-
全氟和多氟烷基化合物(per- and polyfluoroalkyl substances,PFASs)是一类新污染物(POPs),由有机氟疏水烷基链和离子官能团组成. 近半个世纪以来,PFASs因其独特的物理化学特性(热稳定性、抗氧化性等)而被广泛应用于表面活性剂、消防泡沫和食品包装纸[1]. 长期生产使用使得大量PFASs被释放到环境[2]. PFASs具有环境持久性和生物累积性,可以通过饮用水、食物链传递等途径进入动物和人体[3].全氟辛酸(perfluorooctanoic acid,PFOA)和全氟辛烷磺酸(perfluorooctane sulfonate,PFOS)是两种主要的PFASs,在人体内的半衰期分别达到8年和5.4年[4]. 进入人体的PFASs可能会对婴幼儿的生长发育造成损伤,还可能造成男性生育障碍、女性更年期提前、癌症和甲状腺功能失调等健康问题[5].
至今,全世界有超过4000种PFASs被生产和使用,包括传统的和替代性PFASs(主要包括全氟羧酸(PFCAs);全氟磺酸(PFSAs);全氟烷基醚羧酸(PFECAs);全氟二羧酸(PFdiCAs);氟调聚羧酸(FTCAs);氟调聚磺酸(FTSAs)等)[6]. 由于PFASs对人体的潜在健康危害[7],多个国家先后制定了相应的法律法规,对PFOA和PFOS这类典型PFASs做出了严格限制(如美国环保局对饮用水中PFOA和PFOS的限值70 ng·L−1),因此传统PFASs被逐渐淘汰[8]. 尽管如此,大量研究发现,市政污水中的PFASs浓度依然可高达100 ng·L−1. 同时还存在大量新型替代PFASs,浓度高达100 ng·L−1[9].
统计发现,自2015年以来,关于污水处理厂中PFASs的赋存研究多达100余项,不仅包括市政污水中PFASs的浓度调查,污水处理厂不同处理工艺(图1)[10]对PFASs去除效率的影响,同时还包括污水处理过程中PFASs前体向全氟烷基酸(PFAAs)的转化过程研究. Ulrika等发现在废水处理后,水中大多数PFCAs和PFSAs显著增加,证明了前体化合物的降解是污水处理厂出水中PFASs的来源[11]. 李怀波[12]对PFCs、部分已知前体和未知前体在三座污水处理厂各阶段的分布特征分析后发现,生化阶段对前体的降解,导致PFASs浓度升高. 这些研究加深了对PFASs在污水处理厂中迁移转化过程的理解.
本文系统总结了近年来不同污水处理工艺中PFASs的相关研究,旨在厘清有关污水处理厂中PFASs的赋存、转化、归趋和去除规律,为后续更准确的评估市政水体中PFASs毒性以及开发相关去除工艺提供理论支撑.
-
根据文献中的汇总数据,在废水和污泥样品中检测到的PFASs浓度分别高达几百ng·L−1和几千ng·g−1干重. 在未经处理的污水中,PFOS、PFOA和全氟辛烷磺酰胺(PFOSA)的最高浓度分别为465.4 ng·L−1、638.2 ng·L−1和615 ng·L−1[13]. 其他PFASs,包括全氟戊酸(PFPeA)、全氟己酸(PFHxA)、全氟壬酸(PFNA)、全氟癸酸(PFDA)、全氟正十三酸(PFTrDA)和全氟癸烷磺酸(PFDS)也被检测到,总浓度高达453.0 ng·L−1[14]. 在污泥中,PFOS是最主要的污染物,浓度高达7304.9 ng·g−1干重[15],PFOA的浓度最高为241 ng·g−1干重[13],而具有更长碳链的全氟烷基羧酸(如全氟正十一酸,PFUdA)的浓度更高(3209 ng·g−1干重)[16],这可能是由于其更强的疏水性造成的污泥分配系数更高. 对不同地区的污水处理厂样品检测发现,来自新加坡、韩国、中国台湾、希腊和美国的一些污水处理厂样品中含有较高浓度的PFOA[17];而在中国香港、中国台湾、日本、新加坡、泰国、瑞士和美国的市政污水中PFOS浓度更高[18]. 不同地区市政污水的PFASs种类和浓度差异可能与当地人口密度、人群生活方式以及当地主要发展产业有关. 表1列出了不同地区市政污水处理系统中多种PFASs的赋存水平. 图2统计了近年来在监测研究中不同种类PFASs的出现次数占研究总数的比例分布(A),以及全球各国家的研究统计(B)[32]. 图A中的Emerging为新出现的替代性全氟化合物,包括全氟烷基醚酸和氟代烷烃酸等,Precursors为PFASs前体物质,包括全氟烷基磺酰胺和氟调聚醇等.
目前的研究主要关注PFCAs和PFSAs两类PFASs[33]. 过去二十年中,在多个国家和国际组织的共同努力下,长链PFASs的生产和使用受到严格管控[34]. 但由于PFASs在生产生活中的不可替代性,短链(C4—C6)PFASs的生产和使用规模不断扩大,从而使其在市政污水中的浓度不断增高[35]. 最近的调查发现,短链PFASs与长链PFASs具有相似的环境持久性、生物累积性和毒性[36]. 随着需求增加,短链PFASs向环境的释放量也在不断增加,尽管在发达国家的城市污水中短链(C4—C6)PFASs的浓度水平已有较多研究,而目前在世界其他地区,特别是发展中国家,对于这类物质的相关研究依然有限,因此需要增加有关全球废水中短链PFASs浓度水平的调查研究[8].
此外,为了满足生产和生活需要,一些传统PFASs的前体物质被不断生产应用,如全氟烷基醇和全氟烷基酰胺[33]. 其中,氟调聚醇(FTOHs)广泛用于制造各种产品,如织物、纸张、表面活性剂、防水防污产品和消防泡沫[37],在生产和使用过程中造成PFASs的释放,随后进入市政污水处理系统[16],并转化为全氟烷基酸类化合物(PFAAs)[9]. 近期的一项研究,对采集自加拿大污水处理厂中的污泥样品进行检测分析,首次发现了两种新型侧链聚合物(全氟辛烷磺酰胺-聚氨酯聚合物和全氟丁烷磺酰胺-聚氨酯聚合物),它们在生物代谢作用下可以转化为全氟磺酰胺(如全氟丁烷磺酰胺,PBSA和全氟辛烷磺酰胺,PFOSA),进一步转化为短链PFSAs(如全氟丁烷磺酸,PFBS),测得的最大浓度分别为105 ng·L−1和2051 ng·L−1干重[33].
除此之外,全氟烷基醚酸(全氟烷基醚磺酸(PFESAs)、全氟烷基醚羧酸(PFECAs))和氟代烷烃酸(氟调磺酸(FTSAs)、氟调羧酸(FTCAs))是另两类传统PFASs的替代品[38],研究发现,这类替代物相比PFOA和PFOS半衰期更长,毒性更强[39]. 尽管传统PFASs在污水处理厂各工艺段的迁移转化研究较多,目前对市政污水中这类新型前体和替代性化合物的迁移转化过程研究还非常有限. 作为多种污染物重要的源和汇,对市政污水处理厂中替代性PFASs的赋存和转化过程展开研究具有重要意义.
-
表1总结了不同地区污水处理厂进水中不同种类PFASs的浓度(ng·L−1). 相对于其他类别的PFASs,全氟烷基酸类化合物(PFAAs)在污水处理厂进水中具有种类多、浓度高的特点. Filipovic等[40]研究认为,工业废水是污水处理厂中PFAAs的主要来源,并且以PFOA和PFHxA为主. Dauchy等调查发现,在一个以氟化工厂原始废水为主要处理对象的污水处理厂进水中,PFOA的浓度可高达4000 ng·L−1[41]. 市政污水中PFHxA浓度较高,可能是由于短链PFASs通常需要添加更高浓度的短链PFHxA来获得与长链PFOA类似的使用性能[7],从而增加了PFHxA的生产和释放量[42]. 除了短链(C6—C4)和长链(C>6)PFCAs,在污水处理厂进水中还检测到大量的全氟磺酸类化合物(PFSAs)(C9—C4)(表1). 目前针对传统长链PFASs的研究相对较多,而对超短链PFAS的研究还非常有限. 仅有的几项调查发现,在中国的一个污水处理厂的进水中检测到PFPrA(17 ng·L−1)[43]. 而在另一个工业污水处理厂附近的地下水样本中监测到高浓度TFA(C2)和PFPrA(C3),浓度高达53000 ng·L−1[44]. 目前相关研究依然缺乏,亟需对市政污水处理系统开展更全面的调查,以阐明市政污水处理系统中PFHxA赋存浓度较高的原因,并追踪其在污水处理厂的来源.
除了传统PFAAs和PFSAs浓度较高,在一些污水处理厂的进水中还检测到较高浓度的PFASs前体物质(表1). 与PFAAs不同的是,前体物质的浓度从进水到出水不断下降,甚至在出水中检测不到[45],可能是由于它们在处理过程中转化为PFASs或其他化合物[46]. 尽管目前部分研究已经逐步涉及一些PFASs前体的监测,但是由于PFASs前体物质的种类繁多,大量已被使用的PFASs前体物质尚未被关注,因此开展新型PFASs及其前体物质更全面的监测研究,对全面把握市政污水处理系统中的PFASs赋存状况、转化过程都至关重要.
-
对污水处理厂出水中PFASs的浓度进行监测,不仅有利于评估市政污水处理系统中PFASs的转化过程,还可建立排放到环境中的污染物清单. 研究发现,经过市政污水处理系统后,出水中部分PFASs的浓度并没有降低甚至更高(表1). 例如,最近的一项研究中,Shigei等发现3种PFASs,PFPeA、PFOA和PFNA的总体浓度从进水到出水增加了6倍. 而短链PFASs在出水中的浓度升高现象更加明显,如PFBA、PFPeA和PFHxA [45, 47],这是由于前体物质转化为难降解的短链PFASs[46]. 与此相反,污水中长链PFASs(C>9)和前体的浓度下降,污水中长链PFASs和前体浓度降低的原因可能是活性污泥吸附[48],或者转化为短链PFAAs[43].
此外,在一些特定情况下,某些前体物质只在进水中出现,如Houtz等在中国9个城市的12个污水处理厂进水样品中检测到两类新的氟代尔硫醚表面活性剂(FTSHCs)和氟代尔硫醚烷氧基羧酸盐(FTSAHCs),但在出水中未检出[45]. 在对另一个以氟化工生产废水为处理对象的污水处理厂的进水进行监测时发现,进水中含有高浓度6:2氟调聚物磺酰胺烷基甜菜碱(6:2 FTAB)和6:2氟调聚物磺酰胺丙基N,N-二甲胺(M4),而出水中并未检测到[41]. 研究人员认为FTSHCs和FTSAHCs在污泥上的吸附和降解是造成其去除率较高的主要原因. 然而,Houtz等发现另一种PFASs前体物质6:2氟调磺酸(6:2 FTS),出水时的浓度比进水时高了一倍[45]. 因此,目前对一些新发现的PFASs前体物质在市政污水处理系统中的转化过程尚不清晰,详细转化机制还需进一步探究,这将有助于更深入地理解PFASs在市政污水处理系统中的转化机制.
-
目前,针对污水处理厂进水和出水中的PFASs研究主要集中在监测领域,对不同工艺段PFASs去除效率和转化过程的研究相对较少. 研究显示,大多数PFASs在二级生物处理过程中无法被去除[16]. 而一些氟调聚醇、氟聚醚醇等新型PFASs或替代物在经过生化阶段的处理后会转化成短链PFASs,造成出水中短链PFASs的浓度高于进水[26]. 下面将讨论生化过程对PFASs生成和转化的作用,以及在不同类型污泥上的吸附作用.
-
到目前为止,针对前体化合物,例如8:2氟调聚醇(8:2 FTOH)、6:2氟调聚醇(6:2 FTOH)、6:2氟调聚磺酸(6:2 FTS)等,在活性污泥中的转化过程研究较少[49]. Wang等研究发现,8:2 FTOH的主要转化产物是PFOA,在活性污泥中培养28 d后,其摩尔转化率高达2.1%[50]. Wang和Zhao等进一步研究发现, 6:2 FTOH和6:2 FTS可经过生化作用转化为短链的PFCAs,包括PFPeA和PFHxA. 实验室研究发现,6:2 FTOH降解产生的PFPeA摩尔转化率在2个月后高达4.4%. 在经过活性污泥的培养后,PFHxA的平均摩尔产量为最初6:2 FTOH的11%和6:2 FTS的1.1%[49, 51].
由于PFASs分子中极强的碳氟键,自然环境条件下,PFASs具有极强的持久性和稳定性[1]. 目前,PFOA和PFOS在好氧和厌氧微生物群中生物降解和生物转化的研究有限. 在一项早期研究中,Key等使用纯细菌培养物,发现PFOS在有氧条件下具有微生物惰性[52]. 近年来,Kwon等发现,经过48 h的培养,PFOS可以被活性污泥中的特定微生物(铜绿假单胞菌)分解,分解率高达67%. 在这项研究中,没有观察到PFOS降解生成的氟离子,但检测到PFBS和PFHxS的生成[53]. 基于此,研究人员认为PFOA都没有生物活性.
-
除生化作用,吸附过程也会影响到污水处理厂出水中的PFASs浓度. 其中,活性污泥吸附是将PFASs从污水处理厂水相中去除的主要机制[54]. 分配系数(Kd)是评估污水处理过程中PFASs在污泥(吸附在污泥上)和废水(液相)之间分配水平的一个重要参数[55]. 在近年的研究中[56-57],污水的不同参数如pH值、温度、离子强度和阳离子类型对PFASs在活性污泥上的吸附影响均被考虑. 研究发现,随着pH值的降低(9到2),PFASs在污泥上的分配增加,导致在酸性条件下污泥的吸附量提高[58]. PFASs的化学结构,特别是碳链的长度,决定了PFASs在水相和污泥上的分配行为[59]. 长链PFASs含有强疏水性的全氟链,可以通过疏水吸引作用与污泥相结合. PFASs的疏水特性随着碳链长度的增加而增强,因此活性污泥对长链PFASs的吸附更高[60]. 除了疏水作用,PFASs也可以通过静电吸引作用与污泥表面相结合. 此外,Mg2+、Ca2+等阳离子也会促进活性污泥对PFASs的吸附,这可能是因为二价阳离子在带负电的PFASs和污泥之间充当离子桥. 此外,PFAAs中的官能团类型也会影响污泥对其的吸附.
上述研究大多集中在PFOA和PFOS这两种常见的PFASs上[61]. 对于短链、超短链和前体PFASs在污泥-废水之间的分配行为以及不同处理工艺对其分配的影响研究还较少. 进一步对不同结构PFASs污泥-污水体系Kd的研究可以帮助我们更好地理解PFASs在活性污泥以及其他吸附剂上的吸附和迁移过程.
-
由于生化过程几乎不能去除PFASs,一些针对PFASs的物理化学处理方法被相继开发,包括吸附、膜过滤、高级氧化和高级还原等. 这些研究目前大多停留在实验室研究阶段,针对实际废水的处理研究依然缺乏.
-
目前,包括活性污泥、活性炭、碳纳米管和天然矿物等多种吸附材料对PFASs的吸附去除被研究(表2). 主要针对的目标污染物为PFOA和PFOS,而对其他PFASs的研究十分有限[71]. 研究中,大部分实验在纯水中进行,少数利用污水处理厂的真实废水模拟真实反应环境[72-73]. 与颗粒活性炭(GAC)相比,粉末活性炭(PAC)对PFOA和PFOS的去除率更高、吸附速率更快. 具体来说,在PAC处理过程中,6 h即可就达到吸附平衡[72-74],而GAC对PFASs的吸附需要更长的平衡时间(最长168 h)[75]. 这一现象可能是由于PAC的颗粒直径和孔径较小;相同体积的PAC具有更高的表面积,更短的内部扩散距离,以及更多可用的表面官能团[76-77]. Yu和Hu研究了污水有机物(EfOM)对PFOA和PFOS在PAC上吸附的影响[73]. 与没有有机物的情况比较,在EfOM存在下目标化合物的吸附量低一个数量级(表2),这可能是由于有机物和微污染物之间存在吸附位点竞争.
除了AC,其他类型的商业吸附剂如树脂[64, 78]、沸石[68]、矿物材料(氧化铝、硅石、针铁矿)[51, 79]、交联壳聚糖[63]、碳纳米管[66, 78]和分子印迹聚合材料[62]也被用于去除纯水中的PFOA和PFOS(表2). 其中,离子交换树脂对PFASs的去除效率≥ 99%[80],Wang等发现,在pH=4.3时,PFOA和PFOS在氧化铝上的吸附能力分别为0.252 μg∙m−2和0.157 μg∙m−2[51]. Tang等报道,针铁矿对PFOS的吸附明显受到pH值、离子强度等环境参数的影响,静电相互作用越强吸附量越大[79]. 在另一项研究中,研究人员比较了PFOA和PFOS在几种商业吸附剂上的吸附行为,包括GAC、PAC、多壁碳纳米管、双壁碳纳米管、阴离子交换树脂、非离子交换聚合物、氧化铝和硅石. 结果显示,GAC和阴离子交换树脂对PFOA和PFOS的去除效率最高,去除率超过98%[78]. 其他新型吸附剂,如水凝胶聚合物和磁性氟化物吸附剂,对PFOA和PFOS具有高选择性,在最短的时间内(2—4 h)表现出优异的效果,去除率均超过99%[7,81].
-
净水过程中单纯的砂滤并不能实现对PFASs的去除[82],而使用先进的过滤技术,如纳滤(NF)和反渗透(RO)可以实现对自来水和污水中PFASs的显著去除[7, 83]. 文献报道,使用NF对废水中的PFASs的去除率在90 %到99 %之间[54, 84],而RO技术对PFASs的去除率比NF更高,这是因为RO膜的孔隙更小,排斥层更厚[85]. 在另一项研究中,使用4种类型的NF膜对短链和长链的PFASs进行了测试[86],研究发现,在最佳实验条件下,使用去离子水可以较好地去除摩尔质量高于300 g·mol−1的PFASs. Appleman等评估了NF在去除去离子水和人工模拟地下水中的几种PFASs的有效性,结果显示,NF对所有目标PFASs的去除率都超过了93%[87].
-
高级氧化工艺(AOPs)被广泛应用于持久性有机污染物的处理. 该工艺一般利用辐射、加热或催化剂对氧化剂激活,原位生成活性氧物种. 常用的氧化剂主要有过氧化氢(H2O2),过硫酸盐(S2O82-)、和过氧单硫酸盐(HSO5−)[88-89]. 被活化后,这些氧化剂可以产生大量羟基自由基和硫酸根自由基,随后将目标污染物降解[88-89].
目前已有一系列高级氧化技术被研究用于PFASs的降解处理,包括过氧化氢光解[90]、过硫酸盐光解[91]、光催化材料催化[92]、碱性异丙醇光解[93]、光-芬顿反应[94]、热活化过硫酸盐氧化[87]和微波活化过硫酸盐氧化[95]等. 在上述体系中,PFASs受到活性氧物质进攻后可转化为氟离子、二氧化碳和短链PFCAs. Mitchell等利用Fe3+催化过氧化氢产生的羟基自由基和超氧阴离子等活性物质降解PFOA,反应2.5 h后,PFOA的降解率达到89 %[96]. Liu等利用热活化过硫酸盐降解PFOA,在85 ℃的反应条件下,0.5 µmol∙L−1的PFOA在30 h内可完全被降解,降解产物为F−和CO2[95]. Qian等利用UV活化过硫酸盐(PS)降解PFOA,反应8 h后,85.6 %的PFOA被降解,降解速率是单独UV体系的10倍以上[97]. Lee等研究了微波水热法活化过硫酸盐降解PFOA,结果表明体系中产生的SO4−·是降解的活性物种,反应2 h后,PFOA降解率达100 %[98]. 另外,超声处理[99]也被用于降解污水中的PFOA和PFOS,在实验室条件下使这些化合物的矿化率达到100%. 上述的一些工艺几乎可以实现对水中PFASs的完全去除或降解. 然而,值得注意的是,这些研究大多是在实验室条件下进行的(例如,高PFASs浓度、高辐射源、高温和高压). 目前,这类技术对实际PFASs污染水体的去除效果研究依然有限,因此亟需在上述技术体系中开展更多在实际浓度(<1000 ng·L−1)以及真实自然环境条件下的研究[8],此外,降解技术的应用成本问题也需被考虑在内. 而且,目前主要研究对象为PFOA和PFOS,而对PFASs前体物质的关注较少,在后续的研究中PFASs前体物质在上述氧化工艺中的转化和归趋也应被关注和研究.
-
由于氟原子具有极高的电负性,很难被氧化性自由基进攻降解,但可以通过吸收一个电子发生还原降解,从而通过还原反应实现PFASs的高效降解. 近年来,还原技术对PFASs的降解效率和机制被广泛研究,主要利用水合电子(eaq−),零价铁等强还原性活性物种降解污染物. 水合电子(eaq−)是目前研究较多的体系,Song等利用紫外(254 nm)激发亚硫酸盐还原降解PFOA,反应24 h,PFOA的降解率达到100%,脱氟率达到88.5%,并且PFOA的降解脱氟速率随着亚硫酸盐浓度的增加而增加[100]. Michael等研究了34种代表性PFASs在紫外线产生的水合电子作用下发生脱氟的构效关系,发现大多数PFASs不能完全脱氟,但TFA的脱氟率达到100%,由此阐明了PFASs的降解机制[101]. 该课题组进一步研究发现,在pH=12的紫外/亚硫酸盐体系下,C3—C9的PFCAs的脱氟率可提高至73%—93%[102]. Tian和Chen等利用UV/吲哚乙酸(IAA)/阳离子表面活性剂改性的蒙脱石体系成功实现了对PFASs的先吸附后降解,反应至5 h,即可实现PFOA的完全降解,反应至10 h,即可以实现90%以上的脱氟率[103],并且由于有机黏土的保护作用,该体系可以直接在好氧、中性条件下应用. 在此基础上,Chen等开发了一种三元自组装胶束体系,该体系中,研究人员使用CTAB将IAA和PFASs组装到一起,实现了在较宽pH范围(4—10)内的PFASs高效降解和脱氟[104]. 进一步简化该体系,Chen等研发了一种更为简单的二元复合体系,即直接利用可与PFASs形成氢键作用的水合电子源物质吲哚直接降解PFASs,在环境状态及较宽的pH范围(4—10)内均实现了对PFASs的高效降解脱氟[104]. 除了水合电子,零价铁(ZVI)对PFASs的还原降解过程也被研究. 在近年的一项研究中,Arvaniti等研究了商用纳米ZVI(nZVI)、无涂层和有镁-氨基黏土涂层的nZVI对水中几种PFASs的去除情况. 在酸性条件(pH=3)、低温(20 ℃)条件下,有镁-氨基黏土涂层的nZVI存在时,观察到较高的PFASs去除率(38%—96%). 质量平衡实验表明,包覆的nZVI对PFASs的去除是由于吸附和降解两种机制[105].
以上主要总结归纳了PFASs的物理(吸附、过滤)和化学(氧化、还原)去除技术,尽管已报导的实验模拟结果较好,但距离实际应用还有一段很长的路要走. 物理吸附技术因成本低廉、能耗较低、操作简单且适用于较宽浓度范围的PFASs而被广泛研究,但吸附时间较长、选择性差、再生能力弱、吸附后的污染物仍需二次处理等问题也限制了其进一步的实际应用;使用纳滤或反渗透可以几乎完全去除溶液中的PFASs,但对于工艺要求较高,膜过滤技术也会产生大量尾水,含污染物的尾水也需要进一步处理;由于C—F键的高键能以及F的高电负性,PFASs对多数化学氧化技术表现出排斥性,且技术本身也易受复杂环境的干扰,超声、微波等技术能否应用于实际场地修复还有待优化研究;化学还原技术作为一种新型污水处理技术,能够对PFASs进行矿化处理,但目前应用最多的水合电子还原技术极易被氧化,需要控制碱性、厌氧等严苛的反应条件,大多数技术无法满足实际场地修复的要求. 因此开发在污水处理厂量级的处理规模下以及自然温和条件下,高效稳定去除PFASs的方法至关重要.
-
本文总结归纳了污水处理厂进水、出水和活性污泥中PFASs的赋存和浓度水平,以及多种工艺技术对PFASs的去除效率. 目前关于市政污水处理系统中不同处理段PFASs监测研究较多,但它们在废水处理过程中的转化形成机制研究较少,特别是对于一些新型PFASs和PFASs前体物质浓度水平、生化转化过程的研究依然匮乏. 此外,针对这类物质在污水处理厂中发生的二次转移的研究目前尚未开展,如活性污泥在浓缩、消化和脱水过程中PFASs的浸出、残留和迁移规律尚不清楚. 因此,进一步研究污泥处理过程中PFASs的迁移转化规律对于更好地理解PFASs在市政污水处理过程中的生命周期变化具有重要意义.
长链PFASs倾向于积累到污泥中,但目前研究仅关注PFASs在活性污泥中的吸附,而对于其在污泥厌氧消化和其他稳定化过程中的转化研究依然缺乏,未来的研究可更多关注并寻找能够降解这些化合物的厌氧微生物上.
尽管一些先进技术已用于去除水体中的PFASs,但目前为还无法从经济和技术效率等多方面对这类技术进行全面评估. 此外,还需要进一步开发在污水处理厂量级的处理规模下以及自然温和条件下,高效稳定去除PFASs的方法. 在真实的自然环境中,存在各种有机物(如腐殖质、脂类和蛋白质、天然有机物)和无机离子(阳离子、阴离子和共聚物),而且存在多种不同种类PFASs和前体物质,这些因素对去除技术的综合影响需要进一步研究. 同时,在降解过程中,目前只鉴定出部分生成的副产物,而针对一些挥发性和非挥发性副产物的研究非常有限. 因此,后续研究应该更多关注不同工艺中PFASs的转化产物及其毒性.
市政污水处理系统中不同工艺段多氟/全氟烷基化合物(PFASs)的赋存、转化和去除
Review on the occurrence, transformation and removal of per- and polyfluoroalkyl substances (PFASs) in different process segments of sewage wastewater treatment systems
-
摘要: 全氟烷基化合物(per- and polyfluoroalkyl substances,PFASs)是一类由有机氟疏水烷基链和亲水端基组成的人工合成化合物. 由于它们在工业生产和生活中的广泛使用,在过去的几十年中,它们在全球污水处理厂中均被检出. 目前,关于市政污水处理系统中PFASs的研究主要包括赋存水平、转化过程和去除技术三方面. 本文系统概括了多种PFASs在市政污水处理系统不同工艺段中的赋存、转化和去除情况,并对不同工艺段PFASs的赋存和转化规律进行了深入讨论. 分析了PFASs的结构特征对于其在市政污水处理系统不同工艺段赋存、转化和去除的影响机制. 基于此,提出了目前研究所面临的问题和未来研究需要重点考虑的方向. 同时,总结归纳了不同水处理技术对PFASs的去除效率,以及现有技术所存在的问题、面临的挑战以及未来的发展前景,以期为后续研究提供参考.Abstract: Per- and polyfluoroalkyl substances (PFASs) are a class of synthetic compounds composed of organofluorine hydrophobic alkyl chain and a hydrophilic ionic functional group. Due to their widespread use in industry production and our lives, PFASs have been detected in sewage treatment plants around the world. At present, the research on PFASs in municipal sewage plants mainly focuses occurrence concentrations, transformation processes and removal technologies. In this study, we systematically summarize the fate, transformation and removal of various PFASs municipal sewage treatment plants, and the PFASs occurrence and transformation in different process segments were also discussed. The influence from the PFASs structure characteristics on their occurrence, transformation and removal in sewage treatment plants were also analyzed. Based on these, we summarized the major problems in current studies and the further studying directions were also proposed for next studies. At the same time, the PFASs removal efficiency in different water treatment technologies were summarized, as well as the problems, challenges and the future development prospects of the existing technologies. We expected this study could provide a reference for the subsequent research.
-
石油是人类重要的能源和工业原料. 在石油的开采、运输和炼制过程中,会不可避免地发生泄漏. 海洋作为石油运输的重要通道及陆源污染物的汇集地,石油污染风险较高. 曾发生过如“埃克森·瓦尔迪兹号(Exxon Valdez)”溢油、“深水地平线(Deepwater Horizon)”溢油、“河北精神号(Hebei Spirit)”溢油、“桑吉轮(Sanchi)”溢油、“蓬莱19-3溢油”、“11·22中石化东黄输油管道泄漏事故”、“交响乐轮(Symphony)”溢油等溢油事故,海洋石油污染伴随着人类社会经济的发展. 石油是含有多种烃类的混合物,在短期和长期时间内都可对海洋生态系统造成严重危害. 溢油初期的大量泄露会引起浮游类生物、鱼类、鸟类的死亡[1-2]. 而长期存在于海洋环境的石油烃(如多环芳烃类),会对海洋植物-红树林造成基因水平上的损伤[3],会改变海洋生物体内激素水平而引起死亡[4]. 在溢油污染发生后,有效的处理技术或方法能够减轻石油污染对海洋环境的影响.
当前,海洋石油污染去除主要通过化学、物理、生物等技术方法,包括分散剂、凝油剂、原位燃烧、围油栏、撇油器、吸附材料以及生物修复等. 在溢油事故应急处理中,喷洒分散剂往往是采取较多的处理方式. 但分散剂的使用并不能直接去除海洋中的石油,而是通过自身的分子特性将水面的油分散成油滴进入水相. 另外,大量的使用致使分散剂成分长时间滞留于海洋环境中,从而造成二次污染. 当采用燃烧法对水面石油进行燃烧时,会向大气中释放大量的黑碳并会再次沉积到海底[5];另外,燃烧过程中会产生大量的二噁英和呋喃等有毒物[6]. 围油栏和撇油器等机械设备能够阻止水面浮油的扩散并进行回收,且不会对环境造成二次污染,但易受天气和海况影响. 生物修复技术是依靠微生物的新陈代谢从而降解石油污染物,其修复过程较为漫长,一般作为末端处理措施使用[7].
吸附是一种经济、简单直接的处理方法,能够弥补上述处理措施存在的缺陷和不足. 用于吸附溢油的材料主要包括天然有机、合成有机以及无机材料. 天然有机吸附剂,来源广泛、简单易得且生物降解性强. 作为天然有机吸附剂之一的碳材料由于其具备孔隙发达、比表面积大等优点近年来得到了较多的关注,其中最具代表性的就是生物炭. 生物炭具有适应性强、原料广泛、制备简单等特点,且在吸附石油后可作为燃料直接燃烧产能.
生物炭起源于亚马逊盆地发现的一种黝黑且肥沃的土壤—“Terra Preta”,其意为“黑土”. “Terra Preta”土壤保持较高肥沃性的原因是其中含有大量的“木炭”类物质,后经科学家研究将其称为“生物炭”. 生物炭是通过在缺氧环境中加热而形成的富含碳的固体物质,原料来源包含植物、粪便、活性污泥、废弃物等[8]. 生物炭的理化性质主要受原料类型和制备条件的影响. 总的来说生物炭具有孔隙度高、比表面积大、阳离子交换量高、结构稳定、原料易得、成本低等优点[9]. 因此,生物炭成为了近年来的研究热点,关于生物炭的文章也越来越多(图1). 生物炭作为一种较理想的吸附剂常用于去除环境中的各类污染物,例如重金属、农药、抗生素、油类等[8]. 其次,生物炭在用于土壤时可保持土壤肥力,改善土壤物理性质,提高农作物产量,减少氮排放[10]. 另外,作为减少全球废弃物碳足迹的有效策略,将固体废弃物转化为生物炭,能够减少温室气体排放,实现碳封存,有利于促进循环经济发展[11].
为适应应用时不同的环境条件,通常会对生物炭进行改性处理,提高其使用性能. 在已有的研究中,常采用酸碱、氧化剂、金属及有机物改性等方法对其进行处理[12]. 尤其,在利用生物炭从水环境中去除有机污染物时,其去除效果主要是由表面疏水性决定的. 因此,往往会对生物炭进行疏水化处理,增强生物炭和目标污染物之间的相互作用,从而提高吸附效率. 生物炭在石油烃污染修复方面,除了作为吸附剂外,还可利用自身多孔的性质固定化石油烃降解菌去除污染物. 此外,生物炭表面丰富的官能团及营养元素还可刺激本土微生物,增强其代谢活性,有利于污染物的去除[13].
相较于在其他污染物治理方面的应用,生物炭在海洋环境石油污染修复方面受到的关注较少. 在海洋环境日益恶化的背景下,具有诸多优异性能的生物炭在去除海洋石油污染方面将具有广泛的发展空间. 因此,本文将针对生物炭在治理海洋石油污染方面的研究进行综述,详细介绍生物炭的制备过程及影响因素、生物炭的改性或功能化方法以及在海洋溢油治理中的各种应用. 本文将有利于提高人们对生物炭在海洋溢油修复领域的认知和了解.
1. 生物炭(Biochar)
1.1 生物炭的定义
生物炭,英文名为“Biochar”,Bio- 意思是“生物的”,与英文单字“char”共同组成biochar. 一般来说,生物炭是在缺氧或无氧条件下热解生物质而得到的富含碳的多孔固体[14]. 而有些学者认为生物炭是在缺氧条件下热处理生物质后留下的一种稳定的、富含碳的多孔产品[15]. 两种定义的区别是对于制备过程描述的差异,前者强调的是热解,而后者则是热处理. 例如,有学者认为水热法作为热处理的一种方式,在对生物质进行水热处理之后,得到的生物炭称为“水热炭”(Hydrochar)[16]. 生物炭的概念上存在一定的争议,广义上来说生物炭是热处理生物质得到的,狭义上的生物炭指的是热解后的固体产物. 上述的两种定义都是从制备原料和制备方法进行的总结或概括,而有些学者在此定义基础上补充了制备温度的范围,进一步细化了生物炭的概念范围. 例如,300 ℃以下烘焙得到的固态产物碳含量较低,其颜色往往也未黑化,不是富碳材料,故不可称为“生物炭”[16]. 但目前仍有研究者称此类物质为生物炭. 此外,盛奎川等[17]对生物炭概念进行解释和辨析时认为还应该从生物炭的用途方面思考,其应用应该是绿色且有利于环境的;例如,传统的木炭、竹炭等用作能源的燃料炭不应归入生物炭范畴.
从上述的讨论可以看出,目前学者们对于生物炭的概念存在一定的争议,目前的定义也只是相对准确的总结性概念,并不能完全精确地说明什么是生物炭. 笔者认为在对于生物炭范围的划分上,除了基础的制备原料、制备方式、制备温度以及应用范围等方面,还应该更多地从生物炭本身的性质上进行规定,例如:含水率、含碳量、结构特点等. 这样一个包含全过程的概念才是准确的.
1.2 原料来源
生物炭的定义中准确地描述了其来源是生物质. 适用于制备生物炭的生物质主要包括:农林业废弃物、固体废物、动物粪便及遗体、活性污泥及海洋甲壳类躯体等(图2). 不同原料制备出的生物炭理化性质会存在某些差异. 含有较多高挥发性含量的原料会导致较低的生物炭产量. 相同热解条件下,玉米秸秆、稻壳等原料的纤维素和半纤维素含量高,木质素含量低,其生物炭产量相应的就低;与之相反的类似于竹子、木材等原料木质素含变量高,其生物炭产量较高. 此外,原料中元素比例的不同,导致最终的生物炭中的元素比例较大差异;例如秸秆生物炭中的钾含量(961 mg·kg−1)高于木材生物炭(394 mg·kg−1)[18].
2. 生物炭的制备(Preparation of biochar)
2.1 生物炭制备方法
随着生物炭的不断应用,各种热化学方法被开发用来制备生物炭,主要包含热解、气化、水热炭化等. 热解是在300—900℃的进行的,需要缺氧或无氧环境,其主要目标产物就是生物炭. 气化是通过气化剂(一般为空气、氧气、蒸汽等)进行部分氧化原料. 相较于热解处理,气化往往需要更高的温度,其目标产物主要是气体产物,得到的固体产物相对较少[20]. 水热炭化则是将原料与水在反应器内混合,然后升高温度和压力,其温度往往高于250 ℃,得到的水热炭具有更多的表面含氧官能团及营养物质[21].
由于学者们对生物炭定义具有不同的阐述,进而对生物炭的制备方法也产生了不同的见解. 部分学者认为生物炭的制备工艺是热解,而气化和水热处理得到的碳材料不符合生物炭定义[22]. 实际上,气化或者水热处理其根本都是利用高温热分解原料的组分,其外部环境虽能改变生物炭的部分理化性质但并不能对其结构起决定性作用. 因此,笔者认为气化炭和水热炭同样属于生物炭的范畴.
在众多方法中,热解是最普遍应用的的生物炭制备技术. 在生物炭热解过程中,会产生固、液、气的3种产物,分别对应着生物炭、生物油以及合成气. 生物炭顾名思义就是以碳元素为主体,富含氮磷氧等其他元素的黑色固体;生物油是此过程的副产品,主要是水、羧酸、酚类、醇类、酮类、酯类等的混合物[23],可用于土壤改良,促进植物的生长[24];合成气主要是CO、CO2、CH4和H2组成的混合气体. 热解一般包括快速热解和慢速热解. 快速热解是在温度达到预定值后将原料加入反应器,短暂停留数秒;慢速热解是在开始升温时就将原料置于反应器中,整个过程往往持续数个小时. 快速热解相较于慢速热解而言,通常液体产物生物油较多,而气体和生物炭产量较低[25-26]. 此外,微波热解成为了制备生物炭的新技术,不同于传统热解的热量传递方式,微波穿透生物质表面在其内部转化为热能[27].
2.2 生物炭制备过程的影响因素
慢速热解工艺具有生物炭产量高、设备要求低、易操作等特点,是生物炭制备最常用的方法. 在制备过程中,生物炭性质主要受原料、升温速率、热解温度以及热解时间影响,特别是原料和热解温度影响最为显著.
生物炭的原料来源广泛,各类生物质间差异较大,不同原料具有不同的元素及组成特点,从而生产出的生物炭性质各不相同. 相较于植物衍生的生物炭,动物粪便制备的生物炭具有更多的氮磷营养元素、更高的金属吸附能力,可用于土壤增肥和改良修复[28-29]. 总之,不同原料制成的生物炭具有不同的表面积、孔隙率和有机官能团等特性.
升温速率一定程度上决定着生物炭的产量,较高的升温速率下热解会产生大量的液体和气体,减小生物炭的产量. 热解温度则影响生物质热解时内部组分的挥发。低温下轻挥发物易挥发,而分子量较大、较复杂的组分难以热解挥发. 较高的热解温度会增加生物炭的表面积、碳化程度以及芳香性[30],但伴随而来的是较低的生物炭产量. 生物质的热解过程主要分为3个阶段. 第一阶段是内部水分和轻挥发物的蒸发,温度一般低于200 ℃;第二阶段是半纤维素和纤维素等聚合物的分解和挥发,温度主要在200—500 ℃;第三阶段是在高温下(500 ℃以上)木质素等较复杂的有机物缓慢分解挥发[31]. 以植物生物质为例,在较低温度下获得的具有较低芳香性的生物炭主要由木质素和纤维素组成,而在较高温度下获得的生物炭是一种极性较低的富含芳香族化合物的材料[32]. 此外,高热解温度会增加生物炭中钙、磷元素含量、pH以及C/O比,并致使其逐渐石墨化. 但对于主要以轻挥发物为主的原料,较高的热解温度会破坏生物炭的孔隙结构,导致生物炭的大孔结构坍塌. 低温下,较长的停留时间是生物炭产量的保障. 停留时间对生物炭的孔隙率及表面积影响较大,但其具体的影响主要取决于原料和热解温度.
3. 生物炭在海洋石油污染修复中的应用(Application of biochar in remediation of marine oil pollution)
将大量的废弃生物质或固体废弃物转化为生物炭是实现碳封存的一项重要措施. 同时,生物炭具有孔隙结构发达、比表面积高、表面官能团丰富等特点,被广泛应用于环境修复研究中. 海洋石油污染是人类开发和利用海洋过程中不可避免的一个重要环境问题,而石油烃长期存在于海洋环境中会对海洋生态系统造成严重影响. 由于生物炭的多功能性和环境友好性,逐渐被开发利用于海洋石油烃污染的修复研究中.
3.1 溢油吸附
吸附是溢油应急处理中有效的措施之一. 生物炭具有较强的吸附能力、良好的疏水性以及安全性. 生物炭作为吸附剂处理溢油逐渐被开发. 此外,生物炭在吸附溢油后形成“油炭”,可直接进行燃烧产生热量. 生物炭的孔结构、表面疏水性决定了其在水面溢油吸附中的优异性能. 生物炭发达的孔隙结构增加了其孔隙体积,为石油吸附提供了更多的吸附位点[12],一般来说大孔存在能够增加生物炭的吸油能力[33]. 生物质中的组分在经过热分解挥发后留了下大量的孔道。适宜的热解温度会产生较多的大孔结构,而过高的温度则会破坏大孔结构,从而产生较多的中孔和微孔,导致油吸附量的下降[34].
生物炭用于吸附溢油时,适宜的热解温度往往因原料的不同而不同. 一般来说农业秸秆需要较低的热解温度. 研究表明相比于550 ℃,450 ℃下制备的稻壳生物炭表现出了更高的油吸附量(3.23 g·g−1),而同样在450 ℃下制备的锯末生物炭表现出最低的吸附量(2.40 g·g−1)[35]. 张明远[36]以玉米秸秆、松木屑、玉米芯和水稻秸秆为原料,控制不同的热解温度和热解时间,得到了64种不同的生物炭. 在进行石油吸附实验后发现,热解温度和原料类型对生物炭的吸油性能影响较大,热解时间对其影响较小,其中在400 ℃下制备的玉米秸秆生物炭吸附量最大. Gheriany等[37]通过在不同温度(300—500 ℃)下将干橙皮废料转化为生物炭,并作为吸附剂进行油吸附研究,结果表明500 ℃下制备的生物炭对风化原油吸附容量为4.7 g·g−1.
疏水性作为生物炭吸油能力的另一个决定性因素,一般随着热解温度的增高而增强. 较强的疏水性能够保证生物炭在油水环境中高效地吸附石油,从而保证其吸油效率. 废弃咖啡渣(Spent coffee grounds,SCG)在经过不同的温度热解后得到的废咖啡渣生物炭(Torrefied spent coffee grounds,TSCG),其比表面积、疏水性、柴油吸附能力随烧制温度的升高而增加. 300-TSCG对柴油的吸附能力是商业活性炭(AC)的1.36倍,在吸附柴油后的油炭热值是活性炭油炭的1.23倍[38](图3). 泥炭由植物聚合物(如纤维素)和分解的植物材料(如腐植酸)组成,将其热解转化为泥炭生物炭后,同样也表现出了较强的疏水性、更多的空腔以及更大的原油吸附量[39].
除了常见的植物生物质外,海洋生物的躯壳也被用来制备生物炭作为溢油吸附剂. 赵莹莹[40]以虾壳、蟹壳及蛤蜊壳为原料制备出36种生物炭. 经过比较发现热解温度通过影响生物炭的比表面积、芳香性和疏水性而决定着生物炭的吸油性能. 热解温度和原料对生物炭油吸附量的影响本质上是影响了生物炭内部的孔隙结构及疏水性.
原始生物炭用于溢油吸附时,自身的局限性阻碍了其进一步的应用. 因此,为了调节生物炭的性质,多种方法被用来改性生物炭. 酸改性能够改变生物炭的疏水性,增加生物炭表面官能团的数量,增加比表面积,从而提供良好的疏水吸附点位[41]. 孟蒙蒙等[42]采用盐酸对松木屑生物炭进行改性,在5 mol·L−1的浓度下获得的生物炭对海水中的石油吸附量最大. 原始的生物炭在吸附油后,其分离回收是需要面对的难题. 针对此情况,磁改性生物炭得到研究,以解决复杂环境下分离回收的问题,提高应急处理效率. 高温制备得到的磁性裙带菜生物炭在经过KOH活化后具有丰富的孔隙结构和较大的比表面积,投加量为0.1 g时对柴油的吸附量最高,且在5次循环实验后吸附量依旧保持较高吸附量,具有良好的循环稳定性和可重复使用性[43]. 类似地,赵莹莹[40]将虾壳生物炭(450 ℃)与Fe2+和Fe3+溶液混合后制备得到负载Fe3O4的磁性虾壳生物炭(MSS450),经5个循环周期MSS450对石油的吸附率仅下降10%左右,具有一定的循环利用性.
生物炭在水环境中吸附溢油时,自身一定的亲水性会导致下沉现象的出现,尤其是在海洋动力条件的干扰. 亲水性会导致生物炭与油类之间的疏水作用力减弱,生物炭对水的吸附量增加,油的空间吸附点位减少,从而减小油类的吸附量. 因此,生物炭的疏水化处理能够增强在水环境中对石油的吸附. Gurav等[44]在300 ℃、500 ℃、700 ℃下以松木木屑为原料烧制了生物炭,随着热解温度从350 ℃增加到700 ℃,形成了由大孔(5—20 μm)组成的多孔结构. 采用天然椰子油对高温(700 ℃)制备的松木生物炭进行改性,高温生物炭与椰子油中的脂肪酸的高结合率使其具有优异的疏水性(水接触角133.5°),并且可在60 min内实现对原油5.315 g·g−1的吸附量. Navarathna等[45]在900 ℃下采用快速热解制备了松木生物炭,并进行了改性形成了5种不同的生物炭:原始生物炭(BC)、月桂酸改性生物炭(LBC)、磁性氧化铁生物炭(MBC)、磁性月桂酸生物炭(LMBC)以及月桂酸磁性生物炭(MLBC). 经过月桂酸改性后的生物炭,疏水性均得到了提高. 4种改性后生物炭在海水环境中对原油的吸附量分别为9.4、3.31、5.70、6.18 g·g−1(图4).
图 4 用Fe3O4制备磁化(a),月桂酸修饰生物炭(b),BC、LBC、MBC、LMBC、MLBC 和含油LBC的SEM照片(c),BC、LBC、MBC、LMBC、MLBC对原油的吸收(d)以及温度对原油吸附的影响(e)[45]Figure 4. Preparation of Magnetization BC with Fe3O4(a), Lauric acid decoration of BC (b), SEM micrographs of BC, LBC, MBC, LMBC, MLBC, and oil-laden LBC (c), Crude oil uptake by BC, LBC, MBC, LMBC, and MLBC (d), and temperature dependence of crude oil uptake (e)[45]除颗粒状的生物炭外,三维生物炭基气凝胶因其低密度、高比表面积、孔结构发达等特点也受到了广泛的关注. Yang等[46]使用一次性竹筷通过简单的水热碳化工艺制备多功能碳纤维(MCF)气凝胶,除了超轻和优异的热稳定性外,MCF气凝胶还表现出出色的疏水性,气凝胶与水之间的接触角为(145±2)°. MCF气凝胶对油类和有机液体具有中等吸附能力. 类似地,通过热解由木棉纤维(KFs)组成的气凝胶来制造生物炭基气凝胶(图5). 与常用的冷冻干燥方法不同,将抽滤后的纤维素直接通过在烘箱中干燥形成KF气凝胶,然后在N2氛围下1000 ℃热解得到生物炭气凝胶. 该生物炭基气凝胶展现出疏水/超亲油性,水接触角达到142°,并对各类有机溶剂具有良好的吸附效果[47].
经过热解后形成的生物炭对油类及有机溶剂类展现出了较强的吸附能力,这主要和生物炭的多孔性及疏水性有关系. 疏水改性后,在水环境中保证了生物炭水面溢油的吸附效果. 经过一系列的前处理后,通过热解将生物质转变为生物炭气凝胶,重量轻、比表面积大、孔隙率高的特性能够保证生物炭气凝胶能够吸附高于自身重量数十倍乃至数百倍质量的油类(表1). 另外,对于生物炭、改性生物炭及衍生气凝胶等材料对油类的吸附能力,其吸附量和油品类型黏度和密度有关系. 综合来看,生物炭基材料对油类的吸附机理主要是孔隙填充、疏水作用力、静电吸附力、氢键作用力及π-π电子作用力等(图6). 孔隙填充和疏水作用力是其中最主要的两种机制,表面较强的疏水亲油性提高了表面对油类的吸附作用,保证了油分子被生物炭材料不断地吸收、扩散到内部孔孔隙中. 一般来说,较高的热解温度能够导致更高的孔隙率,提高生物炭材料的吸附效率,这也是高温下制备的生物炭具有较高吸附量的原因[48]. 如果油类中存在带正电的组分,会与带负电的生物炭产生静电作用,增强对油的吸附能力[49]. 氢键是在油的极性组分(尤其是树脂和沥青质)和生物炭的—COOH、—OH等含氧官能团之间形成的[50]. 此外,在较高温度下制备出的生物炭材料会含有富电子石墨烯层与油中的缺电子成分形成π-π电子作用力[51].
表 1 不同生物质原料的生物炭气凝胶的吸油能力Table 1. Oil sorption capacities of biochar aerogels derived from different biomass feedstock.原料Feedstock 制备工艺Synthesis process 水接触角Water contact angle 油污Oil contaminants 吸附容量/(g·g−1)Sorption capacity 参考文献Reference 香蒲 亚氯酸钠处理,圆柱形模具,过滤,干燥,热解 151.0° 油和有机试剂 42.0—160.0 [52] 剑麻叶片 碱化和漂白处理,冻干纤维素,碳化 158.0° 油、有机试剂 77.7—147.3 [53] 甘蔗残渣 冷冻干燥,碳化 134.6° 有机试剂 31.9—55.02 [54] 玉米苞叶 碱化,漂白,冷冻干燥,碳化 152.0° 油、有机试剂 77.67—143.63 [55] 废弃榴莲壳 切割,水热处理,热解 112.3° 油、有机试剂 3.24—19.28 [56] 废弃报纸 冷冻干燥,热解 132.0° 油、有机试剂 29.0—51.0 [57] 香蕉皮和废报纸 冷冻干燥,热解 149.3° 油、有机试剂 35.0—115.0 [58] 3.2 沉积物烃类污染的封存及修复
海洋环境被污染后,污染物在经过一系列的物理化学及生物作用后最终会汇集在沉积物中,石油烃污染也不例外. 海洋沉积物会成为石油污染的源和汇,在一定的海洋环境条件下,石油烃会再次释放. 多环芳烃是在沉积物中存在较多的一种石油烃污染物,具有环境持久性和致癌性,长时间的积累会对生态环境造成严重影响. 原位封盖是一种经济可行的污染沉积物修复技术,可有效隔离污染物,减少它们的最大通量,从而延迟它们向开阔水域的释放[60]. Silvani等[61]研究了将生物炭作为封盖材料对溢油沉积物的封盖效果,并将其性能与活性炭和有机粘土进行了比较(图7). 结果表明,生物炭显示出比活性炭和有机粘土更高的封盖效率. 1个月后,活性炭、有机黏土和生物炭盖层材料中的孔隙水中蒽浓度分别降低了69%、56%和99%.
生物炭具有较大的比表面积和丰富的官能团,对各类有机污染物具有较高的吸附潜力[62]. Jia等[63]在联合植物和生物炭修复红树林沉积物中多环芳烃污染时发现,生物炭的应用显着增加了沉积物中多环芳烃的吸附且与热解温度之间存在显著相关性,降低了植物组织中PAHs的生物利用度. 此外,研究人员还指出:在沉积物中,生物炭可以通过氧化还原反应加速有机底物的还原[64],它可以作为生物地球化学和污染物氧化还原反应的催化剂[65]. Gomez-Eyles等[66]在用松木生物炭作为改良剂评估在降低多环芳烃和多氯联苯污染的沉积物中的生物利用度有效性时,发现其大大降低了沉积物中多氯联苯和多氯环芳烃孔隙水浓度(>95%)和生物累积量(>93%).
3.3 固定微生物去除石油烃
生物炭多孔的结构、富含各类营养元素、具有环境友好性,因此被用于固定石油烃降解菌修复环境中的石油烃污染. 生物炭能够对固定的石油烃降解菌起到保护作用,提供微生物生长所必须的营养元素,提高微生物对环境的耐受性,提供一定的生态位. Zhang等[67]将耐盐石油烃降解菌Corynebacterium variabile HRJ4固定于生物炭上用于石油烃降解,7 d后对总石油烃达到了78.9%的降解效果. 类似地,Chen等[68]将Acinetobacter venetianus固定于竹炭上,并进行了柴油降解实验. 在为期3 d的时间内,与游离培养降解实验(82%)相比,固定在竹炭上的菌在降解柴油方面表现出更高的效率(94%). 扫描电子显微镜(SEM)显示,通过吸附作用菌体很好地附着在竹炭的空腔中. Zhou等[69]从海洋冷泉区分离出一种产生生物表面活性剂的石油烃降解菌Vibrio sp(LQ2). 生物炭固定LQ2后,通过吸附和生物降解在7 d内去除柴油的效率达到94.7%,远高于游离细胞培养的降解率(54.4%)(图8). 此外,随着固定化LQ2的加入,微生物的生长和活性大大增强,与游离细胞处理相比,固定化LQ2中的降解相关基因alkB和CYP450-1分别高出3.8倍和15.2倍.
4. 总结与展望(Conclusions and future perspectives)
本文综述了生物炭材料在海洋石油污染处理修复中的研究进展. 首先对生物炭的定义和原料来源进行了讨论,重点阐述了目前关于生物炭定义存在的争议,并在文中提出了笔者的观点. 其次,针对目前生物炭的主要制备工艺进行了总结,主要分为热解、气化以及水热炭化,并讨论了各自的优缺点. 随后概述了生物炭制备过程中的主要影响因素,主要包含原料类型、升温速率、热解温度和热解时间,其中最为关键的是原料类型和热解温度,并对上述因素如何影响生物炭性质进行了讨论. 最后本文重点回顾了基于生物炭材料在海洋石油污染修复中的应用. 其中,包括生物炭材料对溢油的吸附、生物炭对石油污染沉积物中烃类的封存和修复以及生物炭固定微生物降解石油烃污染物. 当前,生物炭在海洋石油污染修复领域的研究及应用逐渐增多,但在制备和应用的过程中还应重点关注以下几点:
(1) 生物炭材料在海洋溢油中的大规模实际应用试验需要研究开展,这对其未来的研究和发展至关重要.
(2) 生物炭材料的改性方法应进一步优化,减少过程中化学药剂的使用,或多采用环境友好型试剂.
(3) 进一步明确生物炭制备过程对于石油烃吸附性能的影响和机质.
(4) 生物炭热解过程中会产生一些有害物质,因此其在水环境中的安全性评估有待研究.
(5) 在海洋环境中使用生物炭修复石油烃时,有意或无意地会导致生物炭进入水体和沉积物中,而生物炭对石油烃污染海洋环境的生态效应以及在沉积物的固碳作用有待评价和研究.
(6) 生物炭作为固定化材料时除起到载体作用外,自身含有的丰富的营养元素可以促进微生物的生长. 因此,可进一步开发生物炭作为微生物营养肥料的潜力.
-
表 1 不同地区污水处理厂进水、二沉池出水(ng·L−1)以及污泥(ng·g−1)中检测到的PFASs浓度汇总
Table 1. Summary of PFASs concentrations detected in influent,secondary treated wastewater ( ng·L−1), and in sewage sludge ( ng·L−1) in Sewage Treatment Plants worldwide.
位置Location PFCAs PFASs PFSAsPFOSA 文献Ref. C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C4 C6 C7 C8 C10 北美 二沉池出水(美国,纽约) — — — 66—398 4—376 <2.5—47 <2.5—10 未检出 — 未检出 — <2.5—39 — 4.0—68 — 未检出 [13] 进水(美国) — 8.3—31 <25 1.7—49 <7.3 <1.7 — — — — <27 2.3—12 — 1.4—400 <9.3 <5.5 [19] 二沉池出水(美国) — <18 <23 2.5—97 <6.1 <28 — — — — <20 <17 — 1.1—130 未检出 <10 进水(美国,肯塔基) — — — 22—184 2.7—6.2 0.17—1.4 <0.5—1.9 <0.5 — — — 2.6—6.1 — 7.0—16 — 0.29—1.9 [20] 二沉池出水(美国,肯塔基) — — — 122—183 2.4—9.5 0.64—7.9 <0.5 <0.5 — — — 6.3—9.5 — 8.0—28 — 1.7—2.5 污水污泥(美国,肯塔基) — — — 8.3—219 <2.5—4.4 <2.5—34 <2.5—7.7 <2.5—10 — — — <2.5 — 8.2—110 — <2.5—34 二沉池出水(美国,加州) — — 5.6—21 12—180 <10—32 <11 — — — — — 6.5—24 — 20—190 — 2.1—4.8 [21] 二沉池出水(加拿大) — — — 5.8—180 <4.2 <3.2 — <0.085 — — — — — <72 — — [22] 欧洲 进水(丹麦) — — — <2.0—23.5 <0.8—8.4 <1.6 — — — — — <0.2—32.8 — <1.5—10.1 — <0.2—1.0 [23] 二沉池出水(丹麦) — — — <2.0—24.4 <0.8—3.1 <1.6—3.6 — — — — — <0.2—2.7 — <1.5—18.1 — <0.2—2.1 污水污泥(丹麦) — — — 0.7—19.7 0.4—8.0 1.2—32.0 — — — — — 0.4—10.7 — 4.8—74.1 — 0.5—3.6 二沉池出水(德国) 1.5—40.9 3.7—57.4 1.6—15.7 12.3—77.6 1.0—18.6 0.9—34.5 <0.04—8.8 <0.01—0.5 <0.02—0.4 — 1.8—25.9 0.6—6.3 <0.08—0.5 <0.6—82.2 — 0.3—1.1 [24] 污水污泥(瑞士) — <5 未检出 <17 1.0—2.0 1.0—13 1.0—6 1.0—12 <9 <8 — 未检出 — 15—600 <35 — [25] 进水(希腊) 8.4—52.5 未检出 <5.2 <6.3 未检出 <33.5 <55.2 <82.6 <453.0 未检出 未检出 <20.7 <19.6 1.0—6.3 <107.4 <14.0 [26] 二沉池出水(希腊) 3.2—160.3 <2.2 <4.4 <12.7 未检出 未检出 <5.9 未检出 未检出 未检出 未检出 <2.3 <0.45 <0.45 1.1—4.6 <2.5 进水(西班牙) 9.35 1.07 13.0 22.4 21.2 0.58 12.9 13.8 13.2 0.02 19.1 41.9 8.83 78.1 未检出 615 [27] 二沉池出水(西班牙) 14.5 17.5 7.48 14.9 33.7 21.6 5.62 13.3 0.02 0.02 57.9 37.7 2.91 91.0 未检出 0.2 污水污泥(瑞士) 0.6—14 0.6—14 0.6—22 0.9—29 0.9—23 0.9—73 — — — — — — — 4.0—2440 — — [28] 亚洲 进水(韩国) — <13.4 <6.9 2.3—37.4 <25 <5.1 未检出 未检出 — — — <23 <8.2 <40 — — [29] 二沉池出水(韩国) — 1.1—14.8 <16.1 3.4—49.2 <15.8 <4.2 未检出 未检出 — — — <10.5 <0.8 0.9—8.9 — — 进水(中国香港) 6.3—8.7 1.0 未检出 未检出 未检出 未检出 未检出 未检出 未检出 未检出 1.1—2.8 未检出 未检出 29.4—49.9 未检出 未检出 [15] 二沉池出水(中国香港) 未检出 0.7—1.2 未检出 <4.1 <0.6 未检出 未检出 未检出 未检出 未检出 1.3—1.5 未检出 未检出 19—28.8 未检出 未检出 污水污泥(中国香港) 0.5—0.1 0.3—27.8 <4.0 <15.7 <23 0.3—15.2 <7.8 <8.6 0.2—19 <46 0.6—6.4 未检出 <106.6 3.1—704.9 未检出 未检出 进水(中国台湾) — 80.1—348.3 0.8—1.9 17.6—236 0.4—10.6 1.2—20.6 <0.1—83.5 <0.1 — — 3.3—16.3 6.4—14.9 — 175—216.7 — — [18] 二沉池出水(中国台湾) — 71.1—180.7 <0.1—14.5 19.3—480.3 <0.1—10.4 1.4—22.6 <0.1—4.8 <0.1—2.8 — — 2.6—960 6.3—226.7 — 162.7—563.3 — — 进水(泰国) 14.4 70.0 32.2 142.1 15.3 63.1 3.1 10.0 — — — 31.7 — 465.4 — — [14] 二沉池出水(泰国) 26.2 84.9 43.5 149.8 21.4 81.4 3.8 7.6 — — — 28.8 — 296.2 — — 污水污泥(泰国) 2.9 99.9 52.6 136.0 5.1 327.7 45.2 310.6 — — — 157.7 — 396.9 — — 进水(中国) — — <0.04—32.7 0.05—54.0 <0.06—23.8 <0.06—1.6 <0.06—1.5 — — — — <0.03—1.3 — 0.03—12.0 — — [30] 二沉池出水(中国) — — 0.03—55.2 0.09—26.2 <0.01—16.2 <0.06—2.1 <0.01—3.0 — — — — <0.03—3.4 — 0.03—7.3 — — 进水(韩国) — 41 4.7 30 3.5 3.3 1.0 <0.8 <0.5 — 7.4 7.3 — 9.0 <0.7 — [17] 二沉池出水(韩国) — 35 5.3 28 3.2 4.2 0.7 <0.8 <0.5 — 6.1 5.0 — 6.3 <0.7 — 污水污泥(韩国) — 未检出 <1.0 5.9 1.9 19 18 13 5.0 — <1.1 <1.1 — 15 <1.5 — 大洋洲 二沉池出水(澳大利亚) 4—5.7 4.4—6.3 1.2—1.5 6.7—16 1.1—1.2 1.0—1.1 — — — — 未检出 1.5—2.1 — 2.2—5.0 — — [31] — :无数据,no data 表 2 吸附作用去除PFASs汇总
Table 2. Summary of PFASs removal by adsorption processes
吸附剂类型Type of sorbent 目标化合物Target PFASs 规模Scale 初始浓度Initial Concentration 吸附机理Mechanism 吸附时间Time 吸附效率Efficiency 参考文献References 壳聚糖基分子印迹聚合物(MIP) FPOS 实验室 100 μmol·L−1 静电作用 36 h 560 μmol·g−1 [62] 交联壳聚糖微球 PFOS 实验室 372 μmol·L−1 静电作用,疏水作用 180 h 5.5 mmol·g−1 [63] DMAPAA-Q水凝胶聚合物 PFOA,PFOS,PFBA,PFBS,GenX 实验室 1000 ng·L−1 静电作用,疏水作用 < 2 h 100% [36] 聚丙烯酸树脂 PFOS 实验室 372 μmol·L−1 离子交换 160 h 4—5 mmol·g−1 [64] 阴离子交换树脂(IX) PFOA,PFOS,PFBA,PFBS 实验室 10 μg·L−1 离子交换 — > 99% [65] 碳纳米管(CNTs) PFOS 实验室 186 μmol·L−1 疏水作用 60 h 1.3 mmol·g−1 [66] 生物炭滤膜(BF) C3-C11 PFFCAs、C4,C6,C8 PFSAs、PFOS 实验室 3—5 μg·L−1 疏水作用,亲水官能团作用 22 周 73—168 ng·g−1 [67] PAC PFOA、PFOS 实验室 300 mg·L−1 疏水作用 25 h 0.9—1.1 mmol·g−1 [68] GAC PFOA、PFOS、PFPeA、PFHxA 实验室 4—18 ng·L−1 疏水作用 30 h 2.0—2.2 μg·g−1 [69] 污泥 PFOS 污水厂 146 ng·L−1 活性污泥吸附 — 94% [54] 污泥 PFHpA,PFHxS 实验室 5 μg·L−1 污水厂污泥 180 h — [70] — :无数据,no data;PAC:粉末活性炭,powdered activated carbon;GAC:颗粒活性炭,granular activated carbon. -
[1] VECITIS C D, PARK H, CHENG J, et al. Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) [J]. Frontiers of Environmental Science & Engineering in China, 2009, 3(2): 129-151. [2] HERZKE D, OLSSON E, POSNER S. Perfluoroalkyl and polyfluoroalkyl substances (PFASs) in consumer products in Norway - A pilot study [J]. Chemosphere, 2012, 88(8): 980-987. doi: 10.1016/j.chemosphere.2012.03.035 [3] RUAN Y F, LALWANI D, KWOK K Y, et al. Assessing exposure to legacy and emerging per- and polyfluoroalkyl substances via hair - The first nationwide survey in India [J]. Chemosphere, 2019, 229: 366-373. doi: 10.1016/j.chemosphere.2019.04.195 [4] Perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and their salts Scientific Opinion of the Panel on Contaminants in the Food chain [J]. EFSA Journal, 2008, 6(7): 1-131. [5] POOTHONG S, PAPADOPOULOU E, PADILLA-SÁNCHEZ J A, et al. Multiple pathways of human exposure to poly- and perfluoroalkyl substances (PFASs): From external exposure to human blood [J]. Environment International, 2020, 134: 105244. doi: 10.1016/j.envint.2019.105244 [6] PAN Y T, WANG J H, YEUNG L W Y, et al. Analysis of emerging per- and polyfluoroalkyl substances: Progress and current issues [J]. TrAC Trends in Analytical Chemistry, 2020, 124: 115481. doi: 10.1016/j.trac.2019.04.013 [7] ATEIA M, ARIFUZZAMAN M, PELLIZZERI S, et al. Cationic polymer for selective removal of GenX and short-chain PFAS from surface waters and wastewaters at ng/L levels [J]. Water Research, 2019, 163: 114874. doi: 10.1016/j.watres.2019.114874 [8] LI F, DUAN J, TIAN S T, et al. Short-chain per- and polyfluoroalkyl substances in aquatic systems: Occurrence, impacts and treatment [J]. Chemical Engineering Journal, 2020, 380: 122506. doi: 10.1016/j.cej.2019.122506 [9] BRENDEL S, FETTER É, STAUDE C, et al. Short-chain perfluoroalkyl acids: Environmental concerns and a regulatory strategy under REACH [J]. Environmental Sciences Europe, 2018, 30(1): 9. doi: 10.1186/s12302-018-0134-4 [10] ZHENG K K, LI H B, WANG S, et al. Enhanced proteins and amino acids production based on ammonia nitrogen assimilation and sludge increment by the integration of bioadsorption with anaerobic-anoxic-oxic (AAO) process [J]. Chemosphere, 2021, 280: 130721. doi: 10.1016/j.chemosphere.2021.130721 [11] ERIKSSON U, HAGLUND P, KÄRRMAN A. Contribution of precursor compounds to the release of per- and polyfluoroalkyl substances (PFASs) from waste water treatment plants (WWTPs) [J]. Journal of Environmental Sciences, 2017, 61: 80-90. doi: 10.1016/j.jes.2017.05.004 [12] 李怀波. 污水处理厂中全/多氟化合物分布特征、吸附及转化过程研究[D]. 无锡: 江南大学, 2021. LI H B. Distribution characteristics, adsorption and transformation process of per-and polyfluorinated substances in wastewater treatment plants[D]. Wuxi: Jiangnan University, 2021 (in Chinese).
[13] SINCLAIR E, KANNAN K. Mass loading and fate of perfluoroalkyl surfactants in wastewater treatment plants [J]. Environmental Science & Technology, 2006, 40(5): 1408-1414. [14] KUNACHEVA C, TANAKA S, FUJII S, et al. Mass flows of perfluorinated compounds (PFCs) in central wastewater treatment plants of industrial zones in Thailand [J]. Chemosphere, 2011, 83(6): 737-744. doi: 10.1016/j.chemosphere.2011.02.059 [15] MA R W, SHIH K. Perfluorochemicals in wastewater treatment plants and sediments in Hong Kong [J]. Environmental Pollution, 2010, 158(5): 1354-1362. doi: 10.1016/j.envpol.2010.01.013 [16] STASINAKIS A S, THOMAIDIS N S, ARVANITI O S, et al. Contribution of primary and secondary treatment on the removal of benzothiazoles, benzotriazoles, endocrine disruptors, pharmaceuticals and perfluorinated compounds in a sewage treatment plant [J]. Science of the Total Environment, 2013, 463/464: 1067-1075. doi: 10.1016/j.scitotenv.2013.06.087 [17] KIM S K, IM J K, KANG Y M, et al. Wastewater treatment plants (WWTPs)-derived national discharge loads of perfluorinated compounds (PFCs) [J]. Journal of Hazardous Materials, 2012, 201/202: 82-91. doi: 10.1016/j.jhazmat.2011.11.036 [18] LIN A Y C, PANCHANGAM S C, CIOU P S. High levels of perfluorochemicals in wastewater treatment plants and downstream rivers pose great risk to local aquatic ecosystems [J]. Chemosphere, 2010, 80(10): 1167-1174. doi: 10.1016/j.chemosphere.2010.06.018 [19] SCHULTZ M M, BAROFSKY D F, FIELD J A. Quantitative determination of fluorinated alkyl substances by large-volume-injection liquid chromatography tandem mass spectrometry-characterization of municipal wastewaters [J]. Environmental Science & Technology, 2006, 40(1): 289-295. [20] LOGANATHAN B G, SAJWAN K S, SINCLAIR E, et al. Perfluoroalkyl sulfonates and perfluorocarboxylates in two wastewater treatment facilities in Kentucky and Georgia [J]. Water Research, 2007, 41(20): 4611-4620. doi: 10.1016/j.watres.2007.06.045 [21] PLUMLEE M H, LARABEE J, REINHARD M. Perfluorochemicals in water reuse [J]. Chemosphere, 2008, 72(10): 1541-1547. doi: 10.1016/j.chemosphere.2008.04.057 [22] D'EON J C, CROZIER P W, FURDUI V I, et al. Perfluorinated phosphonic acids in Canadian surface waters and wastewater treatment plant effluent: Discovery of a new class of perfluorinated acids [J]. Environmental Toxicology and Chemistry, 2009, 28(10): 2101-2107. doi: 10.1897/09-048.1 [23] BOSSI R, STRAND J, SORTKJÆR O, et al. Perfluoroalkyl compounds in Danish wastewater treatment plants and aquatic environments [J]. Environment International, 2008, 34(4): 443-450. doi: 10.1016/j.envint.2007.10.002 [24] AHRENS L, FELIZETER S, STURM R, et al. Polyfluorinated compounds in waste water treatment plant effluents and surface waters along the River Elbe, Germany [J]. Marine Pollution Bulletin, 2009, 58(9): 1326-1333. doi: 10.1016/j.marpolbul.2009.04.028 [25] SUN H W, GERECKE A C, GIGER W, et al. Long-chain perfluorinated chemicals in digested sewage sludges in Switzerland [J]. Environmental Pollution, 2011, 159(2): 654-662. doi: 10.1016/j.envpol.2010.09.020 [26] ARVANITI O S, VENTOURI E I, STASINAKIS A S, et al. Occurrence of different classes of perfluorinated compounds in Greek wastewater treatment plants and determination of their solid-water distribution coefficients [J]. Journal of Hazardous Materials, 2012, 239/240: 24-31. doi: 10.1016/j.jhazmat.2012.02.015 [27] CAMPO J, MASIÁ A N, PICÓ Y, et al. Distribution and fate of perfluoroalkyl substances in Mediterranean Spanish sewage treatment plants [J]. Science of the Total Environment, 2014, 472: 912-922. doi: 10.1016/j.scitotenv.2013.11.056 [28] ALDER A C, van der VOET J. Occurrence and point source characterization of perfluoroalkyl acids in sewage sludge [J]. Chemosphere, 2015, 129: 62-73. doi: 10.1016/j.chemosphere.2014.07.045 [29] GUO R, SIM W J, LEE E S, et al. Evaluation of the fate of perfluoroalkyl compounds in wastewater treatment plants [J]. Water Research, 2010, 44(11): 3476-3486. doi: 10.1016/j.watres.2010.03.028 [30] PAN Y Y, SHI Y L, WANG J M, et al. Evaluation of perfluorinated compounds in seven wastewater treatment plants in Beijing urban areas [J]. Science China Chemistry, 2011, 54(3): 552-558. doi: 10.1007/s11426-010-4093-x [31] THOMPSON J, EAGLESHAM G, REUNGOAT J, et al. Removal of PFOS, PFOA and other perfluoroalkyl acids at water reclamation plants in South East Queensland Australia [J]. Chemosphere, 2011, 82(1): 9-17. doi: 10.1016/j.chemosphere.2010.10.040 [32] LENKA S P, KAH M, PADHYE L P. A review of the occurrence, transformation, and removal of poly- and perfluoroalkyl substances (PFAS) in wastewater treatment plants [J]. Water Research, 2021, 199: 117187. doi: 10.1016/j.watres.2021.117187 [33] LETCHER R J, CHU S G, SMYTH S A. Side-chain fluorinated polymer surfactants in biosolids from wastewater treatment plants [J]. Journal of Hazardous Materials, 2020, 388: 122044. doi: 10.1016/j.jhazmat.2020.122044 [34] ASKELAND M, CLARKE B O, CHEEMA S A, et al. Biochar sorption of PFOS, PFOA, PFHxS and PFHxA in two soils with contrasting texture [J]. Chemosphere, 2020, 249: 126072. doi: 10.1016/j.chemosphere.2020.126072 [35] PHONG VO H N, NGO H H, GUO W S, et al. Poly-and perfluoroalkyl substances in water and wastewater: A comprehensive review from sources to remediation [J]. Journal of Water Process Engineering, 2020, 36: 101393. doi: 10.1016/j.jwpe.2020.101393 [36] ATEIA M, MAROLI A, THARAYIL N, et al. The overlooked short- and ultrashort-chain poly- and perfluorinated substances: A review [J]. Chemosphere, 2019, 220: 866-882. doi: 10.1016/j.chemosphere.2018.12.186 [37] LEWIS M, KIM M H, WANG N, et al. Engineering artificial communities for enhanced FTOH degradation [J]. Science of the Total Environment, 2016, 572: 935-942. doi: 10.1016/j.scitotenv.2016.07.223 [38] WANG Y, CHANG W G, WANG L, et al. A review of sources, multimedia distribution and health risks of novel fluorinated alternatives [J]. Ecotoxicology and Environmental Safety, 2019, 182: 109402. doi: 10.1016/j.ecoenv.2019.109402 [39] SHENG N, PAN Y T, GUO Y, et al. Hepatotoxic effects of hexafluoropropylene oxide trimer acid (HFPO-TA), A novel perfluorooctanoic acid (PFOA) alternative, on mice [J]. Environmental Science & Technology, 2018, 52(14): 8005-8015. [40] FILIPOVIC M, BERGER U. Are perfluoroalkyl acids in waste water treatment plant effluents the result of primary emissions from the technosphere or of environmental recirculation? [J]. Chemosphere, 2015, 129: 74-80. doi: 10.1016/j.chemosphere.2014.07.082 [41] DAUCHY X, BOITEUX V, BACH C, et al. Mass flows and fate of per- and polyfluoroalkyl substances (PFASs) in the wastewater treatment plant of a fluorochemical manufacturing facility [J]. Science of the Total Environment, 2017, 576: 549-558. doi: 10.1016/j.scitotenv.2016.10.130 [42] SHAN G Q, WEI M C, ZHU L Y, et al. Concentration profiles and spatial distribution of perfluoroalkyl substances in an industrial center with condensed fluorochemical facilities [J]. Science of the Total Environment, 2014, 490: 351-359. doi: 10.1016/j.scitotenv.2014.05.005 [43] ZHANG C J, YAN H, LI F, et al. Occurrence and fate of perfluorinated acids in two wastewater treatment plants in Shanghai, China [J]. Environmental Science and Pollution Research, 2015, 22(3): 1804-1811. doi: 10.1007/s11356-013-2044-8 [44] BJÖRNSDOTTER M K, YEUNG L W Y, KÄRRMAN A, et al. Ultra-short-chain perfluoroalkyl acids including trifluoromethane sulfonic acid in water connected to known and suspected point sources in Sweden [J]. Environmental Science & Technology, 2019, 53(19): 11093-11101. [45] HOUTZ E, WANG M M, PARK J S. Identification and fate of aqueous film forming foam derived per- and polyfluoroalkyl substances in a wastewater treatment plant [J]. Environmental Science & Technology, 2018, 52(22): 13212-13221. [46] CHEN H R, PENG H, YANG M, et al. Detection, occurrence, and fate of fluorotelomer alcohols in municipal wastewater treatment plants [J]. Environmental Science & Technology, 2017, 51(16): 8953-8961. [47] LORENZO M, CAMPO J, MORALES SUÁREZ-VARELA M, et al. Occurrence, distribution and behavior of emerging persistent organic pollutants (POPs) in a Mediterranean wetland protected area [J]. Science of the Total Environment, 2019, 646: 1009-1020. doi: 10.1016/j.scitotenv.2018.07.304 [48] ZHOU Y Q, MENG J, ZHANG M, et al. Which type of pollutants need to be controlled with priority in wastewater treatment plants: Traditional or emerging pollutants? [J]. Environment International, 2019, 131: 104982. doi: 10.1016/j.envint.2019.104982 [49] ZHAO L J, McCAUSLAND P K, FOLSOM P W, et al. 6: 2 Fluorotelomer alcohol aerobic biotransformation in activated sludge from two domestic wastewater treatment plants [J]. Chemosphere, 2013, 92(4): 464-470. doi: 10.1016/j.chemosphere.2013.02.032 [50] WANG N, SZOSTEK B, FOLSOM P W, et al. Aerobic biotransformation of 14C-labeled 8-2 telomer B alcohol by activated sludge from a domestic sewage treatment plant [J]. Environmental Science & Technology, 2005, 39(2): 531-538. [51] WANG F, SHIH K. Adsorption of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on alumina: Influence of solution pH and cations [J]. Water Research, 2011, 45(9): 2925-2930. doi: 10.1016/j.watres.2011.03.007 [52] KEY B D, HOWELL R D, CRIDDLE C S. Defluorination of organofluorine sulfur compounds by Pseudomonas Sp. strain D2 [J]. Environmental Science & Technology, 1998, 32(15): 2283-2287. [53] KWON B G, LIM H J, NA S H, et al. Biodegradation of perfluorooctanesulfonate (PFOS) as an emerging contaminant [J]. Chemosphere, 2014, 109: 221-225. doi: 10.1016/j.chemosphere.2014.01.072 [54] KIBAMBE M G, MOMBA M N B, DASO A P, et al. Evaluation of the efficiency of selected wastewater treatment processes in removing selected perfluoroalkyl substances (PFASs) [J]. Journal of Environmental Management, 2020, 255: 109945. doi: 10.1016/j.jenvman.2019.109945 [55] LI Y J, BRÄUNIG J, ANGELICA G C, et al. Formation and partitioning behaviour of perfluoroalkyl acids (PFAAs) in waste activated sludge during anaerobic digestion [J]. Water Research, 2021, 189: 116583. doi: 10.1016/j.watres.2020.116583 [56] ZHANG S, SZOSTEK B, McCAUSLAND P K, et al. 6: 2 and 8: 2 fluorotelomer alcohol anaerobic biotransformation in digester sludge from a WWTP under methanogenic conditions [J]. Environmental Science & Technology, 2013, 47(9): 4227-4235. [57] ARVANITI O S, ANDERSEN H R, THOMAIDIS N S, et al. Sorption of Perfluorinated Compounds onto different types of sewage sludge and assessment of its importance during wastewater treatment [J]. Chemosphere, 2014, 111: 405-411. doi: 10.1016/j.chemosphere.2014.03.087 [58] EBRAHIMI F, LEWIS A J, SALES C M, et al. Linking PFAS partitioning behavior in sewage solids to the solid characteristics, solution chemistry, and treatment processes [J]. Chemosphere, 2021, 271: 129530. doi: 10.1016/j.chemosphere.2020.129530 [59] MUSSABEK D, AHRENS L, PERSSON K M, et al. Temporal trends and sediment-water partitioning of per- and polyfluoroalkyl substances (PFAS) in lake sediment [J]. Chemosphere, 2019, 227: 624-629. doi: 10.1016/j.chemosphere.2019.04.074 [60] COGGAN T L, MOODIE D, KOLOBARIC A, et al. An investigation into per- and polyfluoroalkyl substances (PFAS) in nineteen Australian wastewater treatment plants (WWTPs) [J]. Heliyon, 2019, 5(8): e02316. doi: 10.1016/j.heliyon.2019.e02316 [61] LIU Y Q, ZHANG Y, LI J F, et al. Distribution, partitioning behavior and positive matrix factorization-based source analysis of legacy and emerging polyfluorinated alkyl substances in the dissolved phase, surface sediment and suspended particulate matter around coastal areas of Bohai Bay, China [J]. Environmental Pollution, 2019, 246: 34-44. doi: 10.1016/j.envpol.2018.11.113 [62] YU Q, DENG S B, YU G. Selective removal of perfluorooctane sulfonate from aqueous solution using chitosan-based molecularly imprinted polymer adsorbents [J]. Water Research, 2008, 42(12): 3089-3097. doi: 10.1016/j.watres.2008.02.024 [63] ZHANG Q Y, DENG S B, YU G, et al. Removal of perfluorooctane sulfonate from aqueous solution by crosslinked chitosan beads: Sorption kinetics and uptake mechanism [J]. Bioresource Technology, 2011, 102(3): 2265-2271. doi: 10.1016/j.biortech.2010.10.040 [64] DENG S B, YU Q, HUANG J, et al. Removal of perfluorooctane sulfonate from wastewater by anion exchange resins: Effects of resin properties and solution chemistry [J]. Water Research, 2010, 44(18): 5188-5195. doi: 10.1016/j.watres.2010.06.038 [65] DIXIT F, BARBEAU B, MOSTAFAVI S G, et al. Removal of legacy PFAS and other fluorotelomers: Optimized regeneration strategies in DOM-rich waters [J]. Water Research, 2020, 183: 116098. doi: 10.1016/j.watres.2020.116098 [66] CHEN X, XIA X H, WANG X L, et al. A comparative study on sorption of perfluorooctane sulfonate (PFOS) by chars, ash and carbon nanotubes [J]. Chemosphere, 2011, 83(10): 1313-1319. doi: 10.1016/j.chemosphere.2011.04.018 [67] DALAHMEH S S, ALZIQ N, AHRENS L. Potential of biochar filters for onsite wastewater treatment: Effects of active and inactive biofilms on adsorption of per- and polyfluoroalkyl substances in laboratory column experiments [J]. Environmental Pollution, 2019, 247: 155-164. doi: 10.1016/j.envpol.2019.01.032 [68] PUNYAPALAKUL P, SUKSOMBOON K, PRARAT P, et al. Effects of surface functional groups and porous structures on adsorption and recovery of perfluorinated compounds by inorganic porous silicas [J]. Separation Science and Technology, 2013, 48(5): 775-788. doi: 10.1080/01496395.2012.710888 [69] INYANG M, DICKENSON E R V. The use of carbon adsorbents for the removal of perfluoroalkyl acids from potable reuse systems [J]. Chemosphere, 2017, 184: 168-175. doi: 10.1016/j.chemosphere.2017.05.161 [70] WANG F, SHIH K, MA R W, et al. Influence of cations on the partition behavior of perfluoroheptanoate (PFHpA) and perfluorohexanesulfonate (PFHxS) on wastewater sludge [J]. Chemosphere, 2015, 131: 178-183. doi: 10.1016/j.chemosphere.2015.03.024 [71] HANSEN M C, BØRRESEN M H, SCHLABACH M, et al. Sorption of perfluorinated compounds from contaminated water to activated carbon [J]. Journal of Soils and Sediments, 2010, 10(2): 179-185. doi: 10.1007/s11368-009-0172-z [72] RATTANAOUDOM R, VISVANATHAN C, BOONTANON S. Removal of concentrated PFOS and PFOA in synthetic industrial wastewater by powder activated carbon and hydrotalcite[C]. Rattanaoudom 2012 Removal, 2012 [73] YU J, HU J Y. Adsorption of perfluorinated compounds onto activated carbon and activated sludge [J]. Journal of Environmental Engineering, 2011, 137(10): 945-951. doi: 10.1061/(ASCE)EE.1943-7870.0000402 [74] LIANG X Q, GONDAL M A, CHANG X F, et al. Facile preparation of magnetic separable powdered-activated-carbon/Ni adsorbent and its application in removal of perfluorooctane sulfonate (PFOS) from aqueous solution [J]. Journal of Environmental Science and Health, Part A, 2011, 46(13): 1482-1490. doi: 10.1080/10934529.2011.609066 [75] SENEVIRATHNA S T M L D, TANAKA S, FUJII S, et al. A comparative study of adsorption of perfluorooctane sulfonate (PFOS) onto granular activated carbon, ion-exchange polymers and non-ion-exchange polymers [J]. Chemosphere, 2010, 80(6): 647-651. doi: 10.1016/j.chemosphere.2010.04.053 [76] DU Z W, DENG S B, BEI Y, et al. Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents—a review [J]. Journal of Hazardous Materials, 2014, 274: 443-454. doi: 10.1016/j.jhazmat.2014.04.038 [77] RAHMAN M F, PELDSZUS S, ANDERSON W B. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: A review [J]. Water Research, 2014, 50: 318-340. [78] YAO Y, VOLCHEK K, BROWN C E, et al. Comparative study on adsorption of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) by different adsorbents in water [J]. Water Science and Technology:a Journal of the International Association on Water Pollution Research, 2014, 70(12): 1983-1991. doi: 10.2166/wst.2014.445 [79] TANG C Y, SHIANG FU Q, GAO D W, et al. Effect of solution chemistry on the adsorption of perfluorooctane sulfonate onto mineral surfaces [J]. Water Research, 2010, 44(8): 2654-2662. doi: 10.1016/j.watres.2010.01.038 [80] DIXIT F, DUTTA R, BARBEAU B, et al. PFAS removal by ion exchange resins: A review [J]. Chemosphere, 2021, 272: 129777. doi: 10.1016/j.chemosphere.2021.129777 [81] DU Z W, DENG S B, ZHANG S Y, et al. Selective and fast adsorption of perfluorooctanesulfonate from wastewater by magnetic fluorinated vermiculite [J]. Environmental Science & Technology, 2017, 51(14): 8027-8035. [82] DIXIT F, BARBEAU B, MOSTAFAVI S G, et al. Efficient removal of GenX (HFPO-DA) and other perfluorinated ether acids from drinking and recycled waters using anion exchange resins [J]. Journal of Hazardous Materials, 2020, 384: 121261. doi: 10.1016/j.jhazmat.2019.121261 [83] WANG Q N, LIU M Y, ZHAO H Y, et al. Efficiently degradation of perfluorooctanoic acid in synergic electrochemical process combining cathodic electro-Fenton and anodic oxidation [J]. Chemical Engineering Journal, 2019, 378: 122071. doi: 10.1016/j.cej.2019.122071 [84] WANG P, ZHANG M, LU Y L, et al. Removal of perfluoalkyl acids (PFAAs) through fluorochemical industrial and domestic wastewater treatment plants and bioaccumulation in aquatic plants in river and artificial wetland [J]. Environment International, 2019, 129: 76-85. doi: 10.1016/j.envint.2019.04.072 [85] TANG C Y, FU Q S, CRIDDLE C S, et al. Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater [J]. Environmental Science & Technology, 2007, 41(6): 2008-2014. [86] STEINLE-DARLING E, REINHARD M. Nanofiltration for trace organic contaminant removal: Structure, solution, and membrane fouling effects on the rejection of perfluorochemicals [J]. Environmental Science & Technology, 2008, 42(14): 5292-5297. [87] APPLEMAN T D, DICKENSON E R V, BELLONA C, et al. Nanofiltration and granular activated carbon treatment of perfluoroalkyl acids [J]. Journal of Hazardous Materials, 2013, 260: 740-746. doi: 10.1016/j.jhazmat.2013.06.033 [88] ANTONIOU M G, ANDERSEN H R. Comparison of UVC/S2O82− with UVC/H2O2 in terms of efficiency and cost for the removal of micropollutants from groundwater [J]. Chemosphere, 2015, 119: S81-S88. doi: 10.1016/j.chemosphere.2014.03.029 [89] ANTONIOU M G, SHOEMAKER J A, deLa CRUZ A A, et al. Unveiling new degradation intermediates/pathways from the photocatalytic degradation of microcystin-LR [J]. Environmental Science & Technology, 2008, 42(23): 8877-8883. [90] HORI H, HAYAKAWA E, EINAGA H, et al. Decomposition of environmentally persistent perfluorooctanoic acid in water by photochemical approaches [J]. Environmental Science & Technology, 2004, 38(22): 6118-6124. [91] CHEN J, ZHANG P. Photodegradation of perfluorooctanoic acid in water under irradiation of 254 nm and 185 nm light by use of persulfate [J]. Water Science and Technology:a Journal of the International Association on Water Pollution Research, 2006, 54(11/12): 317-325. [92] Da SILVA F L, LAITINEN T, PIRILÄ M, et al. Photocatalytic degradation of perfluorooctanoic acid (PFOA) from wastewaters by TiO2, In2O3 and Ga2O3 catalysts [J]. Topics in Catalysis, 2017, 60(17): 1345-1358. [93] YAMAMOTO T, NOMA Y, SAKAI S I, et al. Photodegradation of perfluorooctane sulfonate by UV irradiation in water and alkaline 2-propanol [J]. Environmental Science & Technology, 2007, 41(16): 5660-5665. [94] TANG H Q, XIANG Q Q, LEI M, et al. Efficient degradation of perfluorooctanoic acid by UV-Fenton process [J]. Chemical Engineering Journal, 2012, 184: 156-162. doi: 10.1016/j.cej.2012.01.020 [95] LIU C S, HIGGINS C P, WANG F, et al. Effect of temperature on oxidative transformation of perfluorooctanoic acid (PFOA) by persulfate activation in water [J]. Separation and Purification Technology, 2012, 91: 46-51. doi: 10.1016/j.seppur.2011.09.047 [96] MITCHELL S M, AHMAD M, TEEL A L, et al. Degradation of perfluorooctanoic acid by reactive species generated through catalyzed H2O2 propagation reactions [J]. Environmental Science & Technology Letters, 2014, 1(1): 117-121. [97] QIAN Y J, GUO X, ZHANG Y L, et al. Perfluorooctanoic acid degradation using UV-persulfate process: Modeling of the degradation and Chlorate formation [J]. Environmental Science & Technology, 2016, 50(2): 772-781. [98] LEE Y C, LO S L, CHIUEH P T, et al. Efficient decomposition of perfluorocarboxylic acids in aqueous solution using microwave-induced persulfate [J]. Water Research, 2009, 43(11): 2811-2816. doi: 10.1016/j.watres.2009.03.052 [99] LIN J C, LO S L, HU C Y, et al. Enhanced sonochemical degradation of perfluorooctanoic acid by sulfate ions [J]. Ultrasonics Sonochemistry, 2015, 22: 542-547. doi: 10.1016/j.ultsonch.2014.06.006 [100] SONG Z, TANG H Q, WANG N, et al. Reductive defluorination of perfluorooctanoic acid by hydrated electrons in a sulfite-mediated UV photochemical system [J]. Journal of Hazardous Materials, 2013, 262: 332-338. doi: 10.1016/j.jhazmat.2013.08.059 [101] BENTEL M J, YU Y C, XU L H, et al. Defluorination of per- and polyfluoroalkyl substances (PFASs) with hydrated electrons: Structural dependence and implications to PFAS remediation and management [J]. Environmental Science & Technology, 2019, 53(7): 3718-3728. [102] BENTEL M J, LIU Z K, YU Y C, et al. Enhanced degradation of perfluorocarboxylic acids (PFCAs) by UV/sulfite treatment: Reaction mechanisms and system efficiencies at pH 12 [J]. Environmental Science & Technology Letters, 2020, 7(5): 351-357. [103] TIAN H T, GAO J, LI H, et al. Complete defluorination of perfluorinated compounds by hydrated electrons generated from 3-indole-acetic-acid in organomodified montmorillonite [J]. Scientific Reports, 2016, 6: 32949. doi: 10.1038/srep32949 [104] CHEN Z H, TENG Y, MI N, et al. Highly efficient hydrated electron utilization and reductive destruction of perfluoroalkyl substances induced by intermolecular interaction [J]. Environmental Science & Technology, 2021, 55(6): 3996-4006. [105] ARVANITI O S, HWANG Y, ANDERSEN H R, et al. Reductive degradation of perfluorinated compounds in water using Mg-aminoclay coated nanoscale zero valent iron [J]. Chemical Engineering Journal, 2015, 262: 133-139. doi: 10.1016/j.cej.2014.09.079 -