-
全氟和多氟烷基化合物(per- and polyfluoroalkyl substances,PFASs)是一类新污染物(POPs),由有机氟疏水烷基链和离子官能团组成. 近半个世纪以来,PFASs因其独特的物理化学特性(热稳定性、抗氧化性等)而被广泛应用于表面活性剂、消防泡沫和食品包装纸[1]. 长期生产使用使得大量PFASs被释放到环境[2]. PFASs具有环境持久性和生物累积性,可以通过饮用水、食物链传递等途径进入动物和人体[3].全氟辛酸(perfluorooctanoic acid,PFOA)和全氟辛烷磺酸(perfluorooctane sulfonate,PFOS)是两种主要的PFASs,在人体内的半衰期分别达到8年和5.4年[4]. 进入人体的PFASs可能会对婴幼儿的生长发育造成损伤,还可能造成男性生育障碍、女性更年期提前、癌症和甲状腺功能失调等健康问题[5].
至今,全世界有超过4000种PFASs被生产和使用,包括传统的和替代性PFASs(主要包括全氟羧酸(PFCAs);全氟磺酸(PFSAs);全氟烷基醚羧酸(PFECAs);全氟二羧酸(PFdiCAs);氟调聚羧酸(FTCAs);氟调聚磺酸(FTSAs)等)[6]. 由于PFASs对人体的潜在健康危害[7],多个国家先后制定了相应的法律法规,对PFOA和PFOS这类典型PFASs做出了严格限制(如美国环保局对饮用水中PFOA和PFOS的限值70 ng·L−1),因此传统PFASs被逐渐淘汰[8]. 尽管如此,大量研究发现,市政污水中的PFASs浓度依然可高达100 ng·L−1. 同时还存在大量新型替代PFASs,浓度高达100 ng·L−1[9].
统计发现,自2015年以来,关于污水处理厂中PFASs的赋存研究多达100余项,不仅包括市政污水中PFASs的浓度调查,污水处理厂不同处理工艺(图1)[10]对PFASs去除效率的影响,同时还包括污水处理过程中PFASs前体向全氟烷基酸(PFAAs)的转化过程研究. Ulrika等发现在废水处理后,水中大多数PFCAs和PFSAs显著增加,证明了前体化合物的降解是污水处理厂出水中PFASs的来源[11]. 李怀波[12]对PFCs、部分已知前体和未知前体在三座污水处理厂各阶段的分布特征分析后发现,生化阶段对前体的降解,导致PFASs浓度升高. 这些研究加深了对PFASs在污水处理厂中迁移转化过程的理解.
本文系统总结了近年来不同污水处理工艺中PFASs的相关研究,旨在厘清有关污水处理厂中PFASs的赋存、转化、归趋和去除规律,为后续更准确的评估市政水体中PFASs毒性以及开发相关去除工艺提供理论支撑.
市政污水处理系统中不同工艺段多氟/全氟烷基化合物(PFASs)的赋存、转化和去除
Review on the occurrence, transformation and removal of per- and polyfluoroalkyl substances (PFASs) in different process segments of sewage wastewater treatment systems
-
摘要: 全氟烷基化合物(per- and polyfluoroalkyl substances,PFASs)是一类由有机氟疏水烷基链和亲水端基组成的人工合成化合物. 由于它们在工业生产和生活中的广泛使用,在过去的几十年中,它们在全球污水处理厂中均被检出. 目前,关于市政污水处理系统中PFASs的研究主要包括赋存水平、转化过程和去除技术三方面. 本文系统概括了多种PFASs在市政污水处理系统不同工艺段中的赋存、转化和去除情况,并对不同工艺段PFASs的赋存和转化规律进行了深入讨论. 分析了PFASs的结构特征对于其在市政污水处理系统不同工艺段赋存、转化和去除的影响机制. 基于此,提出了目前研究所面临的问题和未来研究需要重点考虑的方向. 同时,总结归纳了不同水处理技术对PFASs的去除效率,以及现有技术所存在的问题、面临的挑战以及未来的发展前景,以期为后续研究提供参考.Abstract: Per- and polyfluoroalkyl substances (PFASs) are a class of synthetic compounds composed of organofluorine hydrophobic alkyl chain and a hydrophilic ionic functional group. Due to their widespread use in industry production and our lives, PFASs have been detected in sewage treatment plants around the world. At present, the research on PFASs in municipal sewage plants mainly focuses occurrence concentrations, transformation processes and removal technologies. In this study, we systematically summarize the fate, transformation and removal of various PFASs municipal sewage treatment plants, and the PFASs occurrence and transformation in different process segments were also discussed. The influence from the PFASs structure characteristics on their occurrence, transformation and removal in sewage treatment plants were also analyzed. Based on these, we summarized the major problems in current studies and the further studying directions were also proposed for next studies. At the same time, the PFASs removal efficiency in different water treatment technologies were summarized, as well as the problems, challenges and the future development prospects of the existing technologies. We expected this study could provide a reference for the subsequent research.
-
表 1 不同地区污水处理厂进水、二沉池出水(ng·L−1)以及污泥(ng·g−1)中检测到的PFASs浓度汇总
Table 1. Summary of PFASs concentrations detected in influent,secondary treated wastewater ( ng·L−1), and in sewage sludge ( ng·L−1) in Sewage Treatment Plants worldwide.
位置
LocationPFCAs PFASs PFSAs
PFOSA文献
Ref.C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C4 C6 C7 C8 C10 北美 二沉池出水(美国,纽约) — — — 66—398 4—376 <2.5—47 <2.5—10 未检出 — 未检出 — <2.5—39 — 4.0—68 — 未检出 [13] 进水(美国) — 8.3—31 <25 1.7—49 <7.3 <1.7 — — — — <27 2.3—12 — 1.4—400 <9.3 <5.5 [19] 二沉池出水(美国) — <18 <23 2.5—97 <6.1 <28 — — — — <20 <17 — 1.1—130 未检出 <10 进水(美国,肯塔基) — — — 22—184 2.7—6.2 0.17—1.4 <0.5—1.9 <0.5 — — — 2.6—6.1 — 7.0—16 — 0.29—1.9 [20] 二沉池出水(美国,肯塔基) — — — 122—183 2.4—9.5 0.64—7.9 <0.5 <0.5 — — — 6.3—9.5 — 8.0—28 — 1.7—2.5 污水污泥(美国,肯塔基) — — — 8.3—219 <2.5—4.4 <2.5—34 <2.5—7.7 <2.5—10 — — — <2.5 — 8.2—110 — <2.5—34 二沉池出水(美国,加州) — — 5.6—21 12—180 <10—32 <11 — — — — — 6.5—24 — 20—190 — 2.1—4.8 [21] 二沉池出水(加拿大) — — — 5.8—180 <4.2 <3.2 — <0.085 — — — — — <72 — — [22] 欧洲 进水(丹麦) — — — <2.0—23.5 <0.8—8.4 <1.6 — — — — — <0.2—32.8 — <1.5—10.1 — <0.2—1.0 [23] 二沉池出水(丹麦) — — — <2.0—24.4 <0.8—3.1 <1.6—3.6 — — — — — <0.2—2.7 — <1.5—18.1 — <0.2—2.1 污水污泥(丹麦) — — — 0.7—19.7 0.4—8.0 1.2—32.0 — — — — — 0.4—10.7 — 4.8—74.1 — 0.5—3.6 二沉池出水(德国) 1.5—40.9 3.7—57.4 1.6—15.7 12.3—77.6 1.0—18.6 0.9—34.5 <0.04—8.8 <0.01—0.5 <0.02—0.4 — 1.8—25.9 0.6—6.3 <0.08—0.5 <0.6—82.2 — 0.3—1.1 [24] 污水污泥(瑞士) — <5 未检出 <17 1.0—2.0 1.0—13 1.0—6 1.0—12 <9 <8 — 未检出 — 15—600 <35 — [25] 进水(希腊) 8.4—52.5 未检出 <5.2 <6.3 未检出 <33.5 <55.2 <82.6 <453.0 未检出 未检出 <20.7 <19.6 1.0—6.3 <107.4 <14.0 [26] 二沉池出水(希腊) 3.2—160.3 <2.2 <4.4 <12.7 未检出 未检出 <5.9 未检出 未检出 未检出 未检出 <2.3 <0.45 <0.45 1.1—4.6 <2.5 进水(西班牙) 9.35 1.07 13.0 22.4 21.2 0.58 12.9 13.8 13.2 0.02 19.1 41.9 8.83 78.1 未检出 615 [27] 二沉池出水(西班牙) 14.5 17.5 7.48 14.9 33.7 21.6 5.62 13.3 0.02 0.02 57.9 37.7 2.91 91.0 未检出 0.2 污水污泥(瑞士) 0.6—14 0.6—14 0.6—22 0.9—29 0.9—23 0.9—73 — — — — — — — 4.0—2440 — — [28] 亚洲 进水(韩国) — <13.4 <6.9 2.3—37.4 <25 <5.1 未检出 未检出 — — — <23 <8.2 <40 — — [29] 二沉池出水(韩国) — 1.1—14.8 <16.1 3.4—49.2 <15.8 <4.2 未检出 未检出 — — — <10.5 <0.8 0.9—8.9 — — 进水(中国香港) 6.3—8.7 1.0 未检出 未检出 未检出 未检出 未检出 未检出 未检出 未检出 1.1—2.8 未检出 未检出 29.4—49.9 未检出 未检出 [15] 二沉池出水(中国香港) 未检出 0.7—1.2 未检出 <4.1 <0.6 未检出 未检出 未检出 未检出 未检出 1.3—1.5 未检出 未检出 19—28.8 未检出 未检出 污水污泥(中国香港) 0.5—0.1 0.3—27.8 <4.0 <15.7 <23 0.3—15.2 <7.8 <8.6 0.2—19 <46 0.6—6.4 未检出 <106.6 3.1—704.9 未检出 未检出 进水(中国台湾) — 80.1—348.3 0.8—1.9 17.6—236 0.4—10.6 1.2—20.6 <0.1—83.5 <0.1 — — 3.3—16.3 6.4—14.9 — 175—216.7 — — [18] 二沉池出水(中国台湾) — 71.1—180.7 <0.1—14.5 19.3—480.3 <0.1—10.4 1.4—22.6 <0.1—4.8 <0.1—2.8 — — 2.6—960 6.3—226.7 — 162.7—563.3 — — 进水(泰国) 14.4 70.0 32.2 142.1 15.3 63.1 3.1 10.0 — — — 31.7 — 465.4 — — [14] 二沉池出水(泰国) 26.2 84.9 43.5 149.8 21.4 81.4 3.8 7.6 — — — 28.8 — 296.2 — — 污水污泥(泰国) 2.9 99.9 52.6 136.0 5.1 327.7 45.2 310.6 — — — 157.7 — 396.9 — — 进水(中国) — — <0.04—32.7 0.05—54.0 <0.06—23.8 <0.06—1.6 <0.06—1.5 — — — — <0.03—1.3 — 0.03—12.0 — — [30] 二沉池出水(中国) — — 0.03—55.2 0.09—26.2 <0.01—16.2 <0.06—2.1 <0.01—3.0 — — — — <0.03—3.4 — 0.03—7.3 — — 进水(韩国) — 41 4.7 30 3.5 3.3 1.0 <0.8 <0.5 — 7.4 7.3 — 9.0 <0.7 — [17] 二沉池出水(韩国) — 35 5.3 28 3.2 4.2 0.7 <0.8 <0.5 — 6.1 5.0 — 6.3 <0.7 — 污水污泥(韩国) — 未检出 <1.0 5.9 1.9 19 18 13 5.0 — <1.1 <1.1 — 15 <1.5 — 大洋洲 二沉池出水(澳大利亚) 4—5.7 4.4—6.3 1.2—1.5 6.7—16 1.1—1.2 1.0—1.1 — — — — 未检出 1.5—2.1 — 2.2—5.0 — — [31] — :无数据,no data 表 2 吸附作用去除PFASs汇总
Table 2. Summary of PFASs removal by adsorption processes
吸附剂类型
Type of sorbent目标化合物
Target PFASs规模
Scale初始浓度
Initial Concentration吸附机理
Mechanism吸附时间
Time吸附效率
Efficiency参考文献
References壳聚糖基分子印迹聚合物(MIP) FPOS 实验室 100 μmol·L−1 静电作用 36 h 560 μmol·g−1 [62] 交联壳聚糖微球 PFOS 实验室 372 μmol·L−1 静电作用,疏水作用 180 h 5.5 mmol·g−1 [63] DMAPAA-Q水凝胶聚合物 PFOA,PFOS,PFBA,PFBS,GenX 实验室 1000 ng·L−1 静电作用,疏水作用 < 2 h 100% [36] 聚丙烯酸树脂 PFOS 实验室 372 μmol·L−1 离子交换 160 h 4—5 mmol·g−1 [64] 阴离子交换树脂(IX) PFOA,PFOS,PFBA,PFBS 实验室 10 μg·L−1 离子交换 — > 99% [65] 碳纳米管(CNTs) PFOS 实验室 186 μmol·L−1 疏水作用 60 h 1.3 mmol·g−1 [66] 生物炭滤膜(BF) C3-C11 PFFCAs、C4,C6,C8 PFSAs、PFOS 实验室 3—5 μg·L−1 疏水作用,亲水官
能团作用22 周 73—168 ng·g−1 [67] PAC PFOA、PFOS 实验室 300 mg·L−1 疏水作用 25 h 0.9—1.1 mmol·g−1 [68] GAC PFOA、PFOS、PFPeA、PFHxA 实验室 4—18 ng·L−1 疏水作用 30 h 2.0—2.2 μg·g−1 [69] 污泥 PFOS 污水厂 146 ng·L−1 活性污泥吸附 — 94% [54] 污泥 PFHpA,PFHxS 实验室 5 μg·L−1 污水厂污泥 180 h — [70] — :无数据,no data;PAC:粉末活性炭,powdered activated carbon;GAC:颗粒活性炭,granular activated carbon. -
[1] VECITIS C D, PARK H, CHENG J, et al. Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) [J]. Frontiers of Environmental Science & Engineering in China, 2009, 3(2): 129-151. [2] HERZKE D, OLSSON E, POSNER S. Perfluoroalkyl and polyfluoroalkyl substances (PFASs) in consumer products in Norway - A pilot study [J]. Chemosphere, 2012, 88(8): 980-987. doi: 10.1016/j.chemosphere.2012.03.035 [3] RUAN Y F, LALWANI D, KWOK K Y, et al. Assessing exposure to legacy and emerging per- and polyfluoroalkyl substances via hair - The first nationwide survey in India [J]. Chemosphere, 2019, 229: 366-373. doi: 10.1016/j.chemosphere.2019.04.195 [4] Perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and their salts Scientific Opinion of the Panel on Contaminants in the Food chain [J]. EFSA Journal, 2008, 6(7): 1-131. [5] POOTHONG S, PAPADOPOULOU E, PADILLA-SÁNCHEZ J A, et al. Multiple pathways of human exposure to poly- and perfluoroalkyl substances (PFASs): From external exposure to human blood [J]. Environment International, 2020, 134: 105244. doi: 10.1016/j.envint.2019.105244 [6] PAN Y T, WANG J H, YEUNG L W Y, et al. Analysis of emerging per- and polyfluoroalkyl substances: Progress and current issues [J]. TrAC Trends in Analytical Chemistry, 2020, 124: 115481. doi: 10.1016/j.trac.2019.04.013 [7] ATEIA M, ARIFUZZAMAN M, PELLIZZERI S, et al. Cationic polymer for selective removal of GenX and short-chain PFAS from surface waters and wastewaters at ng/L levels [J]. Water Research, 2019, 163: 114874. doi: 10.1016/j.watres.2019.114874 [8] LI F, DUAN J, TIAN S T, et al. Short-chain per- and polyfluoroalkyl substances in aquatic systems: Occurrence, impacts and treatment [J]. Chemical Engineering Journal, 2020, 380: 122506. doi: 10.1016/j.cej.2019.122506 [9] BRENDEL S, FETTER É, STAUDE C, et al. Short-chain perfluoroalkyl acids: Environmental concerns and a regulatory strategy under REACH [J]. Environmental Sciences Europe, 2018, 30(1): 9. doi: 10.1186/s12302-018-0134-4 [10] ZHENG K K, LI H B, WANG S, et al. Enhanced proteins and amino acids production based on ammonia nitrogen assimilation and sludge increment by the integration of bioadsorption with anaerobic-anoxic-oxic (AAO) process [J]. Chemosphere, 2021, 280: 130721. doi: 10.1016/j.chemosphere.2021.130721 [11] ERIKSSON U, HAGLUND P, KÄRRMAN A. Contribution of precursor compounds to the release of per- and polyfluoroalkyl substances (PFASs) from waste water treatment plants (WWTPs) [J]. Journal of Environmental Sciences, 2017, 61: 80-90. doi: 10.1016/j.jes.2017.05.004 [12] 李怀波. 污水处理厂中全/多氟化合物分布特征、吸附及转化过程研究[D]. 无锡: 江南大学, 2021. LI H B. Distribution characteristics, adsorption and transformation process of per-and polyfluorinated substances in wastewater treatment plants[D]. Wuxi: Jiangnan University, 2021 (in Chinese).
[13] SINCLAIR E, KANNAN K. Mass loading and fate of perfluoroalkyl surfactants in wastewater treatment plants [J]. Environmental Science & Technology, 2006, 40(5): 1408-1414. [14] KUNACHEVA C, TANAKA S, FUJII S, et al. Mass flows of perfluorinated compounds (PFCs) in central wastewater treatment plants of industrial zones in Thailand [J]. Chemosphere, 2011, 83(6): 737-744. doi: 10.1016/j.chemosphere.2011.02.059 [15] MA R W, SHIH K. Perfluorochemicals in wastewater treatment plants and sediments in Hong Kong [J]. Environmental Pollution, 2010, 158(5): 1354-1362. doi: 10.1016/j.envpol.2010.01.013 [16] STASINAKIS A S, THOMAIDIS N S, ARVANITI O S, et al. Contribution of primary and secondary treatment on the removal of benzothiazoles, benzotriazoles, endocrine disruptors, pharmaceuticals and perfluorinated compounds in a sewage treatment plant [J]. Science of the Total Environment, 2013, 463/464: 1067-1075. doi: 10.1016/j.scitotenv.2013.06.087 [17] KIM S K, IM J K, KANG Y M, et al. Wastewater treatment plants (WWTPs)-derived national discharge loads of perfluorinated compounds (PFCs) [J]. Journal of Hazardous Materials, 2012, 201/202: 82-91. doi: 10.1016/j.jhazmat.2011.11.036 [18] LIN A Y C, PANCHANGAM S C, CIOU P S. High levels of perfluorochemicals in wastewater treatment plants and downstream rivers pose great risk to local aquatic ecosystems [J]. Chemosphere, 2010, 80(10): 1167-1174. doi: 10.1016/j.chemosphere.2010.06.018 [19] SCHULTZ M M, BAROFSKY D F, FIELD J A. Quantitative determination of fluorinated alkyl substances by large-volume-injection liquid chromatography tandem mass spectrometry-characterization of municipal wastewaters [J]. Environmental Science & Technology, 2006, 40(1): 289-295. [20] LOGANATHAN B G, SAJWAN K S, SINCLAIR E, et al. Perfluoroalkyl sulfonates and perfluorocarboxylates in two wastewater treatment facilities in Kentucky and Georgia [J]. Water Research, 2007, 41(20): 4611-4620. doi: 10.1016/j.watres.2007.06.045 [21] PLUMLEE M H, LARABEE J, REINHARD M. Perfluorochemicals in water reuse [J]. Chemosphere, 2008, 72(10): 1541-1547. doi: 10.1016/j.chemosphere.2008.04.057 [22] D'EON J C, CROZIER P W, FURDUI V I, et al. Perfluorinated phosphonic acids in Canadian surface waters and wastewater treatment plant effluent: Discovery of a new class of perfluorinated acids [J]. Environmental Toxicology and Chemistry, 2009, 28(10): 2101-2107. doi: 10.1897/09-048.1 [23] BOSSI R, STRAND J, SORTKJÆR O, et al. Perfluoroalkyl compounds in Danish wastewater treatment plants and aquatic environments [J]. Environment International, 2008, 34(4): 443-450. doi: 10.1016/j.envint.2007.10.002 [24] AHRENS L, FELIZETER S, STURM R, et al. Polyfluorinated compounds in waste water treatment plant effluents and surface waters along the River Elbe, Germany [J]. Marine Pollution Bulletin, 2009, 58(9): 1326-1333. doi: 10.1016/j.marpolbul.2009.04.028 [25] SUN H W, GERECKE A C, GIGER W, et al. Long-chain perfluorinated chemicals in digested sewage sludges in Switzerland [J]. Environmental Pollution, 2011, 159(2): 654-662. doi: 10.1016/j.envpol.2010.09.020 [26] ARVANITI O S, VENTOURI E I, STASINAKIS A S, et al. Occurrence of different classes of perfluorinated compounds in Greek wastewater treatment plants and determination of their solid-water distribution coefficients [J]. Journal of Hazardous Materials, 2012, 239/240: 24-31. doi: 10.1016/j.jhazmat.2012.02.015 [27] CAMPO J, MASIÁ A N, PICÓ Y, et al. Distribution and fate of perfluoroalkyl substances in Mediterranean Spanish sewage treatment plants [J]. Science of the Total Environment, 2014, 472: 912-922. doi: 10.1016/j.scitotenv.2013.11.056 [28] ALDER A C, van der VOET J. Occurrence and point source characterization of perfluoroalkyl acids in sewage sludge [J]. Chemosphere, 2015, 129: 62-73. doi: 10.1016/j.chemosphere.2014.07.045 [29] GUO R, SIM W J, LEE E S, et al. Evaluation of the fate of perfluoroalkyl compounds in wastewater treatment plants [J]. Water Research, 2010, 44(11): 3476-3486. doi: 10.1016/j.watres.2010.03.028 [30] PAN Y Y, SHI Y L, WANG J M, et al. Evaluation of perfluorinated compounds in seven wastewater treatment plants in Beijing urban areas [J]. Science China Chemistry, 2011, 54(3): 552-558. doi: 10.1007/s11426-010-4093-x [31] THOMPSON J, EAGLESHAM G, REUNGOAT J, et al. Removal of PFOS, PFOA and other perfluoroalkyl acids at water reclamation plants in South East Queensland Australia [J]. Chemosphere, 2011, 82(1): 9-17. doi: 10.1016/j.chemosphere.2010.10.040 [32] LENKA S P, KAH M, PADHYE L P. A review of the occurrence, transformation, and removal of poly- and perfluoroalkyl substances (PFAS) in wastewater treatment plants [J]. Water Research, 2021, 199: 117187. doi: 10.1016/j.watres.2021.117187 [33] LETCHER R J, CHU S G, SMYTH S A. Side-chain fluorinated polymer surfactants in biosolids from wastewater treatment plants [J]. Journal of Hazardous Materials, 2020, 388: 122044. doi: 10.1016/j.jhazmat.2020.122044 [34] ASKELAND M, CLARKE B O, CHEEMA S A, et al. Biochar sorption of PFOS, PFOA, PFHxS and PFHxA in two soils with contrasting texture [J]. Chemosphere, 2020, 249: 126072. doi: 10.1016/j.chemosphere.2020.126072 [35] PHONG VO H N, NGO H H, GUO W S, et al. Poly-and perfluoroalkyl substances in water and wastewater: A comprehensive review from sources to remediation [J]. Journal of Water Process Engineering, 2020, 36: 101393. doi: 10.1016/j.jwpe.2020.101393 [36] ATEIA M, MAROLI A, THARAYIL N, et al. The overlooked short- and ultrashort-chain poly- and perfluorinated substances: A review [J]. Chemosphere, 2019, 220: 866-882. doi: 10.1016/j.chemosphere.2018.12.186 [37] LEWIS M, KIM M H, WANG N, et al. Engineering artificial communities for enhanced FTOH degradation [J]. Science of the Total Environment, 2016, 572: 935-942. doi: 10.1016/j.scitotenv.2016.07.223 [38] WANG Y, CHANG W G, WANG L, et al. A review of sources, multimedia distribution and health risks of novel fluorinated alternatives [J]. Ecotoxicology and Environmental Safety, 2019, 182: 109402. doi: 10.1016/j.ecoenv.2019.109402 [39] SHENG N, PAN Y T, GUO Y, et al. Hepatotoxic effects of hexafluoropropylene oxide trimer acid (HFPO-TA), A novel perfluorooctanoic acid (PFOA) alternative, on mice [J]. Environmental Science & Technology, 2018, 52(14): 8005-8015. [40] FILIPOVIC M, BERGER U. Are perfluoroalkyl acids in waste water treatment plant effluents the result of primary emissions from the technosphere or of environmental recirculation? [J]. Chemosphere, 2015, 129: 74-80. doi: 10.1016/j.chemosphere.2014.07.082 [41] DAUCHY X, BOITEUX V, BACH C, et al. Mass flows and fate of per- and polyfluoroalkyl substances (PFASs) in the wastewater treatment plant of a fluorochemical manufacturing facility [J]. Science of the Total Environment, 2017, 576: 549-558. doi: 10.1016/j.scitotenv.2016.10.130 [42] SHAN G Q, WEI M C, ZHU L Y, et al. Concentration profiles and spatial distribution of perfluoroalkyl substances in an industrial center with condensed fluorochemical facilities [J]. Science of the Total Environment, 2014, 490: 351-359. doi: 10.1016/j.scitotenv.2014.05.005 [43] ZHANG C J, YAN H, LI F, et al. Occurrence and fate of perfluorinated acids in two wastewater treatment plants in Shanghai, China [J]. Environmental Science and Pollution Research, 2015, 22(3): 1804-1811. doi: 10.1007/s11356-013-2044-8 [44] BJÖRNSDOTTER M K, YEUNG L W Y, KÄRRMAN A, et al. Ultra-short-chain perfluoroalkyl acids including trifluoromethane sulfonic acid in water connected to known and suspected point sources in Sweden [J]. Environmental Science & Technology, 2019, 53(19): 11093-11101. [45] HOUTZ E, WANG M M, PARK J S. Identification and fate of aqueous film forming foam derived per- and polyfluoroalkyl substances in a wastewater treatment plant [J]. Environmental Science & Technology, 2018, 52(22): 13212-13221. [46] CHEN H R, PENG H, YANG M, et al. Detection, occurrence, and fate of fluorotelomer alcohols in municipal wastewater treatment plants [J]. Environmental Science & Technology, 2017, 51(16): 8953-8961. [47] LORENZO M, CAMPO J, MORALES SUÁREZ-VARELA M, et al. Occurrence, distribution and behavior of emerging persistent organic pollutants (POPs) in a Mediterranean wetland protected area [J]. Science of the Total Environment, 2019, 646: 1009-1020. doi: 10.1016/j.scitotenv.2018.07.304 [48] ZHOU Y Q, MENG J, ZHANG M, et al. Which type of pollutants need to be controlled with priority in wastewater treatment plants: Traditional or emerging pollutants? [J]. Environment International, 2019, 131: 104982. doi: 10.1016/j.envint.2019.104982 [49] ZHAO L J, McCAUSLAND P K, FOLSOM P W, et al. 6: 2 Fluorotelomer alcohol aerobic biotransformation in activated sludge from two domestic wastewater treatment plants [J]. Chemosphere, 2013, 92(4): 464-470. doi: 10.1016/j.chemosphere.2013.02.032 [50] WANG N, SZOSTEK B, FOLSOM P W, et al. Aerobic biotransformation of 14C-labeled 8-2 telomer B alcohol by activated sludge from a domestic sewage treatment plant [J]. Environmental Science & Technology, 2005, 39(2): 531-538. [51] WANG F, SHIH K. Adsorption of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on alumina: Influence of solution pH and cations [J]. Water Research, 2011, 45(9): 2925-2930. doi: 10.1016/j.watres.2011.03.007 [52] KEY B D, HOWELL R D, CRIDDLE C S. Defluorination of organofluorine sulfur compounds by Pseudomonas Sp. strain D2 [J]. Environmental Science & Technology, 1998, 32(15): 2283-2287. [53] KWON B G, LIM H J, NA S H, et al. Biodegradation of perfluorooctanesulfonate (PFOS) as an emerging contaminant [J]. Chemosphere, 2014, 109: 221-225. doi: 10.1016/j.chemosphere.2014.01.072 [54] KIBAMBE M G, MOMBA M N B, DASO A P, et al. Evaluation of the efficiency of selected wastewater treatment processes in removing selected perfluoroalkyl substances (PFASs) [J]. Journal of Environmental Management, 2020, 255: 109945. doi: 10.1016/j.jenvman.2019.109945 [55] LI Y J, BRÄUNIG J, ANGELICA G C, et al. Formation and partitioning behaviour of perfluoroalkyl acids (PFAAs) in waste activated sludge during anaerobic digestion [J]. Water Research, 2021, 189: 116583. doi: 10.1016/j.watres.2020.116583 [56] ZHANG S, SZOSTEK B, McCAUSLAND P K, et al. 6: 2 and 8: 2 fluorotelomer alcohol anaerobic biotransformation in digester sludge from a WWTP under methanogenic conditions [J]. Environmental Science & Technology, 2013, 47(9): 4227-4235. [57] ARVANITI O S, ANDERSEN H R, THOMAIDIS N S, et al. Sorption of Perfluorinated Compounds onto different types of sewage sludge and assessment of its importance during wastewater treatment [J]. Chemosphere, 2014, 111: 405-411. doi: 10.1016/j.chemosphere.2014.03.087 [58] EBRAHIMI F, LEWIS A J, SALES C M, et al. Linking PFAS partitioning behavior in sewage solids to the solid characteristics, solution chemistry, and treatment processes [J]. Chemosphere, 2021, 271: 129530. doi: 10.1016/j.chemosphere.2020.129530 [59] MUSSABEK D, AHRENS L, PERSSON K M, et al. Temporal trends and sediment-water partitioning of per- and polyfluoroalkyl substances (PFAS) in lake sediment [J]. Chemosphere, 2019, 227: 624-629. doi: 10.1016/j.chemosphere.2019.04.074 [60] COGGAN T L, MOODIE D, KOLOBARIC A, et al. An investigation into per- and polyfluoroalkyl substances (PFAS) in nineteen Australian wastewater treatment plants (WWTPs) [J]. Heliyon, 2019, 5(8): e02316. doi: 10.1016/j.heliyon.2019.e02316 [61] LIU Y Q, ZHANG Y, LI J F, et al. Distribution, partitioning behavior and positive matrix factorization-based source analysis of legacy and emerging polyfluorinated alkyl substances in the dissolved phase, surface sediment and suspended particulate matter around coastal areas of Bohai Bay, China [J]. Environmental Pollution, 2019, 246: 34-44. doi: 10.1016/j.envpol.2018.11.113 [62] YU Q, DENG S B, YU G. Selective removal of perfluorooctane sulfonate from aqueous solution using chitosan-based molecularly imprinted polymer adsorbents [J]. Water Research, 2008, 42(12): 3089-3097. doi: 10.1016/j.watres.2008.02.024 [63] ZHANG Q Y, DENG S B, YU G, et al. Removal of perfluorooctane sulfonate from aqueous solution by crosslinked chitosan beads: Sorption kinetics and uptake mechanism [J]. Bioresource Technology, 2011, 102(3): 2265-2271. doi: 10.1016/j.biortech.2010.10.040 [64] DENG S B, YU Q, HUANG J, et al. Removal of perfluorooctane sulfonate from wastewater by anion exchange resins: Effects of resin properties and solution chemistry [J]. Water Research, 2010, 44(18): 5188-5195. doi: 10.1016/j.watres.2010.06.038 [65] DIXIT F, BARBEAU B, MOSTAFAVI S G, et al. Removal of legacy PFAS and other fluorotelomers: Optimized regeneration strategies in DOM-rich waters [J]. Water Research, 2020, 183: 116098. doi: 10.1016/j.watres.2020.116098 [66] CHEN X, XIA X H, WANG X L, et al. A comparative study on sorption of perfluorooctane sulfonate (PFOS) by chars, ash and carbon nanotubes [J]. Chemosphere, 2011, 83(10): 1313-1319. doi: 10.1016/j.chemosphere.2011.04.018 [67] DALAHMEH S S, ALZIQ N, AHRENS L. Potential of biochar filters for onsite wastewater treatment: Effects of active and inactive biofilms on adsorption of per- and polyfluoroalkyl substances in laboratory column experiments [J]. Environmental Pollution, 2019, 247: 155-164. doi: 10.1016/j.envpol.2019.01.032 [68] PUNYAPALAKUL P, SUKSOMBOON K, PRARAT P, et al. Effects of surface functional groups and porous structures on adsorption and recovery of perfluorinated compounds by inorganic porous silicas [J]. Separation Science and Technology, 2013, 48(5): 775-788. doi: 10.1080/01496395.2012.710888 [69] INYANG M, DICKENSON E R V. The use of carbon adsorbents for the removal of perfluoroalkyl acids from potable reuse systems [J]. Chemosphere, 2017, 184: 168-175. doi: 10.1016/j.chemosphere.2017.05.161 [70] WANG F, SHIH K, MA R W, et al. Influence of cations on the partition behavior of perfluoroheptanoate (PFHpA) and perfluorohexanesulfonate (PFHxS) on wastewater sludge [J]. Chemosphere, 2015, 131: 178-183. doi: 10.1016/j.chemosphere.2015.03.024 [71] HANSEN M C, BØRRESEN M H, SCHLABACH M, et al. Sorption of perfluorinated compounds from contaminated water to activated carbon [J]. Journal of Soils and Sediments, 2010, 10(2): 179-185. doi: 10.1007/s11368-009-0172-z [72] RATTANAOUDOM R, VISVANATHAN C, BOONTANON S. Removal of concentrated PFOS and PFOA in synthetic industrial wastewater by powder activated carbon and hydrotalcite[C]. Rattanaoudom 2012 Removal, 2012 [73] YU J, HU J Y. Adsorption of perfluorinated compounds onto activated carbon and activated sludge [J]. Journal of Environmental Engineering, 2011, 137(10): 945-951. doi: 10.1061/(ASCE)EE.1943-7870.0000402 [74] LIANG X Q, GONDAL M A, CHANG X F, et al. Facile preparation of magnetic separable powdered-activated-carbon/Ni adsorbent and its application in removal of perfluorooctane sulfonate (PFOS) from aqueous solution [J]. Journal of Environmental Science and Health, Part A, 2011, 46(13): 1482-1490. doi: 10.1080/10934529.2011.609066 [75] SENEVIRATHNA S T M L D, TANAKA S, FUJII S, et al. A comparative study of adsorption of perfluorooctane sulfonate (PFOS) onto granular activated carbon, ion-exchange polymers and non-ion-exchange polymers [J]. Chemosphere, 2010, 80(6): 647-651. doi: 10.1016/j.chemosphere.2010.04.053 [76] DU Z W, DENG S B, BEI Y, et al. Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents—a review [J]. Journal of Hazardous Materials, 2014, 274: 443-454. doi: 10.1016/j.jhazmat.2014.04.038 [77] RAHMAN M F, PELDSZUS S, ANDERSON W B. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: A review [J]. Water Research, 2014, 50: 318-340. [78] YAO Y, VOLCHEK K, BROWN C E, et al. Comparative study on adsorption of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) by different adsorbents in water [J]. Water Science and Technology:a Journal of the International Association on Water Pollution Research, 2014, 70(12): 1983-1991. doi: 10.2166/wst.2014.445 [79] TANG C Y, SHIANG FU Q, GAO D W, et al. Effect of solution chemistry on the adsorption of perfluorooctane sulfonate onto mineral surfaces [J]. Water Research, 2010, 44(8): 2654-2662. doi: 10.1016/j.watres.2010.01.038 [80] DIXIT F, DUTTA R, BARBEAU B, et al. PFAS removal by ion exchange resins: A review [J]. Chemosphere, 2021, 272: 129777. doi: 10.1016/j.chemosphere.2021.129777 [81] DU Z W, DENG S B, ZHANG S Y, et al. Selective and fast adsorption of perfluorooctanesulfonate from wastewater by magnetic fluorinated vermiculite [J]. Environmental Science & Technology, 2017, 51(14): 8027-8035. [82] DIXIT F, BARBEAU B, MOSTAFAVI S G, et al. Efficient removal of GenX (HFPO-DA) and other perfluorinated ether acids from drinking and recycled waters using anion exchange resins [J]. Journal of Hazardous Materials, 2020, 384: 121261. doi: 10.1016/j.jhazmat.2019.121261 [83] WANG Q N, LIU M Y, ZHAO H Y, et al. Efficiently degradation of perfluorooctanoic acid in synergic electrochemical process combining cathodic electro-Fenton and anodic oxidation [J]. Chemical Engineering Journal, 2019, 378: 122071. doi: 10.1016/j.cej.2019.122071 [84] WANG P, ZHANG M, LU Y L, et al. Removal of perfluoalkyl acids (PFAAs) through fluorochemical industrial and domestic wastewater treatment plants and bioaccumulation in aquatic plants in river and artificial wetland [J]. Environment International, 2019, 129: 76-85. doi: 10.1016/j.envint.2019.04.072 [85] TANG C Y, FU Q S, CRIDDLE C S, et al. Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater [J]. Environmental Science & Technology, 2007, 41(6): 2008-2014. [86] STEINLE-DARLING E, REINHARD M. Nanofiltration for trace organic contaminant removal: Structure, solution, and membrane fouling effects on the rejection of perfluorochemicals [J]. Environmental Science & Technology, 2008, 42(14): 5292-5297. [87] APPLEMAN T D, DICKENSON E R V, BELLONA C, et al. Nanofiltration and granular activated carbon treatment of perfluoroalkyl acids [J]. Journal of Hazardous Materials, 2013, 260: 740-746. doi: 10.1016/j.jhazmat.2013.06.033 [88] ANTONIOU M G, ANDERSEN H R. Comparison of UVC/S2O82− with UVC/H2O2 in terms of efficiency and cost for the removal of micropollutants from groundwater [J]. Chemosphere, 2015, 119: S81-S88. doi: 10.1016/j.chemosphere.2014.03.029 [89] ANTONIOU M G, SHOEMAKER J A, deLa CRUZ A A, et al. Unveiling new degradation intermediates/pathways from the photocatalytic degradation of microcystin-LR [J]. Environmental Science & Technology, 2008, 42(23): 8877-8883. [90] HORI H, HAYAKAWA E, EINAGA H, et al. Decomposition of environmentally persistent perfluorooctanoic acid in water by photochemical approaches [J]. Environmental Science & Technology, 2004, 38(22): 6118-6124. [91] CHEN J, ZHANG P. Photodegradation of perfluorooctanoic acid in water under irradiation of 254 nm and 185 nm light by use of persulfate [J]. Water Science and Technology:a Journal of the International Association on Water Pollution Research, 2006, 54(11/12): 317-325. [92] Da SILVA F L, LAITINEN T, PIRILÄ M, et al. Photocatalytic degradation of perfluorooctanoic acid (PFOA) from wastewaters by TiO2, In2O3 and Ga2O3 catalysts [J]. Topics in Catalysis, 2017, 60(17): 1345-1358. [93] YAMAMOTO T, NOMA Y, SAKAI S I, et al. Photodegradation of perfluorooctane sulfonate by UV irradiation in water and alkaline 2-propanol [J]. Environmental Science & Technology, 2007, 41(16): 5660-5665. [94] TANG H Q, XIANG Q Q, LEI M, et al. Efficient degradation of perfluorooctanoic acid by UV-Fenton process [J]. Chemical Engineering Journal, 2012, 184: 156-162. doi: 10.1016/j.cej.2012.01.020 [95] LIU C S, HIGGINS C P, WANG F, et al. Effect of temperature on oxidative transformation of perfluorooctanoic acid (PFOA) by persulfate activation in water [J]. Separation and Purification Technology, 2012, 91: 46-51. doi: 10.1016/j.seppur.2011.09.047 [96] MITCHELL S M, AHMAD M, TEEL A L, et al. Degradation of perfluorooctanoic acid by reactive species generated through catalyzed H2O2 propagation reactions [J]. Environmental Science & Technology Letters, 2014, 1(1): 117-121. [97] QIAN Y J, GUO X, ZHANG Y L, et al. Perfluorooctanoic acid degradation using UV-persulfate process: Modeling of the degradation and Chlorate formation [J]. Environmental Science & Technology, 2016, 50(2): 772-781. [98] LEE Y C, LO S L, CHIUEH P T, et al. Efficient decomposition of perfluorocarboxylic acids in aqueous solution using microwave-induced persulfate [J]. Water Research, 2009, 43(11): 2811-2816. doi: 10.1016/j.watres.2009.03.052 [99] LIN J C, LO S L, HU C Y, et al. Enhanced sonochemical degradation of perfluorooctanoic acid by sulfate ions [J]. Ultrasonics Sonochemistry, 2015, 22: 542-547. doi: 10.1016/j.ultsonch.2014.06.006 [100] SONG Z, TANG H Q, WANG N, et al. Reductive defluorination of perfluorooctanoic acid by hydrated electrons in a sulfite-mediated UV photochemical system [J]. Journal of Hazardous Materials, 2013, 262: 332-338. doi: 10.1016/j.jhazmat.2013.08.059 [101] BENTEL M J, YU Y C, XU L H, et al. Defluorination of per- and polyfluoroalkyl substances (PFASs) with hydrated electrons: Structural dependence and implications to PFAS remediation and management [J]. Environmental Science & Technology, 2019, 53(7): 3718-3728. [102] BENTEL M J, LIU Z K, YU Y C, et al. Enhanced degradation of perfluorocarboxylic acids (PFCAs) by UV/sulfite treatment: Reaction mechanisms and system efficiencies at pH 12 [J]. Environmental Science & Technology Letters, 2020, 7(5): 351-357. [103] TIAN H T, GAO J, LI H, et al. Complete defluorination of perfluorinated compounds by hydrated electrons generated from 3-indole-acetic-acid in organomodified montmorillonite [J]. Scientific Reports, 2016, 6: 32949. doi: 10.1038/srep32949 [104] CHEN Z H, TENG Y, MI N, et al. Highly efficient hydrated electron utilization and reductive destruction of perfluoroalkyl substances induced by intermolecular interaction [J]. Environmental Science & Technology, 2021, 55(6): 3996-4006. [105] ARVANITI O S, HWANG Y, ANDERSEN H R, et al. Reductive degradation of perfluorinated compounds in water using Mg-aminoclay coated nanoscale zero valent iron [J]. Chemical Engineering Journal, 2015, 262: 133-139. doi: 10.1016/j.cej.2014.09.079