-
土壤重金属污染亟需修复治理[1]。以多相态存在的重金属污染物具有不稳定性,不仅危及深层土体及地下水安全,而且易通过生物群落对人体健康造成不可逆伤害[2-4]。重金属污染物的迁移受多因素控制[5],厘清特定环境下重金属污染物的界面迁移规律及其影响因素,是污染控制及修复实施前应解决的关键问题。
土壤重金属污染问题大多表现为复合污染。河北省张家口市某电镀厂旧址场地受铜(Ⅱ)、铬(Ⅵ)和镍(Ⅱ)复合污染,点位超标率分别为2.8%、2.8%和12.3%[6];江西省贵溪市贵溪农田耕层土壤受铜(Ⅱ)和镉(Ⅱ)复合污染,其中铜(Ⅱ)质量分数高达864.77 mg·kg−1 [7];济源市平原区土壤中重金属镉(Ⅱ)、铅(Ⅱ)和砷(Ⅴ)的超标率均大于100%[8];广东省汕头市莲花山部分矿区土壤因重金属镉(Ⅱ)和砷(Ⅴ)严重超标,已影响下游稻田生长[9];常熟市严重复合重金属污染土壤已对大豆的生长发育产生了不利影响[10]。复合污染时重金属离子间存在相互作用[11-12],不仅影响彼此存在形态,甚至改变其毒性[13],需统筹考虑。
重金属污染物在土壤中的迁移与土质、污染浓度、土壤深度及粒径等因素有关。熊钡等[14]以砂土、砂壤土和黏土3种土壤为研究对象,外加电场下,镍(Ⅱ)在砂土和砂壤土的迁移速度明显比黏土快,最高迁移率分别为99.9%、68.3%和37.8%;LI等[15]指出土壤团聚体粒径<15 μm时有助于提高镉(Ⅱ)的迁移能力;VILLEN-GUZMAN等[16]选取西班牙某矿区砂壤土,证实土壤老化后铅(Ⅱ)的迁移速率降低;陈榕等[17]发现铅(Ⅱ)污染液浓度增加,迁移速率加快,穿透时间显著减小;吕达等[18]用砂箱试验装置模拟重金属在土壤系统中的迁移特征,表明重金属的垂向迁移能力铬(Ⅵ)>镍(Ⅱ)≈钴(Ⅱ)>铜(Ⅱ)。
基于电动原理的修复技术可实现介质中污染物的净化,是污染土治理领域热点[19-20]。重金属污染物随径流的迁移及在土壤中借助水头差、离子浓度差等作用下的迁移机制研究较为成熟[21-23]。因此,厘清以电动协同作用下界面迁移规律是推进电动修复技术应用的关键。
本研究以典型阴阳离子复合重金属 (铜(Ⅱ)-铬(Ⅵ)) 污染为对象,以砂土粒径、电压梯度、初始污染物浓度为影响因素,借助界面取样及多元重组构建重金属污染物的界面迁移规律,摸清影响因素的作用,明确污染物间的交互影响。以期丰富离子迁移理论,为复合重金属污染土的污染控制提供参考,并推动电动修复技术的工程应用。
电动作用下铜(II)-铬(VI)复合污染砂土中重金属的界面迁移规律
Interfacial migration of heavy metals in copper (II) -Chromium (VI) contaminated soil under electrokinetic action
-
摘要: 厘清污染物的界面迁移是实现污染控制的前提。以铜(II)-铬(VI)复合污染砂土为研究对象,以电压梯度、砂土粒径及污染浓度为影响因素,研究电动驱动作用下复合重金属污染物的界面迁移规律。结果表明:重金属污染物的横向迁移方向取决于离子赋存状态所带电荷类型,纵向迁移方向取决于赋存形态及其摩尔质量双重作用;电动作用下带有相反电荷的物质复合污染时,各物质保持原始迁移方向,但各界面浓度趋于均匀化。横向迁移方面存在以协同作用为主导的局部拮抗现象,纵向迁移方面存在迁移减缓及物质共沉现象。铜和铬最佳迁出所对应的组合条件分别为:S3 (粗砂)+0.750 V·cm−1+50 mg·kg−1和S3 (粗砂)+1.125 V·cm−1+200 mg·kg−1。电压梯度是作为影响重金属迁移效率的主要外在因素,与大粒径及风险筛选值对应的浓度相匹配有利于重金属污染物在电动作用下的迁出。不同污染物的影响因素敏感度分布并不一致,建议复合污染土体的修复治理应针对污染物种类对主导因素进行细化。本研究结果可为电动修复技术的工程应用提供参考。Abstract: Clarifying the interface migration of contamination is the premise of control. Based on copper (II)-chromium (VI) composite contaminated sandy soil, the interface migration law of composite heavy metal contamination under electric drive was studied with some influencing factors, such as voltage gradient, soil particle diameter and contaminated concentration. The results show that the transverse migration direction of heavy metal contamination depends on the charge type in the occurrence state, while the longitudinal migration depends on the dual effect of contamination occurrence form and its molar mass. In the case of compound contamination with opposite charges, each substance retains its original migration direction under electric action, but the concentration tends to homogenize. Although there is local antagonism in the transverse migration, the dominant force is the synergistic function which can alleviate the aggregation problem and enhance the transverse migration of ions. In the aspect of longitudinal migration, there are a slower migration rate and co-sedimentation for compound contamination. The optimal combination conditions of Cu and Chromium are of S3 (coarse sand)+0.750 V·cm−1+50 mg·kg−1 and S3 (coarse sand)+1.125 V·cm−1+200 mg·kg−1, respectively Voltage gradient is a major external factor affecting the migrated efficiency of heavy metal , and it need match with the large particle diameter and the concentration corresponding to the risk screening value are conducive to the removal of heavy metal contaminants under electric action. The sensitivity distribution of the influencing factors of different pollutants is not consistent. It is suggested that the main factors should be refined according to the types of pollutants in the remediation of composite polluted soil.
-
表 1 砂土筛分粒径及物理化学性质
Table 1. Particle size distribution and physical-chemical properties of sand
编号 粒径/mm 饱和含水率 标准砂筛分 SiO2含量 可溶性盐含量 密度/ (g·cm−3) 比表面积/ (m2·kg−1) S0 0.08~2.0 17.6% 混合砂 >96% <0.2% 1.51~1.54 13.18 S1 0.08~0.5 20.0% 细砂 S2 0.5~1.0 19.4% 中砂 S3 1.0~2.0 12.3% 粗砂 表 2 正交实验设计L9 (3/4)
Table 2. Orthogonal test design L9 (3/4)
编号 筛分粒径 电压梯度/(V·cm−1) 初始质量分数/(mg·kg−1) i值/% 1 S1 0.375 50 (259.74,276.57) 2 S1 0.750 200 (273.16,314.64) 3 S1 1.125 500 (254.57,305.31) 4 S2 0.375 200 (263.62,297.41) 5 S2 0.750 500 (272.64,311.26) 6 S2 1.125 50 (275.28,303.72) 7 S3 0.375 500 (269.27,284.39) 8 S3 0.750 50 (288.30*,311.28) 9 S3 1.125 200 (265.29,336.16*) 表 3 正交实验结果L9 (3/4)
Table 3. Orthogonal test results L9 (3/4)
筛分粒径K1 电压梯度K2 初始质量分数K3 极差R (787.47,896.52) (811.54,912.39) (822.86*,931.83*) (35.39,35.31) (792.63,858.37) (834.10*,937.18) (795.14,945.19*) (41.47*,86.82*) (823,32*,891.57) (811.09,948.21*) (796.48,900.96) (26.84,56.64) 注:迁移效率、Ki及极差R中 (xxx,xxx) 形式,左右两侧数值分别代表铜、铬所对相应数值;*代表极大值。 -
[1] 王勤, 彭渤, 方小红, 等. 湘江长沙段沉积物重金属污染特征及其评价[J]. 环境化学, 2020, 39(4): 999-1011. doi: 10.7524/j.issn.0254-6108.2019101901 [2] 付淑清, 韦振权, 袁少雄, 等. 珠江口沉积物与土壤的重金属特征及潜在生态危害评价[J]. 安全与环境学报, 2019, 19(2): 600-606. [3] 王锐, 邓海, 贾中民, 等. 汞矿区周边土壤重金属空间分布特征、污染与生态风险评价[J]. 环境科学, 2021, 42(6): 3018-3027. [4] 陈家乐, 相满城, 唐林茜, 等. 运积型地质高背景稻田土壤重金属污染和人体健康风险评价[J]. 生态学杂志, 2021, 40(8): 2334-2340. [5] 韩丁, 黎睿, 汤显强, 等. 污染土壤/底泥电动修复研究进展[J]. 长江科学院院报, 2021, 38(1): 41-50. doi: 10.11988/ckyyb.20191038 [6] 赖冬麟, 张奇, 陈亭亭, 等. 张家口市某机械厂原址电镀污染场地土壤修复工程实践[J]. 环境工程, 2020, 38(6): 75-80. doi: 10.13205/j.hjgc.202006012 [7] 张志红, 李红艳, 陈家煜, 等. 混合重金属离子侵蚀饱和黏性土渗透特性试验研究[J]. 岩土力学, 2016, 37(9): 2467-2476. [8] WU J Z, HUANG D, LIU X M, et al. Remediation of As(III) and Cd(II) co-contamination and its mechanism in aqueous systems by a novel calcium-based magnetic biochar[J]. Journal of Cleaner Production, 2018, 34(8): 10-19. [9] 李英, 商建英, 黄益宗, 等. 镉砷复合污染土壤钝化材料研究进展[J]. 土壤学报, 2021, 58(4): 837-850. doi: 10.11766/trxb201912170575 [10] 李艳玲, 陈卫平, 杨阳, 等. 济源市平原区农田重金属污染特征及综合风险评估[J]. 环境科学学报, 2020, 40(6): 2229-2236. [11] 甘婷婷, 赵南京, 殷高方, 等. 长江三角洲地区农用地土壤重金属污染状况与防治建议[J]. 中国工程科学, 2021, 23(1): 174-184. [12] WANG Y F, ZHANG K, LU L, et al. Novel insights into effects of silicon-rich biochar (Sichar) amendment on cadmium uptake, translocation and accumulation in rice plants[J]. Environmental Pollution, 2020, 265: 1-10. [13] CAO Y R, ZHANG S R, ZHONG Q M, et al. Feasibility of nanoscale zero-valent iron to enhance the removal efficiencies of heavy metals from polluted soils by organic acids[J]. Environmental Pollution, 2018, 164(10): 464-473. [14] 熊钡, 邵友元, 易筱筠. 外加电场下镍污染土壤离子迁移过程及机理[J]. 环境科学与技术, 2015, 38(6): 33-38. [15] LI Y L, DONG S F, QIAO J C, et al. Impact of nanominerals on the migration and distribution of cadmium on soil aggregates[J]. Process Safety and Environmental Protection, 2020, 262: 1-9. [16] VILLEN-GUZMAN M, GARCIA-RUBIO A, PAZ-GARCIA J M. Aging effects on the mobility of Pb in soil: Influence on the energy requirements in electroremediation[J]. Chemosphere, 2018, 213: 351-357. doi: 10.1016/j.chemosphere.2018.09.039 [17] 陈榕, 周璐, 郝冬雪, 等. 重金属Pb~(2+)在砂土中的迁移及吸附特性[J]. 东北电力大学学报, 2019, 39(4): 54-60. doi: 10.19718/j.issn.1005-2992.2019-04-0054-07 [18] 吴众然, 刘桂建, 钱家忠, 等. Pb在饱水带-包气带的垂向迁移试验研究[J]. 环境科学与技术, 2019, 42(9): 36-41. doi: 10.19672/j.cnki.1003-6504.2019.09.006 [19] 王泓博, 苟文贤, 吴玉清, 等. 重金属污染土壤修复研究进展: 原理与技术[J]. 生态学杂志, 2021, 40(08): 2277-2288. [20] 储陆平, 周书葵, 荣丽杉, 等. 电动修复重金属污染土壤的研究进展[J]. 应用化工, 2020, 49(11): 2853-2858. doi: 10.3969/j.issn.1671-3206.2020.11.040 [21] 刘娟, 张乃明, 于泓, 等. 沘江两岸耕地土壤重金属径流迁移模拟研究[J]. 安全与环境学报, 2021, 21(4): 1823-1831. doi: 10.13637/j.issn.1009-6094.2020.0505 [22] 张炜华, 于瑞莲, 杨玉杰, 等. 厦门某旱地土壤垂直剖面中重金属迁移规律及来源解析[J]. 环境科学, 2019, 40(8): 3764-3773. doi: 10.13227/j.hjkx.201901227 [23] NANTHI B, ANITHA K, RAMYAA T, et al. Remediation of heavy metal(loid)s contaminated soils – To mobilize or to immobilize?[J]. Journal of Hazardous Materials, 2014, 266: 141-166. doi: 10.1016/j.jhazmat.2013.12.018 [24] 周建, 魏利闯, 詹芳蕾, 等. 生物表面活性剂及其与柠檬酸联合用于污泥重金属电动修复[J]. 湖南大学学报(自然科学版), 2019, 46(6): 109-119. doi: 10.16339/j.cnki.hdxbzkb.2019.06.016 [25] YEES N, BHASKAR S G, MOHD A H. Remediation of Pb/Cr co-contaminated soil using electrokinetic process and approaching electrode technique[J]. Environmental Science and Pollution Research, 2016, 23(1): 546-555. doi: 10.1007/s11356-015-5290-0 [26] SANA K, MUHAMMAD S, NABEEL K N, et al. A comparison of technologies for remediation of heavy metal contaminated soils[J]. Journal of Geochemical Exploration, 2017, 182: 247-268. doi: 10.1016/j.gexplo.2016.11.021 [27] BARBA S, VILLASENOR J, RODRIGO M A, et al. Effect of the polarity reversal frequency in the electrokinetic-biological remediation of oxyfluorfen polluted soil[J]. Chemosphere, 2017, 177: 120-127. doi: 10.1016/j.chemosphere.2017.03.002 [28] 梁延鹏, 李宗林, 张学洪, 等. 重金属单一与复合污染下水稻对铬的富集特征[J]. 生态环境学报, 2016, 25(9): 1540-1545. doi: 10.16258/j.cnki.1674-5906.2016.09.018 [29] 高腾跃, 刘奎仁, 韩庆, 等. 萃取-电沉积处理含铜氰化废水回收铜和氰化物[J]. 有色金属工程, 2018, 8(2): 87-90. [30] 刘慧, 仓龙, 郝秀珍, 等. 铜污染场地土壤的原位电动强化修复[J]. 环境工程学报, 2016, 10(7): 3877-3883. doi: 10.12030/j.cjee.201502112 [31] 李致春, 桂和荣, 孙林华, 等. 沱河芦岭矿塌陷区段沉积物重金属污染及迁移能力评价[J]. 环境科学与技术, 2013, 36(7): 13-17. doi: 10.3969/j.issn.1003-6504.2013.07.003