤-农作物重金属污染特征及生态风险评价[J]. 环境科学, 43(02): 1-14. [12] 林承奇, 蔡宇豪, 胡恭任, 等. 闽西南土壤-水稻系统重金属生物可给性及健康风险[J]. 环境科学, 2021, 42(1): 359-367. [13] 郝社锋, 任静华, 范健, 等. 江苏某市水稻籽粒重金属富集特征及健康风险评价[J]. 环境污染与防治, 2021, 43(2): 217-222,228. [14] 王旭莲, 刘鸿雁, 周显勇, 等. 地质高背景区马铃薯安全生产的土壤镉风险阈值[J]. 农业环境科学学报, 2021, 40(2): 355-363. doi: 10.11654/jaes.2020-0988 [15] 王小蒙, 郑向群, 丁永祯, 等. 不同土壤下苋菜镉吸收规律及其阈值研究[J]. 环境科学与技术, 2016, 39(10): 1-8. [16] 王倩, 直俊强, 石奥, 等. 微波消解-电感耦合等离子体质谱(ICP-MS)法同时测定土壤中11种金属元素[J]. 中国无机分析化学, 2021, 11(1): 7-11. doi: 10.3969/j.issn.2095-1035.2021.01.002 [17] 赵东杰, 王学求. 滇黔桂岩溶区河漫滩土壤重金属含量、来源及潜在生态风险[J]. 中国环境科学, 2020, 40(4): 1609-1619. doi: 10.3969/j.issn.1000-6923.2020.04.028 [18] 徐梦琪, 杨文弢, 杨利玉, 陈勇林, 景灏楠, 吴攀. 黔西北山区耕地重金属健康风险评价及环境基准[J/OL][J]. 环境科学, 2022: 1-15. doi: 10.13227/j.hjkx.202111053 [19] 郎笛, 王宇琴, 张芷梦, 等. 云南省农用地土壤生态环境基准与质量标准建立的思考及建议[J]. 生态毒理学报, 2021, 16(1): 74-86. [20] 曾庆楠, 安毅, 秦莉, 等. 物种敏感性分布法在建立土壤生态阈值方面的研究进展[J]. 安全与环境学报, 2018, 18(3): 1220-1224. [21] 冯艳红, 王国庆, 张亚, 等. 土壤-蔬菜系统中镉的生物富集效应及土壤阈值研究[J]. 地球与环境, 2019, 47(5): 653-661. [22] ROMKENS P F A M, Guo H Y, CHU C L, et al. Prediction of Cadmium uptake by brown rice and derivation of soil–plant transfer models to improve soil protection guidelines[J]. Environmental Pollution, 2009, 157(8-9): 2435-2444. doi: 10.1016/j.envpol.2009.03.009 [23] 刘南婷, 刘鸿雁, 吴攀, 等. 典型喀斯特地区土壤重金属累积特征及环境风险评价[J]. 农业资源与环境学报, 2021, 38(5): 797-809. [24] 王雪雯, 刘鸿雁, 顾小凤, 涂宇, 于恩江, 吴攀. 地质高背景与污染叠加区不同土地利用方式下土壤重金属分布特征[J]. 环境科学, 2022, 43(4): 2094-2103. doi: 10.13227/j.hjkx.202107112 [25] 魏赢, 刘阳生. 汞污染农田土壤的化学稳定化修复[J]. 环境工程学报, 2017, 11(3): 1878-1884. doi: 10.12030/j.cjee.201512016 [26] 杨光龙, 陈冲, 王林. 黔西北艾家坪-水城地区铅锌矿地质特征及控矿条件[J]. 贵州地质, 2009, 26(1): 31-35. doi: 10.3969/j.issn.1000-5943.2009.01.007 [27] 邱静, 吴永贵, 罗有发, 等. 两种先锋植物对铅锌废渣生境改善及重金属迁移的影响[J]. 农业环境科学学报, 2019, 38(4): 798-806. doi: 10.11654/jaes.2018-0752 [28] 林文杰, 周晚春, 敖子强, 等. 土法炼锌区土地复垦的重金属迁移特征[J]. 安徽农业科学, 2009, 37(12): 5608-5610. doi: 10.3969/j.issn.0517-6611.2009.12.113 [29] 柴冠群, 杨娇娇, 范成五, 等. 镉高地质背景区设施栽培对土壤与蔬菜镉积累的影响[J]. 土壤通报, 2020, 51(6): 1489-1495. [30] 胡立志, 刘鸿雁, 刘青栋, 等. 贵州喀斯特地区辣椒镉的累积特性及土壤风险阈值研究[J]. 生态科学, 2021, 40(3): 193-200. [31] 张家春, 曾宪平, 张珍明, 等. 喀斯特林地土壤重金属形态特征及其评价[J]. 水土保持研究, 2019, 26(6): 347-352,358. [32] 刘方, 王金凤, 朱健, 等. 地质条件制约对喀斯特区域土壤Cd累积及空间分布的影响[J]. 贵州大学学报(自然科学版), 2021, 38(3): 10-16. [33] SUNGUR A, SOYLAK M, YILMAZ E, et al. Characterization of heavy metal fractions in agricultural soils by sequential extraction procedure: the relationship between soil properties and heavy metal fractions[J]. Soil and Sediment Contamination, 2014 (1), 24: 1-15. [34] 杨文弢, 周航, 邓贵友, 等. 组配改良剂对污染稻田中铅、镉和砷生物有效性的影响[J]. 环境科学学报, 2016, 36(1): 257-263. [35] 马宏宏, 彭敏, 郭飞, 等. 广西典型岩溶区农田土壤-作物系统Cd迁移富集影响因素[J]. 环境科学, 2021, 42(3): 1514-1522. [36] 张龙, 张忠启, 何轶, 等. 毕节植烟区炭基有机肥施用适宜性区划研究[J]. 土壤学报: 1-11. [37] 董玲玲, 何腾兵, 刘元生, 等. 喀斯特山区不同母质(岩)发育的土壤主要理化性质差异性分析[J]. 土壤通报, 2008, 234(3): 471-474. doi: 10.3321/j.issn:0564-3945.2008.03.002 [38] 刘娟, 李洋, 张敏, 等. 滇东农田土壤铅污染健康风险评价及基准研究[J]. 农业工程学报, 2021, 37(1): 241-250. doi: 10.11975/j.issn.1002-6819.2021.01.029 [39] 葛峰, 云晶晶, 徐坷坷, 等. 重金属铅的土壤环境基准研究进展[J]. 生态与农村环境学报, 2019, 35(9): 1103-1110. [40] 杨文弢, 廖柏寒, 吴攀, 等. 菜籽饼堆肥对水稻土壤Cd有效性及Cd在水稻全生育期转运与累积的影响[J]. 水土保持学报, 2019, 33(2): 317-322. [41] 张佳, 杨文弢, 廖柏寒, 等. 有机肥对酸性稻田土壤Cd赋存形态的影响途径和机制[J]. 水土保持学报, 2020, 34(1): 365-370. [42] 宋金茜. 南京北部长江沿岸农业土壤及农产品重金属风险评价研究[D]. 南京农业大学, 2017. [43] 袁国军, 卢绍辉, 梅象信, 等. 农用地土壤污染风险管控标准延伸理解及其评价标准现状分析[J]. 中国农学通报, 2020, 36(2): 84-89. doi: 10.11924/j.issn.1000-6850.casb18110123 [44] 孙聪, 陈世宝, 宋文恩, 等. 不同品种水稻对土壤中镉的富集特征及敏感性分布(SSD)[J]. 中国农业科学, 2014, 47(12): 2384-2394. doi: 10.3864/j.issn.0578-1752.2014.12.011 [45] 罗慧, 刘秀明, 王世杰, 等. 中国南方喀斯特集中分布区土壤Cd污染特征及来源[J]. 生态学杂志, 2018, 37(5): 1538-1544. doi: 10.13292/j.1000-4890.201805.019 期刊类型引用(6)
1. 贾郁菲,陈宏坪,张文影,艾雨露,陈梦舫. 甲壳生物质修复废弃煤矿酸性矿坑水研究进展. 环境保护科学. 2024(02): 1-7 . 百度学术
2. 徐秀月,王宁宁,任军,董慧林. SRB对AMD湿地处理系统沉积物中重金属的钝化作用研究. 金属矿山. 2024(10): 265-272 . 百度学术
3. 高羽,刘雨辰,郭晓方,吉莉,张桂香,张哲海,夏红丽,何文峰,张博远. 硫酸盐还原菌对碱性和酸性农田土壤中重金属的钝化效果及其作用机制. 环境科学. 2022(12): 5789-5797 . 百度学术
4. 王继勇,黄品源,何伟. 土豆为缓释碳源负载SRB处理模拟含镉酸性废水. 华中师范大学学报(自然科学版). 2021(02): 244-249+269 . 百度学术
5. 张珊. 矿山开采工程中酸性废水治理技术及对策简析. 世界有色金属. 2021(03): 51-52 . 百度学术
6. 沈蔡龙,张广积,杨超. 微生物法治理含砷酸性矿山废水的研究进展. 黄金科学技术. 2020(06): 786-791 . 百度学术
其他类型引用(4)
-