Processing math: 100%

不同重金属对土壤中四溴双酚A环境归趋的影响

辜建强, 王永峰, 季荣. 不同重金属对土壤中四溴双酚A环境归趋的影响[J]. 环境化学, 2023, 42(7): 2242-2250. doi: 10.7524/j.issn.0254-6108.2022073102
引用本文: 辜建强, 王永峰, 季荣. 不同重金属对土壤中四溴双酚A环境归趋的影响[J]. 环境化学, 2023, 42(7): 2242-2250. doi: 10.7524/j.issn.0254-6108.2022073102
GU Jianqiang, WANG Yongfeng, JI Rong. Effect of different heavy metals on the fate of TBBPA in two kinds of soil[J]. Environmental Chemistry, 2023, 42(7): 2242-2250. doi: 10.7524/j.issn.0254-6108.2022073102
Citation: GU Jianqiang, WANG Yongfeng, JI Rong. Effect of different heavy metals on the fate of TBBPA in two kinds of soil[J]. Environmental Chemistry, 2023, 42(7): 2242-2250. doi: 10.7524/j.issn.0254-6108.2022073102

不同重金属对土壤中四溴双酚A环境归趋的影响

    通讯作者: E-mail: ji@nju.edu.cn
  • 基金项目:
    国家重点研发项目(2019YFC1804004),江苏省科技创新专项(BK20220036),江苏省环境工程重点实验室开放课题(ZX2018009)和福建省自然科学基金(2021J05107)资助

Effect of different heavy metals on the fate of TBBPA in two kinds of soil

    Corresponding author: JI Rong, ji@nju.edu.cn
  • Fund Project: the National Key Research and Development Project (2019YFC1804004), Jiangsu Province Science and Technology Innovation Project (BK20220036), Open Project of Jiangsu Provincial Key Laboratory of Environmental Engineering (ZX2018009), and Natural Science Foundation of Fujian Province (2021J05107)
  • 摘要: 四溴双酚A(TBBPA)和重金属的复合污染情况常见于电子电器拆解厂或回收站周边土壤,而重金属对TBBPA在土壤环境中的降解、转化和残留的影响尚不清晰. 本研究利用14C标记的TBBPA来探索不同浓度水平重金属(Cu、Cd和Zn)对两种土壤(红壤和乌栅土)中TBBPA降解转化、矿化、不可提取态残留形成等环境行为的影响. 经60 d培养,乌栅土中92.2% ± 0.5%的TBBPA被转化为不可提取态残留或代谢产物,其中7.2% ± 0.8%被彻底矿化为CO2;灭菌作用极大地抑制了乌栅土中TBBPA不可提取态残留的形成(由77.2%降至9.9%),表明土壤微生物在不可提取态残留的形成中起到关键作用. 而红壤中仅有9.9% ± 0.5%的TBBPA被转化成不可提取态残留,<0.5%被矿化为CO2,与灭菌对照组无显著差异. 当土壤重金属(>500 μmol·kg−1)存在时,乌栅土中TBBPA矿化和不可提取态残留形成率分别降低14%—78%和31%—86%,而可提取态TBBPA(即生物可利用态)增加0.5—4.4倍,其中水溶态残留增加0.3—1.5倍,进而增加TBBPA在土壤中的持久性和生物有效性. 随着重金属浓度增加,其对TBBPA降解转化的抑制效果也显著增强,在相同摩尔浓度下,不同重金属的抑制效应强度为Cd>Cu≈Zn;而在工业用地土壤重金属背景浓度范围内,Cu和Zn的抑制效应则远高于Cd. 本研究结果为正确评价重金属和TBBPA复合污染土壤中TBBPA的环境行为和风险提供了理论支撑.
  • 膜处理技术因其具有节省空间和提高出水水质的特点,近年来已经广泛用于污水处理中[1]。然而,膜污染也不容忽视,需要经常维护才能使膜恢复正常运行[2-3];因此,膜污染已成为污水处理的研究热点[1,4]。造成膜污染最关键的原因是形成了不需要的生物滤饼层,该过程主要有以下3个阶段:膜孔被较大的固体堵塞;活性滤饼层(LCL)在膜表面积累;死细胞形成死滤饼层(DCL)并产生细胞外聚合物(EPS)[5-6]

    有目的地让生物滤饼生长在多孔网状材料(如无纺布、织物或陶瓷材料)的表面,并自发地形成动态膜(SFDM)[7],以提高筛孔过滤性能,可以达到粗滤的效果(过滤孔径为5~200 μm)[8-11]。这种基于SFDM的粗滤,也被称为动态生物滤网(DMf)[12],现已成为在污水处理中传统微滤(MF,孔径为0.1~1 μm)的替代技术[7,13]。有研究[14]表明,DMf已被用于改善污水AB处理工艺的A阶段(有机物的去除率由40%提高到70%)。

    对于DMf来说,快速形成活性滤饼层进行过滤是理想状态,但缓慢累积的死饼层会引起空隙堵塞[5]。大量的研究表明,筛孔大小在以下几个方面起着关键作用:有选择地形成活性滤饼层,以获得较好的出水水质;最大限度地减少EPS积累对膜污染控制的不利影响[15];在反冲洗之后,能快速重新生成有效的生物滤饼层[8,12,16]

    为了系统地分析DMf的形成与污染过程,本研究通过数学模拟和小试实验对DMf进行系统梳理,探讨了动态生物滤网表面密度与EPS浓度之间的关系;在小试规模下研究了筛孔大小对膜形成的影响,分析了动态生物滤网所形成的生物滤饼层中微生物的分布情况,为探究EPS对动态生物滤网中滤饼层形成的影响和膜污染进程提供了参考。

    实验装置见图1。DMf反应器由缺氧区(40 L)和好氧区(40 L)组成,用于研究筛孔大小对生物滤饼层形成的影响。系统使用蠕动泵进水,进水采用的人工模拟废水,进水水质如下:382.4 mg·L−1 C6H12O6、40.3 mg·L−1 (NH4)2SO4、4.5 mg·L−1 KH2PO4、220 mg·L−1 NaHCO3 (CaCO3计)、4 mg·L−1 CaCl2·2H2O、36 mg·L−1 KCl、2 mg·L−1 MgSO4·7H2O、20 mg·L−1酵母提取物、0.15 mg·L−1 CoCl2·6H2O、0.03 mg·L−1 CuSO4·5H2O、1.50 mg·L−1 FeCl3·6H2O、0.12 mg·L−1 MnCl2·4H2O、0.06 mg·L−1 Na2MoO4·2H2O、0.12 mg·L−1 ZnSO4·5H2O、0.15 mg·L−1H3BO3、0.18 mg·L−1 KI。实验所采用的污泥来自香港当地的二级污水处理厂。系统的操作条件如下:水力停留时间为5.5 h、污泥停留时间为30 d、渗透通量为4 m3·(m2·d)−1、污泥浓度为3 000~3 500 mg·L−1、温度为(20±1) oC、好氧区溶解氧为(3.0±0.5) mg·L−1、缺氧区溶解氧为(0.8±0.1) mg·L−1

    图 1  小试规模的DMf示意图和好氧区平面图
    Figure 1.  Schematic of the laboratory-scale DMf system and plan-view of the aerobic chamber

    4个平板尼龙筛网平行安装在好氧区中,所有筛网的配置均相同:框架尺寸为28 cm×17 cm×2 cm;每侧有效过滤面积为0.02 m2(占总表面积的42%),每个模块上覆盖着不同孔径的网格(5、55、100和220 μm),并且覆盖了用于生物滤饼层形成的过滤材料。为确保所有筛网的测试条件相同,渗透通量、MLSS和气水比分别控制在4 m3·(m2·d)−1、(3 000±300) mg·L−1和15 m3·m−3。另一方面,为了独立监测不同筛网情况,实验过程中使用4台排水泵,分别从每个筛网进行产水。利用在线跨膜压力(TMP)监测系统,通过在线数据采集程序和校准装置,将电压信号转换为压力进行TMP监测。

    在好氧区,安装了2种类型的曝气设备:粗曝气器(5 mm)用于提供足够的剪切应力,来控制生物滤饼的形成和EPS的产生;细曝气器(100~350 μm)使好氧区DO控制在2.5~3.5 mg·L−1[16]。细曝气器安装在好氧区底角,而粗曝气器则均匀安装在平板筛网下方,膜需气量(SADm)为3 m3·(m2·h)−1[16]。筛网会根据TMP的指示进行反冲洗(每次1 min)。当TMP为-20 ~-30 kPa时,通常表示膜污染已经开始[17-18],因此,本研究采用TMP为-20 kPa作为反冲洗的指示压力。渗透液收集在出水池中,用15 L·min−1的流速对膜进行反冲洗。

    在进行生物滤饼形成分析时,本实验研究了4个孔径(5、55、100和220 μm)的尼龙网,以分析孔径对过滤的影响。连续监测了每个模块上生物滤饼的形成和过滤性能,并同时测定了4个膜组件的TMP和渗透悬浮物(SS)浓度。在生物滤饼形成之前,对每个组件进行多个反洗周期实验,然后将所有膜组件从生物滤饼取样系统中取出,分析表面附着的挥发性悬浮固体(VSS)和EPS浓度,并使用激光扫描共聚焦显微镜(CLSM)研究生物滤饼的结构。

    在进行生物滤饼特征分析时,生物的死亡会导致EPS大量释放,一般来说,可以通过检测多糖的含量来表示。分别从4个测试组件上取1 cm×1 cm的检测样本,重新悬浮在50 mL的消毒水中,然后将混合液用阳离子交换树脂进行多糖提取,以葡萄糖作为标准,采用蒽酮法进行检测。按照标准方法(APHA),分析每种提取物的MLSS和MLVSS,生物滤饼的密度则由检测样本的质量和表面积计算得出。

    在进行生物滤饼样本中活/死细胞分布分析时,从前述提到的测试组件样本中切下部分样品(1 cm×1 cm),用细胞渗透性核酸染料和碘化丙啶进行染色,使用细菌活力测试盒,以监测死细胞和活细胞分布。在室温下,在黑暗中培养15 min后,用磷酸盐缓冲液冲洗掉染色液,然后用CLSM进行观察。

    临界通量的测定采用流量阶梯法。通量从10 L·(m2·h)−1 依次升高至 90 L·(m2·h)−1,每个通量下运行 10 min,记录 TMP 变化。如果在运行 10 min 内 TMP的值没有明显变化,而在某个通量条件下 TMP 的值有明显上升时,该通量即为临界通量[15]。SS和VSS的测量根据标准方法(APHA)。

    由已有研究[16]可以看出,膜污染的自加速过程分为3个阶段:空隙堵塞后生物滤饼逐渐形成、EPS积累、TMP跃升,表征污染已经发生[18]。为了缓解膜污染问题,理想的DMf应该能够快速形成生物滤饼层(阶段1),可减缓EPS在饼层中的积累(阶段2),以减轻污染(阶段3),这可以通过选择适当孔径的过滤材料(本研究中的尼龙网)[19]来完成。值得注意的是,筛孔尺寸越小,生物滤饼层的形成速度越快,同时也加速了生物滤饼层中EPS的积累,从而导致膜污染。

    生物滤饼层中EPS的产生是影响膜性能和造成污染的关键因素[1,5]。然而,在系统运行过程中很难获得这个参数。数学模拟方法可以定量表征生物滤饼层中筛孔大小对EPS浓度的影响,从而预测动态生物滤网的形成过程。在本研究中,建立了一个简化模型,将平面密度与EPS产量联系起来,以预测后者。该模型根据FREDERICK等[20]提出的方法(式(1))进行计算,以描述膜生物反应器中EPS的产生。

    dEdt=κ221+tanh(γ(BbB))1+E (1)

    式中:E为生物滤饼层中EPS浓度,g·g−1κ为特定的EPS产率,取值1 d−1γ为EPS灵敏度,取值1;Bb为实测面密度,g·m−2B*为EPS产量的临界面密度,取值181 g·m−2

    在实验操作条件下,经式(1)预测的EPS产率和测量的EPS浓度关系如图2(a)所示,测量的EPS浓度与生物滤饼层的面密度关系如图2(b)所示。由图2(a)可以看出,经式(1)预测的EPS产率、生物滤饼层的面密度与实测的EPS浓度之间均具有显著的正相关性,这也证实了所提出的模型可用于预测具有不同孔径的网筛上形成的生物饼中的EPS产生量。

    图 2  不同孔径筛网下,预测的EPS产率、实测EPS产量、经过15次反冲洗后生物滤饼的面密度之间的关系
    Figure 2.  Relationship among the predicted EPS production rate, measured EPS concentration and bio-cake planar densities after 15 operation cycles on meshes with different pore sizes

    图2可知,随着网孔尺寸的增加,生物滤饼面密度和EPS浓度均有所降低。不同网孔尺寸对面密度和EPS浓度的影响可以通过式(2)和式(3)进行回归定量评估。

    Bb=7×105p+0.018.3 (2)
    CEPS=73.731e0.012p (3)

    式中:Bb为生物滤饼层面密度,g·m−2CEPS为生物滤饼层中EPS浓度,mg·g−1p为筛网孔径,μm。

    EPS浓度和网孔尺寸之间的关系结果表明,EPS可能由较厚的饼层产生,因为更大的面密度会释放更多的EPS[21]。EPS浓度和面密度之间的相关性也验证了FANE等[22]的预测结果,即MBR阻力随生物量的增加而增加。

    通过监测过滤出水的SS和TMP的变化,研究了生物滤饼的形成和宏观过滤能力,并对DMf的运行情况进行了分析。用在线数据采集程序记录每个膜组件的TMP,然后将电压信号转换为压力信号。随着生物滤饼层的逐渐形成,渗透液中的SS浓度也随之降低,实验结果如图3所示。小孔径膜由于其生物滤饼层形成较快而容易受到膜污染[23]。模块A(5 μm)的TMP比其他模块急剧增加,而模块B(55 μm)、C(100 μm)和D(220 μm)的TMP增长依次逐渐变得缓慢。这也说明可以通过膜孔径来控制生物滤饼层的形成速度。孔径为5、55、100和220 μm的膜的反冲洗时间(定义为2次反冲洗之间的操作周期)分别为6、48、48和72 h,这说明筛孔尺寸为5 μm的反冲洗时间非常短,难以增大;筛孔孔径为55 μm和100 μm的反冲洗循环时间适中,运行成本低,出水质量高,具有较高的实际应用潜力;220 μm筛网具有很长的反冲洗周期,但产生的水质情况较差,不适合实际应用。

    图 3  不同孔径下出水SS和TMP的变化
    Figure 3.  Changes of SS and TMP in effluent at different pore sizes

    本研究选择了范围较宽(5~220 μm)的网孔尺寸,以研究网孔尺寸对生物滤饼形成的影响。在实验中,对每个模块进行15次反冲洗循环实验,第1次循环的临界通量与第15次循环的临界通量之比(Jc-0/Jc-15)可以表征长期运行时的膜过滤性能。该数值随着网孔尺寸由5 μm增加至55 μm(模块A和B)而急剧下降,而对于网孔孔径为100 μm的模块C和220 μm的模块D,其值几乎保持稳定(图4)。这说明较厚的生物滤饼所含的EPS的增加会加剧DMf中的膜污染。

    图 4  不同孔径条件的DMf系统中初始临界通量与第15次循环的临界通量之比 (Jc-0/Jc-15)
    Figure 4.  Ratio of initial critical flux (Jc-0) to critical flux (Jc-15) after 15 operation cycles of the DMf system at various mesh pore sizes

    将生物滤饼层通过CLSM进行观察,LCL显示为绿色,DCL显示为红色,结果如图5所示。由图5可见,生物滤饼层中死细胞的比例及其厚度与网孔尺寸密切相关。在高通量条件下,随着网孔孔径减小,生物量积累速率增加,导致面密度增加。具有较小孔径的网格诱导形成较厚的生物滤饼层,其含有大部分的DCL。较高的面密度限制了生物滤饼或生物膜中底物和氧的扩散[24],导致生物滤饼底部的细胞死亡区域增厚并增加了EPS的释放。值得注意的是,在4个网格上形成的生物滤饼层厚度依次约为80、80、60、20 μm,而且LCL的厚度均约为20 μm,但DCL的厚度则由60 μm (5 μm孔网格)到0 μm(220 μm孔网格)不等。稳定的活细胞层厚度也意味着氧气可以渗透到生物滤饼大约20 μm的深度,这与下水道生物膜中的氧渗透结果[24]一致。

    图 5  不同孔径下活性饼层(绿色)与死饼层(红色)在动态生物滤网上的分布
    Figure 5.  Distribution of live (green) and dead cake layer (red) on DMf at various mesh pore sizes

    基于以上结果,确认最佳孔径为55~100 μm,而平均活性污泥粒径为78 μm。孔径为5 μm的膜通过阻断DMf中的几乎所有颗粒(LCL在非常短的时间内形成),能够快速形成生物滤饼,但是在短时间内(约6 h)就会导致膜污染(短时间内DCL形成)。孔径为55~100 μm的膜可以阻挡DMf中的大多数颗粒,但允许小颗粒穿透滤饼层,确保有效形成具有缓慢EPS积累的生物滤饼(LCL形成时间较短,但DCL形成时间较长)。此外,孔径超过100 μm的膜不能保留大部分颗粒,因此,滤饼层不能产生高质量的渗透物(图3)。合适的孔径虽然可以延长DCL的形成,但是当网孔尺寸在55~100 μm时,由于EPS的积累,并不能避免膜污染(图5)。

    1) 研究结果表明,利用测量的动态生物滤网的面密度,通过建立数学模型,可以预测滤网中EPS的产生量。经进一步分析发现,不同孔径膜上EPS浓度与面密度之间具有显著的正相关性。

    2)孔径为55~100 μm的筛网上形成的动态生物滤网可以阻挡泥水混合液中的大多数颗粒,但有部分细小颗粒仍可穿过滤网表层,并在滤网底层积累,从而产生EPS,最终造成膜污染。

    3) CLSM分析结果表明,DMf中死细胞的比例及其厚度与网孔尺寸显著相关。在较厚的DMf中细胞死亡加速。同时发现,在所有实验形成的DMf中,活细胞(绿色)层的厚度均约为20 μm。这表明有效的氧气渗透仅发生在DMf的薄层内,过厚的生物层会阻止氧气的渗透,导致微生物死亡而释放更多的EPS,最终加剧膜污染。

  • 图 1  不同重金属对TBBPA在乌栅土和红壤中60d矿化作用的影响(图中不同小写字母代表显著性分析结果)

    Figure 1.  Effects of different heavy metals on mineralization of TBBPA in Wushan soil and red soil during 60 days incubation (different lowercase letters represents the results of significance analysis)

    图 2  不同浓度镉对TBBPA在乌栅土中矿化的影响

    Figure 2.  Effect of Cd-contamination on mineralization of TBBPA in Wushan soil

    图 3  不同重金属对土壤中总可提取态14C-TBBPA的影响(图中不同小写字母代表显著性分析结果)

    Figure 3.  Effects of different heavy metals pollution on total extractable 14C-TBBPA in soil (different lowercase letters represents the results of significance analysis)

    图 4  不同重金属对土壤中水可提取态14C-TBBPA的影响(图中不同小写字母代表显著性分析结果)

    Figure 4.  Effects of different heavy metals pollution on water extractable 14C-TBBPA in soil (different lowercase letters represents the results of significance analysis)

    图 5  Cd(Ⅱ)对乌栅土中TBBPA降解转化的影响

    Figure 5.  Effects of Cd(Ⅱ) on transformation of TBBPA in Wushan soil

    图 6  不同重金属对土壤中14C-TBBPA不可提取态残留的影响(图中不同小写字母代表显著性分析结果)

    Figure 6.  Effects of different heavy metals on non-extractable residues formation of 14C-TBBPA in soil (different lowercase letters represents the results of significance analysis)

    表 1  土壤基本理化性质

    Table 1.  Physical and chemical properties of soil

    种类SoilpH最大持水量/ %Water holding capacity (dry soil weight)CEC / (cmol·kg−1全氮/ %Total nitrogen有机质碳/ %Organic carbon
    红壤5.349.089.40.1120.397
    乌栅土7.3472.8620.30.2342.37
    种类SoilpH最大持水量/ %Water holding capacity (dry soil weight)CEC / (cmol·kg−1全氮/ %Total nitrogen有机质碳/ %Organic carbon
    红壤5.349.089.40.1120.397
    乌栅土7.3472.8620.30.2342.37
    下载: 导出CSV

    表 2  土壤重金属浓度及相应污染风险标准(mg·kg−1

    Table 2.  Soil heavy metal concentrations and corresponding pollution risk criteria

    重金属类型Heavy metal红壤Red soil乌栅土Wushan soil农业地风险值aStandard for agricultural land居住地风险值bStandard for residential land工业地风险值bStandard for industrial land
    Cu43.929.9100200018000
    Zn90.71002003500c10000c
    Cd0.0460.1830.32065
      备注:a 参考《土壤环境质量 农用地土壤污染风险管控标准(试行)》(GB15618—2018)农用地筛选值. According to the risk value of agricultural land in " Soil environmental quality Risk control standard for soil contamination of agricultural land. (Trial)" (GB15618-2018).  b 参考《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)中的居住一类用地风险筛选值和二类工业用地风险筛选值. According to the risk value of residential land and industrial land in “Soil environmental quality Risk control standard for soil contamination of development land. (Trial)” (GB36600-2018).  c 参考《北京市场地土壤环境风险评价筛选值》(DB11/T 811—2011)中的居住地风险筛选值. According to the risk value of residential land in “Screening Levels for Soil Environmental Risk Assessment of Sites” (DB11/T 811 -- 2011).
    重金属类型Heavy metal红壤Red soil乌栅土Wushan soil农业地风险值aStandard for agricultural land居住地风险值bStandard for residential land工业地风险值bStandard for industrial land
    Cu43.929.9100200018000
    Zn90.71002003500c10000c
    Cd0.0460.1830.32065
      备注:a 参考《土壤环境质量 农用地土壤污染风险管控标准(试行)》(GB15618—2018)农用地筛选值. According to the risk value of agricultural land in " Soil environmental quality Risk control standard for soil contamination of agricultural land. (Trial)" (GB15618-2018).  b 参考《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)中的居住一类用地风险筛选值和二类工业用地风险筛选值. According to the risk value of residential land and industrial land in “Soil environmental quality Risk control standard for soil contamination of development land. (Trial)” (GB36600-2018).  c 参考《北京市场地土壤环境风险评价筛选值》(DB11/T 811—2011)中的居住地风险筛选值. According to the risk value of residential land in “Screening Levels for Soil Environmental Risk Assessment of Sites” (DB11/T 811 -- 2011).
    下载: 导出CSV
  • [1] WANG J X, LIU L L, WANG J F, et al. Distribution of metals and brominated flame retardants (BFRs) in sediments, soils and plants from an informal e-waste dismantling site, South China [J]. Environmental Science and Pollution Research, 2015, 22(2): 1020-1033. doi: 10.1007/s11356-014-3399-1
    [2] WU Y Y, LI Y Y, KANG D, et al. Tetrabromobisphenol A and heavy metal exposure via dust ingestion in an e-waste recycling region in Southeast China [J]. Science of the Total Environment, 2016, 541: 356-364. doi: 10.1016/j.scitotenv.2015.09.038
    [3] LAW R J, ALLCHIN C R, de BOER J, et al. Levels and trends of brominated flame retardants in the European environment [J]. Chemosphere, 2006, 64(2): 187-208. doi: 10.1016/j.chemosphere.2005.12.007
    [4] 夏炎, 韩伟立, 马安德. 广东省农耕土壤中四溴双酚A与六溴环十二烷的含量调查及其蓄积水平估算 [J]. 环境化学, 2017, 36(6): 1328-1334.

    XIA Y, HAN W L, MA A D. Contents, distribution and composition of tetrabromobisphenol A and hexabromocyclododecane in agricultural soils of Guangdong [J]. Environmental Chemistry, 2017, 36(6): 1328-1334(in Chinese).

    [5] 吴玉丽, 肖羽堂, 王冠平, 等. 多溴联苯醚、六溴环十二烷和四溴双酚A在环境中污染现状的研究进展 [J]. 环境化学, 2021, 40(2): 384-403.

    WU Y L, XIAO Y T, WANG G P, et al. Research progress on status of environmental pollutions of polybrominated diphenyl ethers, hexabromocyclodocane, and tetrabromobisphenol A: A review [J]. Environmental Chemistry, 2021, 40(2): 384-403(in Chinese).

    [6] 蔡蕊, 王文姬, 许航, 等. 四溴双酚A在土壤中的降解转化及残留研究进展 [J]. 环境化学, 2021, 40(1): 102-110.

    CAI R, WANG W J, XU H, et al. Degradation, transformation, and residue formation of tetrabromobisphenol A ( TBBPA) in soil: A review [J]. Environmental Chemistry, 2021, 40(1): 102-110(in Chinese).

    [7] VOORDECKERS J W, FENNELL D E, JONES K, et al. Anaerobic biotransformation of tetrabromobisphenol A, tetrachlorobisphenol A, and bisphenol A in estuarine sediments [J]. Environmental Science & Technology, 2002, 36(4): 696-701.
    [8] HU F, PAN L, XIU M, JIN Q, et al. Bioaccumulation and detoxification responses in the scallop Chlamys farreri exposed to tetrabromobisphenol A (TBBPA) [J]. Environmental Toxicology and Pharmacology, 2015, 39(3): 997-1007. doi: 10.1016/j.etap.2015.03.006
    [9] LIU J, WANG Y F, JIANG B Q, et al. Degradation, metabolism, and bound-residue formation and release of Tetrabromobisphenol A in soil during sequential anoxic-oxic incubation [J]. Environmental Science & Technology, 2013, 47(15): 8348-8354.
    [10] 杨书娴, 胡星. 新型好氧W1-2菌株降解四溴双酚A的性能 [J]. 上海大学学报(自然科学版), 2022, 28(1): 57-66.

    YANG S X, HU X. Degradation characteristics of biodegradation of tetrabromobisphenol A by the novel arerobic strain W1-2 [J]. Journal of Shanghai University (Natural Science Edition), 2022, 28(1): 57-66(in Chinese).

    [11] LI F J, WANG J J, NASTOLD P, et al. Fate and metabolism of tetrabromobisphenol A in soil slurries without and with the amendment with the alkylphenol degrading bacterium Sphingomonas sp. strain TTNP3 [J]. Environmental Pollution (Barking, Essex:1987), 2014, 193: 181-188. doi: 10.1016/j.envpol.2014.06.030
    [12] GU J Q, CHEN X, WANG Y F, et al. Bioaccumulation, physiological distribution, and biotransformation of tetrabromobisphenol a (TBBPA) in the geophagous earthworm Metaphire guillelmi - hint for detoxification strategy [J]. Journal of Hazardous Materials, 2020, 388: 122027. doi: 10.1016/j.jhazmat.2020.122027
    [13] GU J Q, JING Y Y, MA Y N, et al. Effects of the earthworm Metaphire guillelmi on the mineralization, metabolism, and bound-residue formation of tetrabromobisphenol A (TBBPA) in soil [J]. The Science of the Total Environment, 2017, 595: 528-536. doi: 10.1016/j.scitotenv.2017.03.273
    [14] SUN F F, KOLVENBACH B A, NASTOLD P, et al. Degradation and metabolism of tetrabromobisphenol A (TBBPA) in submerged soil and soil-plant systems. [J]. Environmental Science & Technology, 2014, 48(24): 14291-14299.
    [15] SCHRÖEDER P, LYUBENOVA L, HUBER C. Do heavy metals and metalloids influence the detoxification of organic xenobiotics in plants? [J]. Environmental Science and Pollution Research International, 2009, 16(7): 795-804. doi: 10.1007/s11356-009-0168-7
    [16] TAN Y Y, GUO Y, GU X Y, et al. Effects of metal cations and fulvic acid on the adsorption of ciprofloxacin onto goethite [J]. Environmental Science and Pollution Research, 2015, 22(1): 609-617. doi: 10.1007/s11356-014-3351-4
    [17] ZHAO Y P, TAN Y Y, GUO Y, et al. Interactions of tetracycline with Cd (II), Cu (II) and Pb (II) and their cosorption behavior in soils [J]. Environmental Pollution, 2013, 180: 206-213. doi: 10.1016/j.envpol.2013.05.043
    [18] LU M, ZHANG Z Z, WANG J X, et al. Interaction of heavy metals and Pyrene on their fates in soil and tall fescue (Festuca arundinacea) [J]. Environmental Science & Technology, 2014, 48(2): 1158-1165.
    [19] LUO L, ZHANG S Z, CHRISTIE P. New insights into the influence of heavy metals on phenanthrene sorption in soils [J]. Environmental Science & Technology, 2010, 44(20): 7846-7851.
    [20] ZHANG W H, ZHENG J, ZHENG P, et al. The roles of humic substances in the interactions of phenanthrene and heavy metals on the bentonite surface [J]. Journal of Soils and Sediments, 2015, 15(7): 1463-1472. doi: 10.1007/s11368-015-1112-8
    [21] 孔颖, 左翔之, 易鹏, 等. 天然有机质的性质分析及其与土壤矿物和外源污染物相互作用研究进展 [J]. 环境化学, 2021, 40(9): 2715-2726.

    KONG Y, ZUO X Z, YI P, et al. Research progress on analysis of the properties of natural organic matter and its interaction with soil minerals and exogenous pollutants [J]. Environmental Chemistry, 2021, 40(9): 2715-2726(in Chinese).

    [22] ZHANG H, DANG Z, YI X Y, et al. Evaluation of dissipation mechanisms for pyrene by maize (Zea Mays L. ) in cadmium co-contaminated soil [J]. Global Nest Journal, 2009, 11(4): 487-496.
    [23] WANG Y H, LI M J, LIU Z W, et al. Interactions between Pyrene and heavy metals and their fates in a soil-maize (Zea mays L. ) system: Perspectives from the root physiological functions and rhizosphere microbial community [J]. Environmental Pollution, 2021, 287: 117616. doi: 10.1016/j.envpol.2021.117616
    [24] 陆雅婕, 吴笛, 尹颖, 等. 重金属和溴代阻燃剂复合污染对小白菜的生物效应 [J]. 南京大学学报(自然科学), 2018, 54(1): 196-204.

    LU Y J, WU D, YIN Y, et al. Combined effect of heavy metals and bromine flame retardants for pakchoi [J]. Journal of Nanjing University (Natural Science), 2018, 54(1): 196-204(in Chinese).

    [25] 陈欣瑶, 杨惠子, 陈楸健, 等. 重金属胁迫下不同区域土壤的生态功能稳定性与其微生物群落结构的相关性 [J]. 环境化学, 2017, 36(2): 356-364.

    CHEN X Y, YANG H Z, CHEN Q J, et al. Correlation between microbial community structure and soil ecosystem functional stability under heavy metal stress [J]. Environmental Chemistry, 2017, 36(2): 356-364(in Chinese).

    [26] YU X S, LIU Y, LOU J, et al. Determination of water- and methanol-extractable pentachlorophenol in soils using vortex-assisted liquid-liquid extraction and gas chromatography [J]. Chinese Journal of Analytical Chemistry, 2015, 43(9): 1389-1394. doi: 10.1016/S1872-2040(15)60861-1
    [27] LI F J, JIANG B Q, NASTOLD P, et al. Enhanced transformation of tetrabromobisphenol A by nitrifiers in nitrifying activated sludge [J]. Environmental Science & Technology, 2015, 49(7): 4283-4292.
    [28] LI F J, WANG J J, JIANG B Q, et al. Fate of tetrabromobisphenol A (TBBPA) and formation of ester- and ether-linked bound residues in an oxic sandy soil [J]. Environmental Science & Technology, 2015, 49(21): 12758-12765.
    [29] 郭碧林, 陈效民, 景峰, 等. 外源Cd胁迫对红壤性水稻土微生物量碳氮及酶活性的影响 [J]. 农业环境科学学报, 2018, 37(9): 1850-1855.

    GUO B L, CHEN X M, JING F, et al. Effects of exogenous cadmium on microbial biomass and enzyme activity in red paddy soil [J]. Journal of Agro-Environment Science, 2018, 37(9): 1850-1855(in Chinese).

    [30] HE G H, WU J C, LIU Q, et al. Microbial and enzyme properties of acidic red soils under aluminum stress [J]. Fresenius Environmental Bulletin, 2012, 21(9): 2818-2825.
    [31] HAO S F, WANG P Y, GE F, et al. Enhanced Lead (Pb) immobilization in red soil by phosphate solubilizing fungi associated with tricalcium phosphate influencing microbial community composition and Pb translocation in Lactuca sativa L[J]. Journal of Hazardous Materials, 2022, 424(Pt D): 127720.
    [32] GU Y, SUN X B, LIU Y D. Biosorption and biodegradation of bisphenol A in an activated sludge system [J]. Research on Chemical Intermediates, 2016, 42(5): 4289-4301. doi: 10.1007/s11164-015-2274-0
    [33] WANG M Q, YIN H, PENG H, et al. Degradation of 2, 2', 4, 4'-tetrabromodiphenyl ether by Pycnoporus sanguineus in the presence of copper ions [J]. Journal of Environmental Sciences, 2019, 83: 133-143. doi: 10.1016/j.jes.2019.03.020
    [34] TONG F, GU X Y, GU C, et al. Insights into tetrabromobisphenol A adsorption onto soils: Effects of soil components and environmental factors [J]. Science of The Total Environment, 2015, 536: 582-588. doi: 10.1016/j.scitotenv.2015.07.063
    [35] LI J H, ZHOU B X, SHAO J H, et al. Influence of the presence of heavy metals and surface-active compounds on the sorption of bisphenol A to sediment [J]. Chemosphere, 2007, 68(7): 1298-1303. doi: 10.1016/j.chemosphere.2007.01.045
    [36] CHEN X, GU X Y, ZHAO X P, et al. Species-dependent effects of earthworms on the fates and bioavailability of tetrabromobisphenol A and cadmium coexisted in soils [J]. The Science of the Total Environment, 2019, 658: 1416-1422. doi: 10.1016/j.scitotenv.2018.12.196
    [37] MA Y N, ZHAO Y Y, WANG Y F, et al. Effects of Cu2+ and humic acids on degradation and fate of TBBPA in pure culture of Pseudomonas sp strain CDT [J]. Journal of Environmental Sciences, 2017, 62: 60-67. doi: 10.1016/j.jes.2017.07.012
    [38] HUANG Z L, JIANG L F, LU W S, et al. Elsholtzia splendens promotes phenanthrene and polychlorinated biphenyl degradation under Cu stress through enrichment of microbial degraders [J]. Journal of Hazardous Materials, 2022, 438: 129492. doi: 10.1016/j.jhazmat.2022.129492
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401234Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 4.2 %DOWNLOAD: 4.2 %HTML全文: 93.7 %HTML全文: 93.7 %摘要: 2.1 %摘要: 2.1 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 97.4 %其他: 97.4 %XX: 1.8 %XX: 1.8 %北京: 0.8 %北京: 0.8 %其他XX北京Highcharts.com
图( 6) 表( 2)
计量
  • 文章访问数:  3353
  • HTML全文浏览数:  3353
  • PDF下载数:  73
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-07-31
  • 录用日期:  2022-09-16
  • 刊出日期:  2023-07-27
辜建强, 王永峰, 季荣. 不同重金属对土壤中四溴双酚A环境归趋的影响[J]. 环境化学, 2023, 42(7): 2242-2250. doi: 10.7524/j.issn.0254-6108.2022073102
引用本文: 辜建强, 王永峰, 季荣. 不同重金属对土壤中四溴双酚A环境归趋的影响[J]. 环境化学, 2023, 42(7): 2242-2250. doi: 10.7524/j.issn.0254-6108.2022073102
GU Jianqiang, WANG Yongfeng, JI Rong. Effect of different heavy metals on the fate of TBBPA in two kinds of soil[J]. Environmental Chemistry, 2023, 42(7): 2242-2250. doi: 10.7524/j.issn.0254-6108.2022073102
Citation: GU Jianqiang, WANG Yongfeng, JI Rong. Effect of different heavy metals on the fate of TBBPA in two kinds of soil[J]. Environmental Chemistry, 2023, 42(7): 2242-2250. doi: 10.7524/j.issn.0254-6108.2022073102

不同重金属对土壤中四溴双酚A环境归趋的影响

    通讯作者: E-mail: ji@nju.edu.cn
  • 1. 江苏省环境科学研究院 江苏省环境工程重点实验室,南京,210000
  • 2. 污染控制与资源化研究国家重点实验室 南京大学环境学院,南京,210023
  • 3. 泉州南京大学环保产业研究院,泉州 ,362000
基金项目:
国家重点研发项目(2019YFC1804004),江苏省科技创新专项(BK20220036),江苏省环境工程重点实验室开放课题(ZX2018009)和福建省自然科学基金(2021J05107)资助

摘要: 四溴双酚A(TBBPA)和重金属的复合污染情况常见于电子电器拆解厂或回收站周边土壤,而重金属对TBBPA在土壤环境中的降解、转化和残留的影响尚不清晰. 本研究利用14C标记的TBBPA来探索不同浓度水平重金属(Cu、Cd和Zn)对两种土壤(红壤和乌栅土)中TBBPA降解转化、矿化、不可提取态残留形成等环境行为的影响. 经60 d培养,乌栅土中92.2% ± 0.5%的TBBPA被转化为不可提取态残留或代谢产物,其中7.2% ± 0.8%被彻底矿化为CO2;灭菌作用极大地抑制了乌栅土中TBBPA不可提取态残留的形成(由77.2%降至9.9%),表明土壤微生物在不可提取态残留的形成中起到关键作用. 而红壤中仅有9.9% ± 0.5%的TBBPA被转化成不可提取态残留,<0.5%被矿化为CO2,与灭菌对照组无显著差异. 当土壤重金属(>500 μmol·kg−1)存在时,乌栅土中TBBPA矿化和不可提取态残留形成率分别降低14%—78%和31%—86%,而可提取态TBBPA(即生物可利用态)增加0.5—4.4倍,其中水溶态残留增加0.3—1.5倍,进而增加TBBPA在土壤中的持久性和生物有效性. 随着重金属浓度增加,其对TBBPA降解转化的抑制效果也显著增强,在相同摩尔浓度下,不同重金属的抑制效应强度为Cd>Cu≈Zn;而在工业用地土壤重金属背景浓度范围内,Cu和Zn的抑制效应则远高于Cd. 本研究结果为正确评价重金属和TBBPA复合污染土壤中TBBPA的环境行为和风险提供了理论支撑.

English Abstract

  • 四溴双酚A(TBBPA)是一种被广泛应用于电子电气产品生产的阻燃剂添加物. 在废弃电子产品或电器的拆解和回收过程中,添加型的TBBPA及重金属(包括铜、镉、锌等)易进入土壤环境中造成复合污染[1-3]. Wang等[1]的研究表明,电子垃圾回收站土壤中TBBPA、铜(Cu)、镉(Cd)、和锌(Zn)浓度分别高达0.65、2968、2088、11.5 mg·kg−1. 同时污染会向周边农田和河流底泥扩散,危害农业生产安全[4-5].

    有研究报道了TBBPA在土壤、底泥、水体等环境中易发生生物降解转化作用,但较难发生彻底矿化[6]. 在厌氧微生物作用下,TBBPA脱溴形成双酚A(BPA),BPA在好氧条件下容易发生C链氧化断裂和苯环开环等反应,最终彻底矿化为CO2 [7-10]. 硝化污泥中的TBBPA降解和代谢则主要包括四个方面:1)经还原脱溴形成BPA;2)经氧化断裂形成各类极性代谢产物;3)经原位取代形成硝基衍生物;4)经甲基化生成持久性更强的甲基醚衍生物[11]. 在好氧土壤环境中TBBPA主要以生成极性代谢产物和甲基醚衍生物为主,其中甲基醚衍生物的生物毒性要低于TBBPA母体和其极性产物,是蚯蚓对抗TBBPA毒性的重要手段[12-13]. 此外,基于14C放射性示踪技术的研究发现土壤和底泥中30%—70%TBBPA会形成不可提取的结合残留,从而降低其环境暴露风险[6, 13-14].

    有研究表明重金属可以通过直接或间接作用影响有机污染物的生物降解和吸附等行为:1)重金属离子可以和有机物上的羟基或氨基等活性官能团发生络合作用,直接影响有机污染物的形态和化学结构[15-17];2)重金属离子与土壤有机质发生络合或吸附作用,进而影响溶解态有机质团聚或竞争有机质上的吸附位,间接影响土壤中有机污染物的吸附行为 [18-21];3)重金属刺激或抑制土壤微生物活动,间接影响有机污染物的生物降解转化过程[22-25]. TBBPA作为一种含两个酚羟基且常与重金属同时进入土壤环境的污染物,有必要深入研究重金属离子对TBBPA降解转化行为的影响,以正确评价TBBPA在土壤环境的持久性和生物有效性.

    因此,通过14C放射性示踪技术,研究了3种重金属(Cu、Cd和Zn)在不同浓度水平对两种典型土壤(乌栅土和红壤)中14C-TBBPA降解转化、矿化、不可提取态残留形成等环境行为的影响.

    • 本研究采用的乌栅土和红壤两种土壤分别来自于中国科学院常熟农业生态实验站和江西省南昌市市郊林地. 两种土壤的pH值、有机碳含量和对应受试重金属本底浓度等信息详见表1表2. 为保证实验中土壤微生物活性,实验开始前将土壤水分保持在最大持水量培养一周时间,然后再经自然风干后过20目筛(<1 mm)备用.

      14C标记的TBBPA是14C-苯酚合成而来,合成步骤包括:1)14C-苯酚经缩合反应生成14C-BPA;2)14C-BPA经溴离子卤化反应生成14C-TBBPA,最终产品的比活度为1.48 GBq·mmol−1,纯度>99% [13]. 由于合成的14C-TBBPA比活度较高而化学浓度较低,因此实验中需将14C-TBBPA与非标记的TBBPA(购自Sigma公司,纯度为99%)混合使用,以达到实验所需的化学浓度. 14C-苯酚购自ARC公司(American Radiolabeled Chemicals Inc., US). 重金属均为相应的二价阳离子氯化物,采购自Sigma公司.

    • 实验为基于灭菌处理、重金属处理和重金属浓度水平等3个影响因子的两两正交设置. 土壤灭菌的方式采用121 °C湿热灭菌法,重金属种类的选择参考了电子产品中典型的Cu(Ⅱ)、Zn(Ⅱ)和Cd(Ⅱ). 综合考虑实验用土中各重金属的浓度背景和离子强度效应关系研究需要,实验中重金属摩尔浓度水平分别为0、500、6000 μmol·kg−1干土重,换算为各离子浓度为31.7 mg·kg−1和381.2 mg·kg−1的Cu、32.7 mg·kg−1和392.3 mg·kg−1的Zn以及56.2 mg·kg−1和674.5 mg·kg−1的Cd. Cu和Zn处理的低浓度处理低于农业用地土壤污染风险标准,高浓度处理则介于农用地污染风险标准和居住用地污染风险标准,即对农产品存在风险但不对人类健康产生直接风险. 本实验用Cd浓度水平过高,仅作为与其他两种重金属做效应对比,其对应污染浓度水平的实验设置详见“1.3 实验二设置:低浓度水平Cd2+对TBBPA归趋的影响”.

      实验将2 mL 14C-TBBPA的甲醇溶液(化学浓度=711.7 μg·mL−1;放射性浓度=6.39 MBq·mL−1)加入1 kg风干的受试土壤中,使土壤中TBBPA浓度达到0.9 mg·kg−1和3.7 kBq·g−1干土重. 混合均匀后,取0.5 g左右混合后土壤测定其混合均匀度为96% ± 4%(n = 15). 土壤培养实验在100 mL玻璃试管中进行,其内含4 g混合有14C-TBBPA的土壤,在加水培养前土壤静置过夜待其中甲醇完全挥发. 然后,加入重金属离子溶液至土壤含水达到60%最大持水量和相应的重金属浓度水平. 最后,试管采用橡胶塞和封口膜密封,在24 °C恒温恒湿条件下开始密闭培养. 密闭培养期间由14C-TBBPA彻底矿化而产生的14CO2则通过悬挂在橡胶塞底部的小瓶中的1 mL 1 mol·L−1NaOH溶液进行吸收. 培养过程中每24 h打开塞子10 min以补充实验中消耗的空气和氧气. 土壤样品在第60 d被破坏性取出,冻干后待后续处理.

    • 本实验主要研究较低浓度水平下Cd2+对TBBPA归趋动力学的影响. 实验同时设置了Na+作为离子对照组. 实验中Cd摩尔浓度分别为0、5、20、100、500 μmol·kg−1,浓度水平涵盖略高于农业用地风险标准值到略低于工业用地风险标准. 对于Na对照组浓度设置包括0、10、40、200、1000 μmol·kg−1,用于保证二者添加的离子强度基本相同. 实验培养设置与实验一相同,动力学研究的采样时间分别设置在第0、6、12、18、30、60 d.

    • 土壤样品逐步经过纯水提取和有机溶剂提取以表征其中TBBPA及其衍生物的生物可利用性[26],提取方法主要包括:1)在水土比为10:1条件下,用MiliQ超纯水提取3次,所有提取液中14C含量即为水可提取态TBBPA及其衍生物;2)在有机溶剂:土壤为4:1条件下,用色谱级甲醇提取3次,所有提取液中14C含量即为有机可提取态TBBPA及其衍生物;3)有机溶剂提取后土壤中剩余的14C-TBBPA称为不可提取态残留.

      样品分析参考以往的研究[13],利用高效液相色谱(Agilent HPLC series 1100 system)联用14C液体闪烁计数检测器(RAMONA Star; Raytest, Straubenhardt, Germany)对有机可提取态14C-TBBPA中的母体化合物及其代谢产物进行定性定量分析;利用液体闪烁计数仪(LS6500, Beckman Coulter, USA)对所有液体样品进行定量分析. 固体样品通过氧化燃烧仪(OX-500; Zinsser Analytic, Germany)制备成液体样品后进行定量分析.

    • 数据显著性分析方法为T检验或单因素方差分析(ANOVA),采用SPSS软件进行分析.

    • 经过60 d培养,乌栅土和红壤中TBPPA分别有7.2% ± 0.5%和0.5% ± 0.1%被彻底矿化为CO2图1). 有研究报道在某砂质土壤中培养143 d,19.6%的TBBPA被矿化,而经活性污泥处理31 d 后17%的TBBPA被矿化 [27-28]. 本实验中TBBPA在红壤中的矿化率远低于乌栅土和以往研究,这可能是由于红壤中碳氮等营养元素含量过低,不利于微生物生长进而影响了其对TBBPA的降解转化. 总体而言,TBBPA属于典型的持久性污染物,在土壤环境中较难被矿化.

      同时,重金属还会进一步抑制土壤中TBBPA的矿化作用,且抑制效应随重金属浓度增加而变得显著(P<0.05). 以Cd(Ⅱ)为例,当乌栅土中Cd浓度低于100 μmol·kg−1时(低于国家建设用地筛选值),其对TBBPA的矿化不产生显著影响(P>0.05;图2);当高于500 μmol·kg−1时(介于农业用地风险标准值到工业用地风险标准之间),其对TBBPA的矿化影响逐步显著(P<0.05). 当土壤中重金属摩尔浓度水平达到6000 μmol·kg−1时,Cu、Zn、Cd对乌栅土中矿化作用分别降低了60%、69%、86%;对红壤中矿化作用分别降低了34%、30%、44%. 在红壤中较低的抑制作用可能是由于红壤中的不定形铁与重金属离子发生离子交换作用,从而降低重金属有效性[29-31]. 尽管相同摩尔浓度水平下,Cd相较于Cu和Zn对TBBPA具有更强的抑制作用,而真实土壤环境中Cu和Zn含量通常高出Cd浓度2—3个数量级,如将6000 μmol·kg−1 Cu和Zn处理组对比100 μmol·kg−1 Cd处理组,Cu和Zn抑制作用则远高于Cd. Gu等发现,50 mg·kg−1 Cu条件下BPA(TBBPA的代谢产物)在污泥中的降解率下降75%以上,可能与一定浓度的Cu对微生物的毒性作用有关[32]. 而Wang等发现,高浓度Cu(10 mg·kg−1)会对BDE-47微生物降解产生抑制作用,低浓度Cu(2 mg·kg−1)则产生促进作用[33]. 因此,在真实的重金属-有机复合污染浓度水平,Cu和Zn对TBBPA降解转化的影响应更得到重视.

    • 不同重金属对土壤中可提取态14C(包括水可提取态、有机提取态和可提取母体TBBPA)分布影响如图3图5所示. 经过60d培养,乌栅土中可提取态14C残留仅为初始投加量19.1% ± 1.0%(图3),其中水可提取态为7.1% ± 1.3%(占总可提取态的37%;图4),TBBPA母体残留为7.8% ± 0.5%(图5);红壤中可提取态14C残留为初始投加量84.3% ± 4.3%,其中水可提取态为7.1% ± 3.0%,仅占总可提取态的8.4%. 相较于乌栅土,红壤中TBBPA的生物可给性潜力巨大,容易在长期老化过程中逐步释放. 土壤经灭菌处理后,90%以上TBBPA及其衍生产物均以可提取态存在,不同土壤中水可提取态变化差异巨大,其中乌栅土中水可提取态上升了4.3倍,而红壤中水可提取态未发生显著变化. 这表明红壤中TBBPA的“消散”主要由吸附作用主导,而乌栅土中则由微生物降解转化作用主导.

      在重金属存在情况下,通过络合或竞争土壤吸附电位等作用,有机物在环境中的“消散”会受到抑制[34-35]. 本研究结果显示乌栅土中可提取态TBBPA及其衍生产物随着重金属浓度增加均大幅上升(P<0.01). 以Cd(Ⅱ)为例,当乌栅土中Cd浓度低于100 μmol·kg−1时,其对TBBPA及其衍生产物残留不产生显著影响(P>0.05;图3图4);当高于500 μmol·kg−1时,其对TBBPA的矿化影响逐步显著(P<0.05);浓度达到6000 μmol·kg−1时,土壤中可提取态14C残留上升了3.3倍((19.1% ± 1.0%)→(82.0% ± 2.0%)),其中水可提取态上升了1.5倍,TBBPA母体残留上升了0.6倍. 而对于Cu(Ⅱ)和Zn(Ⅱ),仅当其浓度达到6000 μmol·kg−1时,才对TBBPA及其衍生产物残留产生显著影响,分别使得土壤中可提取态14C残留上升了2.2倍和2.7倍,低于Cd(Ⅱ)的影响,类似的规律同样体现在对TBBPA矿化作用影响中. 土壤中有机物的可提取态通常被认为是污染物在土壤中生物有效性的重要指标,尤其是水可提取态[13,26]. 对比灭菌乌栅土处理组实验结果(图5图6),重金属可能通过抑制微生物对TBBPA的吸附和富集吸收等过程, 导致TBBPA及其转化产物在土壤中的可提取残留增加,进一步提升TBBPA在土壤中的生物可利用性. Chen等[36]发现,在食土蚯蚓存在条件下,10 mg·kg−1 Cd会略微增加TBBPA在土壤中的可提取态,但对TBBPA在蚯蚓体内富集效率却不显著,这可能与Cd浓度较低有关. Ma等[37]发现,在纯菌培养条件下,当Cu(Ⅱ)浓度水平达到10 μmol·L−1时即可显著抑制TBBPA生物不可提取态残留的形成. 此外,当Cd浓度为500 μmol·kg−1时, TBBPA母体残留增加了0.1—0.9倍,且随着时间的延长影响逐步加剧(图5). 结合重金属对TBBPA矿化的抑制,表明重金属会抑制TBBPA生物降解,从而增强TBBPA的环境持久性. Huang等[38]发现,500—1500 mg·kg−1 Cu对菲和多氯联苯的土壤降解具有显著抑制作用,且随重金属浓度增加而增强. 而多数纯菌降解研究表明,重金属会对微生物产生毒性从而降低有机污染物的生物降解过程[33,37].

    • 乌栅土经过60 d的培养,其中>75% TBBPA被转化为毒性更小且持久性更强的不可提取态残留,通过与灭菌组对照(仅9.8% ± 2.0%)相比可知,不可提取态残留形成的关键因素是土壤微生物对TBBPA的降解转化作用(图6). 而对于微生物活性较低的红壤,仅有14.2% ± 3.2%的TBBPA形成了不可提取态残留,灭菌后不可提取态残留降低至5.4% ± 0.1%.

      土壤重金属对不可提取态残留的影响规律与其对矿化作用和“消散”过程的影响是一致的,即仅当未灭菌的乌栅土中Cd浓度大于500 μmol·kg−1或Cu、Zn浓度大于6000 μmol·kg−1时,会对不可提取态残留的形成会出现显著的抑制作用,而对灭菌土壤和红壤却基本无显著影响.

    • 本文研究了Cd、Cu、Zn等二价重金属对乌栅土和红壤中TBBPA降解转化、不可提取态残留形成和矿化作用的影响. 结果表明,TBBPA在乌珊土和红壤中的归趋差异较大,在有机质含量较高的乌珊土中TBBPA主要形成不可提取态残留(约75%),而在有机质含量较低的红壤中主要以可提取态残留存在(约80%),表明红壤中TBBPA具有更强的环境效应和持久性;较高浓度重金属(>500 μmol·kg−1)会对土壤中TBBPA生物降解、矿化和不可提取态残留产生抑制作用,在工业用地重金属浓度背景下,Cu和Zn即能显著增加TBBPA在土壤环境中的持久性和生物有效性. 因此,对真实土壤环境中TBBPA的持久性和有效性评价应充分考虑土壤重金属的影响,尤其是电子产品回收站和废弃点等易存在重金属超标的复合污染场地.

    参考文献 (38)

返回顶部

目录

/

返回文章
返回