-
砷 (Arsenic,As) 及其无机化合物对人体有严重危害,是国际卫生组织公布的I级致癌物[1]。在含砷矿产资源的开采与冶炼过程中,砷会扩散至周边农田,引起严重的农田土壤污染[2-3]。此外,在农业生产中,长期投入含砷农药、化肥和饲料添加剂,亦会加剧农田土壤砷污染[4-6]。我国土壤砷环境背景值高,平均质量分数为11.2 mg·kg−1,接近全球平均值 (6.0 mg·kg−1) 的2倍[7]。以上表明,我国农田土壤砷污染状况不容乐观。我国表层农业土壤中砷的质量分数中位数为10.4 mg·kg−1,与其他国家相比处于较高水平[8]。砷进入农田中会引起土壤退化,并影响农业的可持续发展。砷通过作物、蔬菜的种植进入食物链进而威胁人体健康。水稻是我国重要的粮食作物,具有较强的砷吸收转运能力,因此,稻田砷污染也成为稻米砷暴露的主要途径[9]。另有调查显示,我国菜地砷超标情况严重,9.2%的统计样本砷含量超标,中部地区菜地土壤砷的超标率高达24.8%[10]。因此,我国农田土壤的砷污染问题亟需解决。
我国农田土壤砷污染面积大,以中低污染程度为主。相比物理、化学等修复方法,以植物提取修复为核心的联合修复技术既是一种对土壤扰动小的绿色友好修复技术[11-12],又能真正实现土壤污染的减量。植物提取修复技术依赖于能超量积累目标污染物的超富集植物。砷超富集植物蜈蚣草 (Pteris vittata L.) 的发现,使砷污染土壤的植物提取修复成为可能[13-14]。蜈蚣草是一种凤尾蕨属的蕨类植物,地上部砷浓度可达22.6 g·kg−1 (鲜重) ,远远高于常见的普通植物 (<10.0 mg·kg−1,鲜重),地上部和地下部含砷比例可达到24,是一种非常理想的砷污染土壤的植物提取修复材料。同时,蜈蚣草自然分布广、环境适应性强,自其发现至今已在海内外多地进行了成功应用[15-18]。然而,超富集植物生长较慢、种植技术成本较高等特点限制了其大规模应用。目前,我国农田砷及其他重金属的污染防控,主要采用低积累品种作物结合钝化剂投入的安全利用策略。然而,若仅使用安全利用策略,一方面无法实现土壤中砷污染的减量,另一方面钝化剂的长期投入还可能带来新的土壤污染问题。植物砷提取修复技术进一步降本增效,并优化与安全利用技术的联合修复模式,有望通过“边生产、边修复”的方式实现农田中砷污染减量。
基于我国大面积砷污染农田的修复需求,已有研究者以蜈蚣草为代表的砷超富集植物为研究对象,在解析其的砷富集机理,进一步探索了提高砷污染土壤植物修复效果的技术。强化提取修复技术的研究主要有以下几个方面:1) 提取修复植物材料的种植创新,包括砷超高富集生态型的筛选和近期砷超富集工程植物的创制;2) 提取修复的微生物强化,包括根际砷活化、修复植物促生菌剂的开发和超富集植物根际微生物集群特征与功能的解析;3) 提取修复的农艺措施优化,包括土壤砷活化剂、植物激素的使用和超富集植物与作物组合种植模式的构建。本文分析了砷污染土壤植物提取修复技术的原理与现状,综述了近5年来强化砷植物提取修复的方法,包括修复植物的种质创新、超富集植物与根际微生物联合作用和农艺措施优化等几个方面的技术发展与原理研究,并对农田土壤砷污染修复技术的未来研究方向提出了展望,以期为该技术的进一步发展提供参考。
砷污染农田的植物提取修复技术研究进展
Research progress on phytoextraction technology of arsenic contaminated soil in farmland
-
摘要: 由于粗放的矿物采冶方式,矿区大量的砷扩散到周边农田中,会导致农田土壤砷污染问题。部分地区的砷背景值高,部分地区在农业生产活动中使用含砷化肥、农药等,均会加剧农田砷污染问题。植物提取修复是一种利用超富集植物将土壤污染物吸收并转移到植物地上部,待植物成熟收割以整体移除污染物的方法。与其他砷污染农田土壤的修复技术相比,植物提取修复技术具有无二次污染的特点。该技术辅以合理的农艺措施,可使土壤砷污染减量,并实现边生产边修复的目标,应用潜力广泛。分析了砷污染土壤植物提取修复技术的原理与现状;重点探讨了近年来强化砷植物提取修复的方法,包括修复植物的种质创新、超富集植物与根际微生物联合作用和农艺措施优化等几个方面;最后展望了农田土壤砷污染修复技术的未来研究方向,以期为该技术的进一步发展提供参考。Abstract: Arsenic mineral resources are rich in China. Due to the extensive mining patterns and backward techniques, large amount of arsenic in the mining area had been released to the surrounding farmland. Meanwhile, areas with high arsenic geological background values and the addition of arsenic-containing materials in agricultural activities led to severe and widely arsenic pollution in agricultural soils in China. Phytoextraction uses hyperaccumulator to remove contaminants from soils. Compared with other remediation technologies, phytoextraction can reduce soil arsenic pollution with no secondary pollution, which can also achieve simultaneous agricultural production and soil remediation through reasonable farming practices, showing great potential for wide application. In this review, the principle and techniques of phytoextraction in the remediation of arsenic-contaminated soils are summarized. The application of phytoremediation through the plant generational innovation, the combined remediation measures with rhizosphere microorganisms, and the improvement of agronomic measures are discussed. Moreover, this review makes a prospective for the future research on soil remediation of arsenic-contaminated farmland.
-
Key words:
- arsenic contaminated soil /
- hyperaccumulator /
- Pteris vittata /
- rhizosphere microbiome /
- intercropping
-
表 1 实际场地修复项目中主要运用的修复模式及案例
Table 1. Restoration modes and cases mainly used in actual site restoration projects
修复模式 修复技术 适用场地 案列项目 背景As质量分数/(mg·kg−1) 修复效果 砷超富集植物+低吸收作物间套种 植物提取 中轻度As污染农田 (<80 mg·kg−1) 广东佛冈县As污染农田修复项目,蜈蚣草与低吸收作物 (砂糖桔/黄皮) 间套种联合修复 48.7 套种3年,土壤As浓度降低了约67%,间套作的农产品重金属含量的合格率>95% 砷超富集植物+低吸收作物间套种+活化剂/土壤改良剂 植物提取 中度至重度As污染农田 湖南石门县砷污染农田土壤修复工程,蜈蚣草-活化剂强化修复,蜈蚣草柑橘间作修复 84.2~296.2 修复中度至重度污染农田士壤1000多亩,土壤中砷平均去除率达到10%以上,间作的农产品符合国家标准[15, 17] 砷超富集植物+微生物 植物提取 重度As污染土壤 意大利冶金As高污场地的植物-微生物联合修复 170 AMF接种的蜈蚣草的砷转移系数高出对照30%,种植第四年可将土壤中的砷质量分数从170 mg·kg−1减至49 mg·kg−1以达到该国标准[50] 砷超富集植物+耐砷植物+添加基质/客土 植物提取、植物稳定 高As污染尾矿 湖南石门县雄黄尾矿库植被复绿工程 2 883 客土施肥,种植蜈蚣草或芒草,5年后尾矿坝上建立了稳定的植被覆盖系统,生长了39种植物[84] 耐砷植物+添加基质/客土 植物稳定 旱区高As污染强酸性尾矿 美国亚利桑那州IKMHSS硫铁矿尾矿堆肥辅助植物稳定化修复 4 000 堆肥改良,种植6种本地耐性植物3年后,植被覆盖率最高可达61%,大部分植物地上部重金属累积量不超过家畜毒性限值[85] -
[1] HUMANS I W G O T E O C R T. Some drinking-water disinfectants and contaminants, including arsenic[J]. IARC monographs on the evaluation of carcinogenic risks to humans, 2004, 84: 1-477. [2] 李莲芳, 曾希柏, 白玲玉, 等. 石门雄黄矿周边地区土壤砷分布及农产品健康风险评估[J]. 应用生态学报, 2010, 21(11): 2946-51. doi: 10.13287/j.1001-9332.2010.0391 [3] 刘许生. 石门雄黄: 一座矿山的传奇与悲伤[J]. 国土资源导刊, 2014, 11(11): 86-90. [4] LIU C, YU H Y, LIU C, et al. Arsenic availability in rice from a mining area: Is amorphous iron oxide-bound arsenic a source or sink?[J]. Environmental Pollution, 2015, 199: 95-101. doi: 10.1016/j.envpol.2015.01.025 [5] ZHOU Y, NIU L, LIU K, et al. Arsenic in agricultural soils across China: Distribution pattern, accumulation trend, influencing factors, and risk assessment[J]. Science of the Total Environment, 2018, 616: 156-163. [6] 张靖佳, 单世平. 我国砷污染现状及生物修复技术的应用与展望[J]. 农业网络信息, 2016(11): 64-67. doi: 10.3969/j.issn.1672-6251.2016.11.017 [7] 魏复盛, 陈静生, 吴燕玉, 等. 中国土壤环境背景值研究[J]. 环境科学, 1991(04): 12-19. doi: 10.3321/j.issn:0250-3301.1991.04.015 [8] GONG Y, QU Y, YANG S, et al. Status of arsenic accumulation in agricultural soils across China (1985-2016)[J]. Environmental Research, 2020: 186. [9] CHEN C, YANG B, GAO A, et al. Transformation of arsenic species by diverse endophytic bacteria of rice roots[J]. Environmental pollution (Barking, Essex:1987), 2022: 119825. [10] 曾希柏, 李莲芳, 梅旭荣. 中国蔬菜土壤重金属含量及来源分析[J]. 中国农业科学, 2007(11): 2507-2517. doi: 10.3321/j.issn:0578-1752.2007.11.016 [11] 纪冬丽, 孟凡生, 薛浩, 等. 国内外土壤砷污染及其修复技术现状与展望[J]. 环境工程技术学报, 2016, 6(1): 90-99. doi: 10.3969/j.issn.1674-991X.2016.01.014 [12] 谢运河, 纪雄辉, 吴家梅, 等. 镉砷污染土壤“三高”富集植物筛选与修复成本分析[J]. 环境科学与技术, 2020, 43(S1): 116-121. doi: 10.19672/j.cnki.1003-6504.2020.S1.020 [13] MA L Q, KOMAR K M, TU C, et al. A fern that hyperaccumulates arsenic (vol 409, pg 579, 2001)[J]. Nature, 2001, 411(6836): 438-U3. [14] 陈同斌, 韦朝阳, 黄泽春, 等. 砷超富集植物蜈蚣草及其对砷的富集特征[J]. 科学通报, 2002(3): 207-210. doi: 10.3321/j.issn:0023-074X.2002.03.011 [15] 陈同斌, 杨军, 雷梅, 等. 湖南石门砷污染农田土壤修复工程[J]. 世界环境, 2016(4): 57-58. [16] 刘维明, 黄增, 邓超冰, 等. 大环江流域重金属污染土壤的3种修复技术研究[J]. 江西农业学报, 2016, 28(10): 94-97. doi: 10.19386/j.cnki.jxnyxb.2016.10.20 [17] 马志强. 石门砷污染农田修复项目经验介绍[J]. 中国环保产业, 2020(6): 18-21. doi: 10.3969/j.issn.1006-5377.2020.06.004 [18] KERTULIS-TARTAR G M, MA L Q, TU C, et al. Phytoremediation of an arsenic-contaminated site using Pteris vitrata L. : A two-year study[J]. International Journal of Phytoremediation, 2006, 8(4): 311-322. doi: 10.1080/15226510600992873 [19] WANG H B, YE Z H, SHU W S, et al. Arsenic uptake and accumulation in fern species growing at arsenic-contaminated sites of southern China: Field surveys[J]. International Journal of Phytoremediation, 2006, 8(1): 1-11. doi: 10.1080/16226510500214517 [20] WANG H B, WONG M H, LAN C Y, et al. Uptake and accumulation of arsenic by 11 Pteris taxa from southern China[J]. Environmental Pollution, 2007, 145(1): 225-233. doi: 10.1016/j.envpol.2006.03.015 [21] SRIVASTAVA M, MA L Q, SANTOS J A G. Three new arsenic hyperaccumulating ferns[J]. Science of the Total Environment, 2006, 364(1-3): 24-31. doi: 10.1016/j.scitotenv.2005.11.002 [22] 宋书巧, 周永章, 周兴, 等. 土壤砷污染特点与植物修复探讨[J]. 热带地理, 2004(1): 6-9. doi: 10.3969/j.issn.1001-5221.2004.01.002 [23] XU W, DU Q, YAN S, et al. Geographical distribution of As-hyperaccumulator Pteris vittata in China: Environmental factors and climate changes[J]. Science of the Total Environment, 2022: 803. [24] 许飞飞, 马晓娜, 罗万清, 等. 不同生态型蜈蚣草对砷富集的差异及其机理[J]. 科技导报, 2017, 35(3): 86-91. [25] WU F Y, LEUNG H M, WU S C, et al. Variation in arsenic, lead and zinc tolerance and accumulation in six populations of Pteris vittata L. from China[J]. Environmental Pollution, 2009, 157(8/9): 2394-404. [26] WAN X-M, LEI M, LIU Y-R, et al. A comparison of arsenic accumulation and tolerance among four populations of Pteris vittata from habitats with a gradient of arsenic concentration[J]. Science of the Total Environment, 2013, 442: 143-151. doi: 10.1016/j.scitotenv.2012.10.056 [27] WU F, DENG D, WU S, et al. Arsenic tolerance, uptake, and accumulation by nonmetallicolous and metallicolous populations of Pteris vittata L[J]. Environmental Science and Pollution Research, 2015, 22(12): 8911-8918. doi: 10.1007/s11356-013-1593-1 [28] 许飞飞. 不同生态型蜈蚣草砷吸收差异特征及其机理 [D]. 杨凌: 西北农林科技大学, 2017. [29] WAN X, LEI M. Intercropping efficiency of four arsenic hyperaccumulator Pteris vittata populations as intercrops with Morus alba[J]. Environmental Science and Pollution Research, 2018, 25(13): 12600-12611. doi: 10.1007/s11356-018-1366-y [30] CAO Y, FENG H Y, SUN D, et al. Heterologous Expression of Pteris vittata Phosphate Transporter PvPht1;3 Enhances Arsenic Translocation to and Accumulation in Tobacco Shoots[J]. Environmental Science & Technology, 2019, 53(18): 10636-44. [31] CAO Y, SUN D, CHEN J X, et al. Phosphate Transporter PvPht1;2 Enhances Phosphorus Accumulation and Plant Growth without Impacting Arsenic Uptake in Plants[J]. Environmental Science & Technology, 2018, 52(7): 3975-3981. [32] FENG H Y, LI X Y, SUN D, et al. Expressing Phosphate Transporter PvPht2;1 Enhances P Transport to the Chloroplasts and Increases Arsenic Tolerance in Arabidopsis thaliana[J]. Environmental Science & Technology, 2021, 55(4): 2276-84. [33] SUN D, FENG H, LI X, et al. Expression of New Pteris vittata Phosphate Transporter PvPht1;4 Reduces Arsenic Translocation from the Roots to Shoots in Tobacco Plants[J]. Environmental Science & Technology, 2020, 54(2): 1045-53. [34] CHEN Y, XU W, SHEN H, et al. Engineering Arsenic Tolerance and Hyperaccumulation in Plants for Phytoremediation by a PvACR3 Transgenic Approach[J]. Environmental Science & Technology, 2013, 47(16): 9355-62. [35] CHEN Y S, HUA C Y, JIA M R, et al. Heterologous Expression of Pteris vittata Arsenite Antiporter PvACR3;1 Reduces Arsenic Accumulation in Plant Shoots[J]. Environmental Science & Technology, 2017, 51(18): 10387-95. [36] WEI S J, KOHDA Y H T, INOUE C, et al. Expression of PvPht1;3, PvACR2 and PvACR3 during arsenic processing in root of Pteris vittata[J]. Environmental and Experimental Botany, 2021: 182. [37] CHEN J-X, CAO Y, YAN X, et al. Novel PvACR3;2 and PvACR3;3 genes from arsenic-hyperaccumulator Pteris vittata and their roles in manipulating plant arsenic accumulation[J]. Journal of Hazardous Materials, 2021: 415. [38] WANG C, NA G, BERMEJO E S, et al. Dissecting the components controlling root-to-shoot arsenic translocation in Arabidopsis thaliana[J]. New Phytologist, 2018, 217(1): 206-218. doi: 10.1111/nph.14761 [39] LI X Y, SUN D, FENG H Y, et al. Efficient arsenate reduction in As-hyperaccumulator Pteris vittata are mediated by novel arsenate reductases PvHAC1 and PvHAC2[J]. Journal of Hazardous Materials, 2020: 399. [40] 张瑞福. 根际微生物: 农业绿色发展中大有作为的植物第二基因组[J]. 生物技术通报, 2020, 36(9): 1-2. [41] SINGH S, SHRIVASTAVA A, BARLA A, et al. Isolation of Arsenic-Resistant Bacteria from Bengal Delta Sediments and their Efficacy in Arsenic Removal from Soil in Association with Pteris vittata[J]. Geomicrobiology Journal, 2015, 32(8): 712-23. doi: 10.1080/01490451.2015.1004141 [42] 李珂, 石兆勇, 王发园. 丛枝菌根生理生态功能及其在生态恢复中的作用[J]. 土壤通报, 2017, 48(4): 996-1002. doi: 10.19336/j.cnki.trtb.2017.04.33 [43] ZHU Y G, CAVAGNARO T R, SMITH S E, et al. Backseat driving? Accessing phosphate beyond the rhizosphere - depletion zone[J]. Trends in Plant Science, 2001, 6(5): 194-195. doi: 10.1016/S1360-1385(01)01957-4 [44] LIU Y, ZHU Y G, CHEN B D, et al. Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L[J]. Mycorrhiza, 2005, 15(3): 187-192. doi: 10.1007/s00572-004-0320-7 [45] LEUNG H M, YE Z H, WONG M H. Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils[J]. Environmental Pollution, 2006, 139(1): 1-8. doi: 10.1016/j.envpol.2005.05.009 [46] TROTTA A, FALASCHI P, CORNARA L, et al. Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L[J]. Chemosphere, 2006, 65(1): 74-81. doi: 10.1016/j.chemosphere.2006.02.048 [47] CANTAMESSA S, MASSA N, GAMALERO E, et al. Phytoremediation of a Highly Arsenic Polluted Site, Using Pteris vittata L. and Arbuscular Mycorrhizal Fungi [J]. Plants-Basel, 2020, 9(9). [48] QIAO J-T, LI X-M, LI F-B. Roles of different active metal-reducing bacteria in arsenic release from arsenic-contaminated paddy soil amended with biochar[J]. Journal of Hazardous Materials, 2018, 344: 958-967. doi: 10.1016/j.jhazmat.2017.11.025 [49] REVESZ E, FORTIN D, PAKTUNC D. Reductive dissolution of arsenical ferrihydrite by bacteria[J]. Applied Geochemistry, 2016, 66: 129-139. doi: 10.1016/j.apgeochem.2015.12.007 [50] FAN L, ZHAO F, LIU J, et al. The As behavior of natural arsenical-containing colloidal ferric oxyhydroxide reacted with sulfate reducing bacteria[J]. Chemical Engineering Journal, 2018, 332: 183-191. doi: 10.1016/j.cej.2017.09.078 [51] GOUDA S, KERRY R G, DAS G, et al. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture[J]. Microbiological Research, 2018, 206: 131-140. doi: 10.1016/j.micres.2017.08.016 [52] YANG C, HO Y-N, INOUE C, et al. Long-term effectiveness of microbe-assisted arsenic phytoremediation by Pteris vittata in field trials[J]. Science of the Total Environment, 2020: 740. [53] KUMAR S, CHOUDHARY A K, SUYAL D C, et al. Leveraging arsenic resistant plant growth-promoting rhizobacteria for arsenic abatement in crops[J]. Journal of Hazardous Materials, 2022: 425. [54] CAI L, YU K, YANG Y, et al. Metagenomic exploration reveals high levels of microbial arsenic metabolism genes in activated sludge and coastal sediments[J]. Applied Microbiology and Biotechnology, 2013, 97(21): 9579-9588. doi: 10.1007/s00253-012-4678-8 [55] CAO X D, MA L Q, SHIRALIPOUR A. Effects of compost and phosphate amendments on arsenic mobility in soils and arsenic uptake by the hyperaccumulator, Pteris vittata L[J]. Environmental Pollution, 2003, 126(2): 157-167. doi: 10.1016/S0269-7491(03)00208-2 [56] XIAO E, CUI J, SUN W, et al. Root microbiome assembly of As-hyperaccumulator Pteris vittata and its efficacy in arsenic requisition[J]. Environmental Microbiology, 2021, 23(4): 1959-1971. doi: 10.1111/1462-2920.15299 [57] DAS S, CHOU M-L, JEAN J-S, et al. Arsenic-enrichment enhanced root exudates and altered rhizosphere microbial communities and activities in hyperaccumulator Pteris vittata[J]. Journal of Hazardous Materials, 2017, 325: 279-287. doi: 10.1016/j.jhazmat.2016.12.006 [58] 卢陈彬, 刘祖文, 张军, 等. 化学诱导剂强化植物提取修复重金属污染土壤研究进展[J]. 应用化工, 2018, 47(07): 1531-1535. doi: 10.3969/j.issn.1671-3206.2018.07.050 [59] 杨树深, 杨军, 杨俊兴, 等. 土壤添加剂对蜈蚣草吸收转运铅、镉的影响[J]. 生态学杂志, 2017, 36(6): 1650-1657. doi: 10.13292/j.1000-4890.201706.022 [60] 熊国焕, 潘义宏, 何艳明, 等. 螯合剂对大叶井口边草Pb、Cd、As吸收性影响研究[J]. 土壤, 2012, 44(02): 282-289. doi: 10.3969/j.issn.0253-9829.2012.02.017 [61] KALYVAS G, TSITSELIS G, GASPARATOS D, et al. Efficacy of EDTA and Olive Mill Wastewater to Enhance As, Pb, and Zn Phytoextraction by Pteris vittata L. from a Soil Heavily Polluted by Mining Activities [J]. Sustainability, 2018, 10(6). [62] LUO C, SHEN Z, LI X, et al. Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS[J]. Chemosphere, 2006, 63(10): 1773-1784. doi: 10.1016/j.chemosphere.2005.09.050 [63] 向冬芳, 廖水姣, 涂书新, 等. 三聚磷酸钠与柠檬酸复合强化蜈蚣草修复砷污染土壤[J]. 农业环境科学学报, 2019, 38(8): 1973-1981. doi: 10.11654/jaes.2019-0605 [64] LIANG Y, WANG X, GUO Z, et al. Chelator-assisted phytoextraction of arsenic, cadmium and lead by Pteris vittata L. and soil microbial community structure response[J]. International Journal of Phytoremediation, 2019, 21(10): 1032-1040. doi: 10.1080/15226514.2019.1594685 [65] YANG L, WANG G, CHENG Z, et al. Influence of the application of chelant EDDS on soil enzymatic activity and microbial community structure[J]. Journal of Hazardous Materials, 2013, 262: 561-570. doi: 10.1016/j.jhazmat.2013.09.009 [66] WANG G, ZHANG S, XU X, et al. Heavy metal removal by GLDA washing: Optimization, redistribution, recycling, and changes in soil fertility[J]. Science of the Total Environment, 2016, 569: 557-568. [67] 陈春乐, 杨婷, 邹县梅, 等. 可生物降解螯合剂亚氨基二琥珀酸和谷氨酸N, N-二乙酸对重金属污染土壤的淋洗修复及动力学特征[J]. 生态与农村环境学报, 2021, 37(03): 394-401. [68] SAMPANPANISH P, NANTHAVONG K. Effect of EDTA and NTA on Arsenic Bioaccumulation and Translocation Using Phytoremediation by Mimosa pudica L. from Contaminated Soils[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 102(1): 140-145. doi: 10.1007/s00128-018-2502-6 [69] 邱亚群, 李益华, 彭佩钦, 等. 螯合剂添加对蜈蚣草修复砷污染土壤效果的影响分析[J]. 环境工程, 2021, 39(03): 204-209. doi: 10.13205/j.hjgc.202103029 [70] 胡拥军, 王海娟, 王宏镔, 等. 砷胁迫下不同砷富集能力植物内源生长素与抗氧化酶的关系[J]. 生态学报, 2015, 35(10): 3214-3224. [71] LI Q, YANG X, WANG H, et al. Endogenous trans-zeatin content in plants with different metal-accumulating ability: a field survey[J]. Environmental Science and Pollution Research, 2016, 23(23): 23422-23435. doi: 10.1007/s11356-016-7544-x [72] LI Q, WANG H, WANG H, et al. Effects of kinetin on plant growth and chloroplast ultrastructure of two Pteris species under arsenate stress[J]. Ecotoxicology and Environmental Safety, 2018, 158: 37-43. doi: 10.1016/j.ecoenv.2018.04.009 [73] WANG H, CUI S, WU D, et al. Effects of kinetin on arsenic speciation and antioxidative enzymes in fronds of the arsenic hyperaccumulator Pteris cretica var. nervosa and non-hyperaccumulator Pteris ensiformis[J]. Environmental and Experimental Botany, 2021: 191. [74] 丛超, 杨宁柯, 王海娟, 等. 吲哚乙酸和激动素配合施用提高蜈蚣草和龙葵对砷、镉富集的田间试验[J]. 生态环境学报, 2021, 30(6): 1299-309. doi: 10.16258/j.cnki.1674-5906.2021.06.022 [75] MA J, LEI E, LEI M, et al. Remediation of Arsenic contaminated soil using malposed intercropping of Pteris vittata L. and maize[J]. Chemosphere, 2018, 194: 737-744. doi: 10.1016/j.chemosphere.2017.11.135 [76] 陈同斌, 李海翔, 雷梅, 等. 植物修复过程中蜈蚣草对土壤养分的吸收动态: 5年田间定位试验[J]. 环境科学学报, 2010, 30(02): 402-408. [77] YANG J, GUO Y, YAN Y, et al. Phytoaccumulation of As by Pteris vittata supplied with phosphorus fertilizers under different soil moisture regimes - A field case[J]. Ecological Engineering, 2019, 138: 274-280. doi: 10.1016/j.ecoleng.2019.07.037 [78] YANG J, YAN Y, LU N, et al. The key nodes and main factors influencing accumulation of soil arsenic in Pteris vittata L. under field conditions[J]. Science of the Total Environment, 2022: 807. [79] BROOKER R W, BENNETT A E, CONG W F, et al. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology[J]. New Phytologist, 2015, 206(1): 107-117. doi: 10.1111/nph.13132 [80] ZENG P, GUO Z, XIAO X, et al. Phytoextraction potential of Pteris vittata L. co-planted with woody species for As, Cd, Pb and Zn in contaminated soil[J]. Science of the Total Environment, 2019, 650: 594-603. doi: 10.1016/j.scitotenv.2018.09.055 [81] YAN Y, YANG J, WAN X, et al. Temporal and spatial differentiation characteristics of soil arsenic during the remediation process of Pteris vittata L. and Citrus reticulata Blanco intercropping[J]. Science of the Total Environment, 2022: 812. [82] 石圣杰, 莫良玉, 韦昌东, 等. 不同间种模式对作物富集重金属的效率及风险评估[J]. 中国土壤与肥料, 2021(05): 223-231. doi: 10.11838/sfsc.1673-6257.20366 [83] WAN T, DONG X, YU L, et al. Comparative study of three Pteris vittata-crop intercropping modes in arsenic accumulation and phytoremediation efficiency[J]. Environmental Technology & Innovation, 2021: 24. [84] YAN-MING ZHU C-Y W, LIN-SHENG YANG. Rehabilitation of a tailing dam at Shimen County, Hunan Province: Effectiveness assessment[J]. Acta Ecologica Sinica, 2010, 30(3): 178-183. doi: 10.1016/j.chnaes.2010.04.009 [85] GIL-LOAIZA J, WHITE S A, ROOT R A, et al. Phytostabilization of mine tailings using compost-assisted direct planting: Translating greenhouse results to the field[J]. Science of the Total Environment, 2016, 565: 451-461. doi: 10.1016/j.scitotenv.2016.04.168 [86] YAN H, XU W, ZHANG T, et al. Characterization of a novel arsenite long-distance transporter from arsenic hyperaccumulator fern Pteris vittata[J]. New Phytologist, 2022, 233(6): 2488-2502. doi: 10.1111/nph.17962 [87] CUI X, ZHANG J, WANG X, et al. A review on the thermal treatment of heavy metal hyperaccumulator: Fates of heavy metals and generation of products[J]. Journal of Hazardous Materials, 2021: 405. [88] JIANG S J, SUN J, TONG G, et al. Emerging disposal technologies of harmful phytoextraction biomass (HPB) containing heavy metals: A review[J]. Chemosphere, 2022: 290. [89] JIANG H, CHEN X, CHEN S, et al. Recovery of arsenic and practical utilization of aqueous phase in hydrothermal liquefaction of hyperaccumulator[J]. Chemical Engineering Journal, 2022: 439.