-
全氟烷基化合物(perfluorinated allkyl substances,PFASs)是一类由有机氟烷基链和亲水性官能团组成的新型有机物,化学通式为F(CF2)n—R,其中R为亲水性官能团. 自20世纪50年代被3M公司首次合成以来,PFASs至今已有70多年的使用历史[1-2]. 环境中存在的PFASs主要包括全氟烷基羧酸类(PFCAs)、全氟烷基磺酸类(PFSAs)、氟调聚醇类(FTOHs)、全氟酰胺类(FOSAs)和全氟聚醚类,几种典型的PFASs见表1[3-5]. 在众多PFASs中,全氟辛酸(PFOA)和全氟辛烷磺酸(PFOS)最具代表性,由于它们的生产使用量较大,同时也是多种PFASs在环境和生物体内转化的最终产物,因此环境检出频率极高[6-7]. PFASs具有良好的疏水疏油性、耐高温、耐强氧化性以及一定的表面活性,被广泛应用于生产生活中,如纺织、皮革、电镀等工业生产过程,食品包装材料、服装防水涂层及地毯抛光剂等民用产品[8-9]. 与传统持久性有机污染物类似,PFASs可通过“蚱蜢跳效应”造成全球性污染,不仅在人群居住地附近的水体、灰尘、土壤等环境介质中有不同程度的检出,对南北极冰川以及高原雪山也有不同程度的污染[10-11]. 环境中的PFASs可以通过多种途径进入人体,其中最主要的是饮用水摄入和食物链传递. 进入人体的PFASs的半衰期可达数年之久,同时还可能诱导多种疾病的发生,如肝脏损伤、免疫性疾病、生殖和神经系统疾病等[12-13]. 更为严重的是,有研究发现PFASs还具有一定的致畸致癌效应[14].
考虑到PFASs对生态环境和人体健康的危害,美国、加拿大以及欧盟在内的多个国家和地区已经全面禁止了PFOA和PFOS的生产,仅在半导体、航空液压油、电镀和照相业等少数短期内缺乏替代物的工业领域允许继续使用[15-16]. PFOS和PFOA也于2009年和2015年相继被列入到斯德哥尔摩公约持久性有机污染物优先控制名录中,而我国作为斯德哥尔摩公约的缔约国,也已禁止了PFOA和PFOS的生产使用[17-19]. 尽管如此,PFASs的环境持久性使得其在自然环境中仍然广泛存在[20]. 与此同时,与PFOA和PFOS具有类似结构的PFASs替代物也被不断生产使用[21]. 因此,亟需开发出可高效处理这类污染物的技术.
目前,现有的PFASs的去除技术主要包括吸附、化学氧化、化学还原和生物降解四类[22],但都存在不同程度的缺点,如反应条件苛刻、选择性较差、能耗较高以及易产生二次污染等. 前人已对上述技术分别进行了综述[6-7, 23-26],在此基础上,本文不仅整理归纳了PFASs的各类去除技术,内容全面,还对不同类别技术的常用材料、去除效率、反应时间、能耗、反应机理和优缺点进行了详细的阐述和对比,更直观的总结归纳了目前研究所存在的问题、面临的挑战和发展前景,指导意义强,希望能为开发更高效的PFASs去除技术提供参考.
全氟烷基化合物的去除技术研究进展
Research progress on the removal of perfluorinated allkyl substances: A review
-
摘要: 全氟烷基化合物(PFASs)是一类新型持久性有机污染物,具有环境持久性、生物蓄积性和毒性. 近年来,PFASs引起的环境问题受到国内外学者的广泛关注和研究,与此同时,PFASs的去除技术也被广泛研究. 现有的PFASs去除技术主要包括吸附、化学氧化、化学还原和生物降解等,因为反应机理和适用条件的差异,各种技术对PFASs的去除效果也有所不同. 本文主要对不同PFASs去除技术的常用材料、反应效率、反应机理、能耗和影响因素进行了详细的阐述和对比,同时总结归纳了目前研究所存在的问题、面临的挑战以及未来发展的前景,以期为开发更高效的PFASs去除技术提供参考.Abstract: Perfluorinated allkyl substances (PFASs) are a new class of persistent organic pollutants with persistence, biotoxicity and bioaccumulation. Recently, PFASs related environmental issues have been widely concerned by worldwide scientists. Meanwhile, PFASs removal techniques including adsorption, chemical oxidation, chemical reduction and biological treatment have been widely studied. However, due to the differences of reaction mechanisms and applicable conditions, various techniques show different removal efficiencies on PFASs. In this study, the common materials, removal efficiency, reaction time, reaction mechanism, energy consumption and the influence factors of different treatment techniques were summarized and elaborated in detail. Moreover, the existing problems, challenges and future outlooks of current researches were summarized, so as to provide reference for the development of effective removal techniques of PFASs.
-
化合物
Compounds分子量/(g·mol−1)
Molecular weight溶解度/(mg·L−1)
Water solubilitylg Kow (25 ℃) pKa PFOA 414.07 3300 4.81 2.8 PFOS 500.13 570 4.49 < 1.0 全氟壬酸(PFNA) 464.08 0.0625 5.48 -0.21 全氟癸酸(PFDA) 514.08 — — — 全氟己烷磺酸(PFHxS) 400.11 6.2 3.16 0.14 六氟环氧丙烷三聚体酸(HFPO-TA) 498.06 100000 — 200000 5.555 -0.07 8:2氟调聚醇(8:2 FTOH) 464.00 0.194 5.58 — N-乙基全氟辛基磺酰胺(N-EtFOSA) 527.20 — — — 表 2 不同PFASs去除技术对比
Table 2. Comparisons of different PFASs treatment techniques
去除技术
Techniques技术分类
Classification常用材料
Materials去除效果
Removal efficiency反应时间/h
Time能耗/
(kW·h mmol−1)
Energy
consumption反应机理
Mechanism优点
Advantages不足
Disadvantages展望
Future outlook参考文献
References吸附 物理 颗粒/粉末活性炭、改性活性炭、碳纳米管、离子交换树脂、矿物材料、改性矿物材料、新型吸附材料等 0.03—2960.3 mg·g−1
(20%—100%)0.33—480 — 静电作用、疏水作用、离子交换作用、范德华力、氢键作用等、桥连作用、配体交换等 成本低廉、能耗较低、操作简单、适用于较广浓度范围的PFASs、吸附后的污染物可以洗脱再利用等 吸附时间长、再生能力弱、选择性差、吸附后的污染物需要二次处理,改性剂自身的稳定性和毒性不能保证 开发无毒无害、高效廉价的选择性吸附剂 [30-48] Fenton和类
Fenton反应体系化学 ·OH、臭氧等 20%—99.1% 2.5—120 4.6—5.0×106 氧化作用 技术较成熟 反应机理不明确、去除效果差、不具有选择性 深入探究降解机理及路径、与其他技术联用 [56-63] SO4·-降解 化学 SO4·- 60%—100% 4—30 1.7—66.2 氧化作用 去除效果好、实际应用性强 脱氟效果较差、降解产物以短链PFASs积累、大量PS的使用造成环境盐碱度的升高 优化反应条件,与其他技术联用 [65-70] 电化学降解 化学 BBD电极、 Ti/SnO2-Sb (Se、Bi)电极、 Ti/SnO2-Sb/PbO2电极、Ti/SnO2-Sb/MnO2电极、改性电极等 31.7%—100% 0.5—5 2.9 × 10−3—37 氧化作用 绿色环保、能耗较低、
能够对PFASs实现
完全矿化选择性差、环境适应性差、电极材料的稳定性不能保证 开发合适的电极材料、增强环境适应性 [72-77] 光催化降解 化学 TiO2、改性 TiO2、In2O3、Ga2O3等 45%—100% 0.33—48 — 0.46—147 催化氧化 直接利用太阳能、绿色经济、完全矿化PFASs 反应条件严苛、
能耗较高开发出稳定性高、抗污染性能强的光催化剂 [54,79-85] 超声化学降解 化学 超声波 26%—100% 1—5 24.5—190 高温热解、空穴、·OH 能够对PFASs实现有效的降解脱氟 环境适应性差、能耗较高、去除效率低 优化反应条件、提高环境适应性 [87-90] eaq-降解 化学 eaq- 40%—100% 0.33—24 2.5—5165.3 脱氟加氢、
脱羧基水解能够实现对PFASs的完全降解矿化 eaq-易被氧化性物质猝灭、反应条件严苛 提高eaq-利用率、简化反应体系、提高环境适应性 [93-109] ZVI降解 化学 ZVI 8%—96% 1—2880 — 电子转移还原 能够对PFASs实现有效的降解脱氟 ZVI易发生团聚、实际
应用性差开发出更高效率的负载材料降低ZVI的团聚性 [113-117] 生物降解 生物 微生物 50%—100% 240—4224 — 微生物代谢 绿色环保、无需能耗 反应周期长、反应条件苛刻、去除不彻底 筛选、驯化出可高效降解PFASs的微生物 [118-125] 膜分离 物理 RO膜、NF膜等 90%—99% — — 截留 能耗较低、适用于较广浓度范围的PFASs、截留后的污染物可以洗脱再利用等 价格昂贵、截留作用不彻底、可重复利用性差、实际应用性差、 与其他技术联用,提高膜处理的选择性和实际应用性 [126-127] 机械化学 化学 — 100% 4 — 剪切、挤压和摩擦等
机械外力操作简单、降解产物便于处理、能够对PFASs实现完全降解脱氟 反应周期长、能耗高 寻找有效的助磨剂 [111,128] 低温等离子体氧化 化学 — >99% — — 氧化作用 去除效果好、能够对PFASs实现完全降解脱氟 反应副产物多、
能耗较高、优化反应条件、减少有毒副产物的生成、降低能耗 [129-130] -
[1] PABON M, CORPART J M. Fluorinated surfactants: Synthesis, properties, effluent treatment [J]. Journal of Fluorine Chemistry, 2002, 114(2): 149-156. doi: 10.1016/S0022-1139(02)00038-6 [2] de VOOGT P, SÁEZ M. Analytical chemistry of perfluoroalkylated substances [J]. TrAC Trends in Analytical Chemistry, 2006, 25(4): 326-342. doi: 10.1016/j.trac.2005.10.008 [3] 郭睿, 张超杰, 周琪. 水环境中全氟化合物的去除技术研究综述 [J]. 净水技术, 2016, 35(6): 18-24. doi: 10.15890/j.cnki.jsjs.2016.06.003 GUO R, ZHANG C J, ZHOU Q. Research overview of technology of perfluorinated compounds removal in water environment [J]. Water Purification Technology, 2016, 35(6): 18-24(in Chinese). doi: 10.15890/j.cnki.jsjs.2016.06.003
[4] PAUL A G, JONES K C, SWEETMAN A J. A first global production, emission, and environmental inventory for perfluorooctane sulfonate [J]. Environmental Science & Technology, 2009, 43(2): 386-392. [5] PODDER A, SADMANI A H M A, REINHART D, et al. Per and poly-fluoroalkyl substances (PFAS) as a contaminant of emerging concern in surface water: A transboundary review of their occurrences and toxicity effects [J]. Journal of Hazardous Materials, 2021, 419: 126361. doi: 10.1016/j.jhazmat.2021.126361 [6] 牛军峰, 王冲, 商恩香. 水中全氟化合物电化学去除技术研究进展 [J]. 中国科学:技术科学, 2017, 47(12): 1233-1255. doi: 10.1360/N092017-00116 NIU J F, WANG C, SHANG E X. Removal of perfluorinated compounds from wastewaters by electrochemical methods: A general review [J]. Scientia Sinica (Technologica), 2017, 47(12): 1233-1255(in Chinese). doi: 10.1360/N092017-00116
[7] 梁宇, 马安周, 宋茂勇, 等. 全氟辛烷磺酸生物降解研究进展 [J]. 微生物学通报, 2020, 47(8): 2536-2549. doi: 10.13344/j.microbiol.china.190981 LIANG Y, MA A Z, SONG M Y, et al. Advances in biodegradation of perfluorooctane sulfonate(PFOS) [J]. Microbiology China, 2020, 47(8): 2536-2549(in Chinese). doi: 10.13344/j.microbiol.china.190981
[8] SAGIV S K, RIFAS-SHIMAN S L, WEBSTER T F, et al. Sociodemographic and perinatal predictors of early pregnancy per- and polyfluoroalkyl substance (PFAS) concentrations [J]. Environmental Science & Technology, 2015, 49(19): 11849-11858. [9] NELSON J W, HATCH E E, WEBSTER T F. Exposure to polyfluoroalkyl chemicals and cholesterol, body weight, and insulin resistance in the general US population [J]. Environmental Health Perspectives, 2010, 118(2): 197-202. doi: 10.1289/ehp.0901165 [10] KANNAN K. Perfluoroalkyl and polyfluoroalkyl substances: Current and future perspectives [J]. Environmental Chemistry, 2011, 8(4): 333. doi: 10.1071/EN11053 [11] ZHAO Z, XIE Z Y, MÖLLER A, et al. Distribution and long-range transport of polyfluoroalkyl substances in the Arctic, Atlantic Ocean and Antarctic coast [J]. Environmental Pollution, 2012, 170: 71-77. doi: 10.1016/j.envpol.2012.06.004 [12] ZENG Z T, SONG B, XIAO R, et al. Assessing the human health risks of perfluorooctane sulfonate by in vivo and in vitro studies [J]. Environment International, 2019, 126: 598-610. doi: 10.1016/j.envint.2019.03.002 [13] PARSONS J R, SÁEZ M, DOLFING J, et al. Biodegradation of perfluorinated compounds [J]. Reviews of Environmental Contamination and Toxicology, 2008, 196: 53-71. [14] VIEIRA V M, HOFFMAN K, SHIN H M, et al. Perfluorooctanoic acid exposure and cancer outcomes in a contaminated community: A geographic analysis [J]. Environmental Health Perspectives, 2013, 121(3): 318-323. doi: 10.1289/ehp.1205829 [15] US EPA. 2010/2015 PFOA stewardship program[R]. 2016 [16] WILHELM M, KRAFT M, RAUCHFUSS K, et al. Assessment and management of the first German case of a contamination with perfluorinated compounds (PFC) in the Region Sauerland, North Rhine-Westphalia [J]. Journal of Toxicology and Environmental Health. Part A, 2008, 71(11/12): 725-733. [17] 国家环保总局发布“高污染、高环境风险”产品名录[R]. 2008. The State Environmental Protection Administration released the List of “High Pollution, High Environmental Risk Products” issued by the State Environmental Protection Administration[R]. 2008.
[18] 环境保护部. 关于《关于持久性有机污染物的斯德哥尔摩公约》新增列九种持久性有机污染物的《关于附件A、附件B和附件C修正案》和新增列硫丹的《关于附件A修正案》生效的公告[R]. 2014. Ministry of Environmental Protection. <Amendments to Annexes A, B and C> to the <Stockholm Convention on Persistent Organic Pollutants> for nine new POPs and <Amendments to Annex A> to add endosulfan[R]. 2014.
[19] 生态环境部. 关于禁止生产、流通、使用和进出口林丹等持久性有机污染物的公告[R]. 2019. Ministry of Ecology and Environment. Announcement on Prohibiting the Production, Circulation, Use and Import and Export of Lindane and Other Persistent Organic Pollutants[R]. 2019.
[20] TAN K Y, LU G H, PIAO H T, et al. Current contamination status of perfluoroalkyl substances in tapwater from 17 cities in the Eastern China and their correlations with surface waters [J]. Bulletin of Environmental Contamination and Toxicology, 2017, 99(2): 224-231. doi: 10.1007/s00128-017-2109-3 [21] STRYNAR M, DAGNINO S, MCMAHEN R, et al. Identification of novel perfluoroalkyl ether carboxylic acids (PFECAs) and sulfonic acids (PFESAs) in natural waters using accurate mass time-of-flight mass spectrometry (TOFMS) [J]. Environmental Science & Technology, 2015, 49(19): 11622-11630. [22] LI P P, ZHI D, ZHANG X X, et al. Research progress on the removal of hazardous perfluorochemicals: A review [J]. Journal of Environmental Management, 2019, 250: 109488. doi: 10.1016/j.jenvman.2019.109488 [23] 洪雷, 丁倩云, 亓祥坤, 等. 吸附法去除水中全氟化合物的研究进展 [J]. 环境化学, 2021, 40(7): 2193-2203. doi: 10.7524/j.issn.0254-6108.2020031303 HONG L, DING Q Y, QI X K, et al. The research progress of removing perfluoroalkyl substances by adsorption in water [J]. Environmental Chemistry, 2021, 40(7): 2193-2203(in Chinese). doi: 10.7524/j.issn.0254-6108.2020031303
[24] 詹宇航, 秦雅鑫, 陈博磊, 等. 全氟辛酸和全氟辛基磺酸的光降解技术及机理研究进展 [J]. 环境化学, 2022, 41(1): 46-56. doi: 10.7524/j.issn.0254-6108.2020121402 ZHAN Y H, QIN Y X, CHEN B L, et al. Photodegradation technology and mechanism of perfluorooctanoic acid(PFOA) and perfluorooctane sulfonic acid(PFOS): A critical review [J]. Environmental Chemistry, 2022, 41(1): 46-56(in Chinese). doi: 10.7524/j.issn.0254-6108.2020121402
[25] 刘洋, 胡筱敏, 赵研, 等. 全氟化合物及其替代品的处理技术 [J]. 环境化学, 2018, 37(8): 1860-1868. doi: 10.7524/j.issn.0254-6108.2017122904 LIU Y, HU X M, ZHAO Y, et al. Treatment techniques for perfluorinated compounds and their alternatives [J]. Environmental Chemistry, 2018, 37(8): 1860-1868(in Chinese). doi: 10.7524/j.issn.0254-6108.2017122904
[26] 罗梅清, 卓琼芳, 许振成, 等. 全氟化合物处理技术的研究进展 [J]. 环境科学与技术, 2015, 38(8): 60-67. LUO M Q, ZHUO Q F, XU Z C, et al. Research trends on degradation of perfluorinated compounds-a review [J]. Environmental Science & Technology, 2015, 38(8): 60-67(in Chinese).
[27] KAH M, SIGMUND G, XIAO F, et al. Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials [J]. Water Research, 2017, 124: 673-692. doi: 10.1016/j.watres.2017.07.070 [28] VU C T, WU T T. Recent progress in adsorptive removal of per- and poly-fluoroalkyl substances (PFAS) from water/wastewater [J]. Critical Reviews in Environmental Science and Technology, 2022, 52(1): 90-129. doi: 10.1080/10643389.2020.1816125 [29] DU Z W, DENG S B, BEI Y, et al. Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents—A review [J]. Journal of Hazardous Materials, 2014, 274: 443-454. doi: 10.1016/j.jhazmat.2014.04.038 [30] XIAO X, ULRICH B A, CHEN B L, et al. Sorption of poly- and perfluoroalkyl substances (PFASs) relevant to aqueous film-forming foam (AFFF)-impacted groundwater by biochars and activated carbon [J]. Environmental Science & Technology, 2017, 51(11): 6342-6351. [31] YU Q, ZHANG R Q, DENG S B, et al. Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: Kinetic and isotherm study [J]. Water Research, 2009, 43(4): 1150-1158. doi: 10.1016/j.watres.2008.12.001 [32] YUAN C, HUANG Y, CANNON F S, et al. Adsorption mechanisms of PFOA onto activated carbon anchored with quaternary ammonium/epoxide-forming compounds: A combination of experiment and model studies [J]. Journal of Environmental Sciences, 2020, 98: 94-102. doi: 10.1016/j.jes.2020.05.019 [33] DU Z W, DENG S B, LIU D C, et al. Efficient adsorption of PFOS and F53B from chrome plating wastewater and their subsequent degradation in the regeneration process [J]. Chemical Engineering Journal, 2016, 290: 405-413. doi: 10.1016/j.cej.2016.01.077 [34] SENEVIRATHNA S T M L D, TANAKA S, FUJII S, et al. A comparative study of adsorption of perfluorooctane sulfonate (PFOS) onto granular activated carbon, ion-exchange polymers and non-ion-exchange polymers [J]. Chemosphere, 2010, 80(6): 647-651. doi: 10.1016/j.chemosphere.2010.04.053 [35] ZAGGIA A, CONTE L, FALLETTI L, et al. Use of strong anion exchange resins for the removal of perfluoroalkylated substances from contaminated drinking water in batch and continuous pilot plants [J]. Water Research, 2016, 91: 137-146. doi: 10.1016/j.watres.2015.12.039 [36] PARK M, DANIELS K D, WU S M, et al. Magnetic ion-exchange (MIEX) resin for perfluorinated alkylsubstance (PFAS) removal in groundwater: Roles of atomic charges for adsorption [J]. Water Research, 2020, 181: 115897. doi: 10.1016/j.watres.2020.115897 [37] ZHAO L X, BIAN J N, ZHANG Y H, et al. Comparison of the sorption behaviors and mechanisms of perfluorosulfonates and perfluorocarboxylic acids on three kinds of clay minerals [J]. Chemosphere, 2014, 114: 51-58. doi: 10.1016/j.chemosphere.2014.03.098 [38] ZHOU Q, DENG S B, YU Q, et al. Sorption of perfluorooctane sulfonate on organo-montmorillonites [J]. Chemosphere, 2010, 78(6): 688-694. doi: 10.1016/j.chemosphere.2009.12.005 [39] WANG M C, ORR A A, JAKUBOWSKI J M, et al. Enhanced adsorption of per- and polyfluoroalkyl substances (PFAS) by edible, nutrient-amended montmorillonite clays [J]. Water Research, 2021, 188: 116534. doi: 10.1016/j.watres.2020.116534 [40] DU Z W, DENG S B, ZHANG S Y, et al. Selective and high sorption of perfluorooctanesulfonate and perfluorooctanoate by fluorinated alkyl chain modified montmorillonite [J]. The Journal of Physical Chemistry C, 2016, 120(30): 16782-16790. doi: 10.1021/acs.jpcc.6b04757 [41] DU Z W, DENG S B, ZHANG S Y, et al. Selective and fast adsorption of perfluorooctanesulfonate from wastewater by magnetic fluorinated vermiculite [J]. Environmental Science & Technology, 2017, 51(14): 8027-8035. [42] JI W, XIAO L L, LING Y H, et al. Removal of GenX and perfluorinated alkyl substances from water by amine-functionalized covalent organic frameworks [J]. Journal of the American Chemical Society, 2018, 140(40): 12677-12681. doi: 10.1021/jacs.8b06958 [43] ZHANG Q Y, DENG S B, YU G, et al. Removal of perfluorooctane sulfonate from aqueous solution by crosslinked chitosan beads: Sorption kinetics and uptake mechanism [J]. Bioresource Technology, 2011, 102(3): 2265-2271. doi: 10.1016/j.biortech.2010.10.040 [44] GUO H Q, LIU Y, MA W T, et al. Surface molecular imprinting on carbon microspheres for fast and selective adsorption of perfluorooctane sulfonate [J]. Journal of Hazardous Materials, 2018, 348: 29-38. doi: 10.1016/j.jhazmat.2018.01.018 [45] XIAO L L, LING Y H, ALSBAIEE A, et al. β-cyclodextrin polymer network sequesters perfluorooctanoic acid at environmentally relevant concentrations [J]. Journal of the American Chemical Society, 2017, 139(23): 7689-7692. doi: 10.1021/jacs.7b02381 [46] BHATTARAI B, MURUGANANDHAM M, SURI R P S. Development of high efficiency silica coated β-cyclodextrin polymeric adsorbent for the removal of emerging contaminants of concern from water [J]. Journal of Hazardous Materials, 2014, 273: 146-154. doi: 10.1016/j.jhazmat.2014.03.044 [47] BAGHIRZADE B S, ZHANG Y, REUTHER J F, et al. Thermal regeneration of spent granular activated carbon presents an opportunity to break the forever PFAS cycle [J]. Environmental Science & Technology, 2021, 55(9): 5608-5619. [48] FÜHRER S, HINTZER K, LOHR G, et al. Method of recov-ering fluorinated acid surfactants from adsorbent particles loaded therewith: US 7754914 [P]. 2010. [49] YANG L, HE L Y, XUE J M, et al. Persulfate-based degradation of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in aqueous solution: Review on influences, mechanisms and prospective [J]. Journal of Hazardous Materials, 2020, 393: 122405. doi: 10.1016/j.jhazmat.2020.122405 [50] CHAPLIN B P. Critical review of electrochemical advanced oxidation processes for water treatment applications [J]. Environmental Science. Processes & Impacts, 2014, 16(6): 1182-1203. [51] XU B T, AHMED M B, ZHOU J L, et al. Photocatalytic removal of perfluoroalkyl substances from water and wastewater: Mechanism, kinetics and controlling factors [J]. Chemosphere, 2017, 189: 717-729. doi: 10.1016/j.chemosphere.2017.09.110 [52] RODRIGUEZ-FREIRE L, BALACHANDRAN R, SIERRA-ALVAREZ R, et al. Effect of sound frequency and initial concentration on the sonochemical degradation of perfluorooctane sulfonate (PFOS) [J]. Journal of Hazardous Materials, 2015, 300: 662-669. doi: 10.1016/j.jhazmat.2015.07.077 [53] CARTER K E, FARRELL J. Oxidative destruction of perfluorooctane sulfonate using boron-doped diamond film electrodes [J]. Environmental Science & Technology, 2008, 42(16): 6111-6115. [54] SHAO T, ZHANG P Y, LI Z M, et al. Photocatalytic decomposition of perfluorooctanoic acid in pure water and wastewater by needle-like nanostructured gallium oxide [J]. Chinese Journal of Catalysis, 2013, 34(8): 1551-1559. doi: 10.1016/S1872-2067(12)60612-3 [55] WU D, LI X K, ZHANG J X, et al. Efficient PFOA degradation by persulfate-assisted photocatalytic ozonation [J]. Separation and Purification Technology, 2018, 207: 255-261. doi: 10.1016/j.seppur.2018.06.059 [56] VECITIS C D, PARK H, CHENG J, et al. Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) [J]. Frontiers of Environmental Science & Engineering in China, 2009, 3(2): 129-151. [57] TANG H Q, XIANG Q Q, LEI M, et al. Efficient degradation of perfluorooctanoic acid by UV-Fenton process [J]. Chemical Engineering Journal, 2012, 184: 156-162. doi: 10.1016/j.cej.2012.01.020 [58] HUANG J Y, WANG X, PAN Z Q, et al. Efficient degradation of perfluorooctanoic acid (PFOA) by photocatalytic ozonation [J]. Chemical Engineering Journal, 2016, 296: 329-334. doi: 10.1016/j.cej.2016.03.116 [59] LIN A Y C, PANCHANGAM S C, CHANG C Y, et al. Removal of perfluorooctanoic acid and perfluorooctane sulfonate via ozonation under alkaline condition [J]. Journal of Hazardous Materials, 2012, 243: 272-277. doi: 10.1016/j.jhazmat.2012.10.029 [60] MITCHELL S M, AHMAD M, TEEL A L, et al. Degradation of perfluorooctanoic acid by reactive species generated through catalyzed H2O2 propagation reactions [J]. Environmental Science & Technology Letters, 2014, 1(1): 117-121. [61] ELLIS D A, MARTIN J W, DE SILVA A O, et al. Degradation of fluorotelomer alcohols: A likely atmospheric source of perfluorinated carboxylic acids [J]. Environmental Science & Technology, 2004, 38(12): 3316-3321. [62] PLUMLEE M H, MCNEILL K, REINHARD M. Indirect photolysis of perfluorochemicals: Hydroxyl radical-initiated oxidation of N-ethyl perfluorooctane sulfonamido acetate (N-EtFOSAA) and other perfluoroalkanesulfonamides [J]. Environmental Science & Technology, 2009, 43(10): 3662-3668. [63] LV K, GAO W, MENG L Y, et al. Phototransformation of perfluorooctane sulfonamide on natural clay minerals: A likely source of short chain perfluorocarboxylic acids [J]. Journal of Hazardous Materials, 2020, 392: 122354. doi: 10.1016/j.jhazmat.2020.122354 [64] OLLER I, MALATO S, SÁNCHEZ-PÉREZ J A. Combination of advanced oxidation processes and biological treatments for wastewater decontamination—A review [J]. Science of the Total Environment, 2011, 409(20): 4141-4166. doi: 10.1016/j.scitotenv.2010.08.061 [65] LIU C S, HIGGINS C P, WANG F, et al. Effect of temperature on oxidative transformation of perfluorooctanoic acid (PFOA) by persulfate activation in water [J]. Separation and Purification Technology, 2012, 91: 46-51. doi: 10.1016/j.seppur.2011.09.047 [66] QIAN Y J, GUO X, ZHANG Y L, et al. Perfluorooctanoic acid degradation using UV-persulfate process: Modeling of the degradation and chlorate formation [J]. Environmental Science & Technology, 2016, 50(2): 772-781. [67] LEE Y C, LO S L, CHIUEH P T, et al. Efficient decomposition of perfluorocarboxylic acids in aqueous solution using microwave-induced persulfate [J]. Water Research, 2009, 43(11): 2811-2816. doi: 10.1016/j.watres.2009.03.052 [68] LEE Y C, LI Y F, CHEN M J, et al. Efficient decomposition of perfluorooctanic acid by persulfate with iron-modified activated carbon [J]. Water Research, 2020, 174: 115618. doi: 10.1016/j.watres.2020.115618 [69] 郭丽, 袁颐进, 冯丽贞, 等. 电活化过硫酸盐降解全氟辛酸及其中间产物的探究分析 [J]. 环境科学学报, 2020, 40(6): 2045-2054. doi: 10.13671/j.hjkxxb.2020.0068 GUO L, YUAN Y J, FENG L Z, et al. Electrochemical activated persulfate to degrade perfluorooctanoic acid and the analysis of intermediate products [J]. Acta Scientiae Circumstantiae, 2020, 40(6): 2045-2054(in Chinese). doi: 10.13671/j.hjkxxb.2020.0068
[70] BRUTON T A, SEDLAK D L. Treatment of aqueous film-forming foam by heat-activated persulfate under conditions representative of in situ chemical oxidation [J]. Environmental Science & Technology, 2017, 51(23): 13878-13885. [71] PANIZZA M, BOCCA C, CERISOLA G. Electrochemical treatment of wastewater containing polyaromatic organic pollutants [J]. Water Research, 2000, 34(9): 2601-2605. doi: 10.1016/S0043-1354(00)00145-7 [72] OCHIAI T, IIZUKA Y, NAKATA K, et al. Efficient electrochemical decomposition of perfluorocarboxylic acids by the use of a boron-doped diamond electrode [J]. Diamond and Related Materials, 2011, 20(2): 64-67. doi: 10.1016/j.diamond.2010.12.008 [73] ZHUO Q F, DENG S B, YANG B, et al. Degradation of perfluorinated compounds on a boron-doped diamond electrode [J]. Electrochimica Acta, 2012, 77: 17-22. doi: 10.1016/j.electacta.2012.04.145 [74] LIN H, NIU J F, DING S Y, et al. Electrochemical degradation of perfluorooctanoic acid (PFOA) by Ti/SnO2-Sb, Ti/SnO2-Sb/PbO2 and Ti/SnO2-Sb/MnO2 anodes [J]. Water Research, 2012, 46(7): 2281-2289. doi: 10.1016/j.watres.2012.01.053 [75] ZHUO Q F, DENG S B, YANG B, et al. Efficient electrochemical oxidation of perfluorooctanoate using a Ti/SnO2-Sb-Bi anode [J]. Environmental Science & Technology, 2011, 45(7): 2973-2979. [76] YANG B, JIANG C J, YU G, et al. Highly efficient electrochemical degradation of perfluorooctanoic acid (PFOA) by F-doped Ti/SnO2 electrode [J]. Journal of Hazardous Materials, 2015, 299: 417-424. doi: 10.1016/j.jhazmat.2015.06.033 [77] ZHAO H Y, GAO J X, ZHAO G H, et al. Fabrication of novel SnO2-Sb/carbon aerogel electrode for ultrasonic electrochemical oxidation of perfluorooctanoate with high catalytic efficiency [J]. Applied Catalysis B:Environmental, 2013, 136/137: 278-286. doi: 10.1016/j.apcatb.2013.02.013 [78] HORI H, HAYAKAWA E, EINAGA H, et al. Decomposition of environmentally persistent perfluorooctanoic acid in water by photochemical approaches [J]. Environmental Science & Technology, 2004, 38(22): 6118-6124. [79] PANCHANGAM S C, LIN A Y C, TSAI J H, et al. Sonication-assisted photocatalytic decomposition of perfluorooctanoic acid [J]. Chemosphere, 2009, 75(5): 654-660. doi: 10.1016/j.chemosphere.2008.12.065 [80] PANCHANGAM S C, LIN A Y C, SHAIK K L, et al. Decomposition of perfluorocarboxylic acids (PFCAs) by heterogeneous photocatalysis in acidic aqueous medium [J]. Chemosphere, 2009, 77(2): 242-248. doi: 10.1016/j.chemosphere.2009.07.003 [81] SONG C, CHEN P, WANG C Y, et al. Photodegradation of perfluorooctanoic acid by synthesized TiO2-MWCNT composites under 365 nm UV irradiation [J]. Chemosphere, 2012, 86(8): 853-859. doi: 10.1016/j.chemosphere.2011.11.034 [82] LI M J, YU Z B, LIU Q, et al. Photocatalytic decomposition of perfluorooctanoic acid by noble metallic nanoparticles modified TiO2 [J]. Chemical Engineering Journal, 2016, 286: 232-238. doi: 10.1016/j.cej.2015.10.037 [83] LI X Y, ZHANG P Y, JIN L, et al. Efficient photocatalytic decomposition of perfluorooctanoic acid by indium oxide and its mechanism [J]. Environmental Science & Technology, 2012, 46(10): 5528-5534. [84] LI Z M, ZHANG P Y, SHAO T, et al. Different nanostructured In2O3 for photocatalytic decomposition of perfluorooctanoic acid (PFOA) [J]. Journal of Hazardous Materials, 2013, 260: 40-46. doi: 10.1016/j.jhazmat.2013.04.042 [85] ZHAO B X, LI X, YANG L, et al. ß-Ga2O3 nanorod synthesis with a one-step microwave irradiation hydrothermal method and its efficient photocatalytic degradation for perfluorooctanoic acid [J]. Photochemistry and Photobiology, 2015, 91(1): 42-47. doi: 10.1111/php.12383 [86] 谢冰. 超声波作用下有机污染物的降解 [J]. 水处理技术, 2000, 26(2): 114-119. doi: 10.3969/j.issn.1000-3770.2000.02.013 XIE B. The degradation of organic pollutants using ultrasound [J]. Technology of Water Treatment, 2000, 26(2): 114-119(in Chinese). doi: 10.3969/j.issn.1000-3770.2000.02.013
[87] MORIWAKI H, TAKAGI Y, TANAKA M, et al. Sonochemical decomposition of perfluorooctane sulfonate and perfluorooctanoic acid [J]. Environmental Science & Technology, 2005, 39(9): 3388-3392. [88] 赵德明, 丁成, 徐新华, 等. 超声波降解全氟辛烷磺酸和全氟辛酸的动力学 [J]. 化工学报, 2011, 62(3): 829-835. ZHAO D M, DING C, XU X H, et al. Kinetics of perfluorooctane sulfonate and perfluorooctanoate degradation by ultrasound irradiation [J]. CIESC Journal, 2011, 62(3): 829-835(in Chinese).
[89] CHENG J, VECITIS C D, PARK H, et al. Sonochemical degradation of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in landfill groundwater: Environmental matrix effects [J]. Environmental Science & Technology, 2008, 42(21): 8057-8063. [90] YANG S W, SUN J, HU Y Y, et al. Effect of vacuum ultraviolet on ultrasonic defluorination of aqueous perfluorooctanesulfonate [J]. Chemical Engineering Journal, 2013, 234: 106-114. doi: 10.1016/j.cej.2013.08.073 [91] ROSSKY P J, SCHNITKER J. The hydrated electron: Quantum simulation of structure, spectroscopy, and dynamics [J]. The Journal of Physical Chemistry, 1988, 92(15): 4277-4285. doi: 10.1021/j100326a009 [92] MEZYK S P, HELGESON T, COLE S K, et al. Free radical chemistry of disinfection-byproducts. 1. kinetics of hydrated electron and hydroxyl radical reactions with halonitromethanes in water [J]. The Journal of Physical Chemistry A, 2006, 110(6): 2176-2180. doi: 10.1021/jp054962+ [93] QU Y, ZHANG C J, LI F, et al. Photo-reductive defluorination of perfluorooctanoic acid in water [J]. Water Research, 2010, 44(9): 2939-2947. doi: 10.1016/j.watres.2010.02.019 [94] JIN L, ZHANG P Y. Photochemical decomposition of perfluorooctane sulfonate (PFOS) in an anoxic alkaline solution by 185 nm vacuum ultraviolet [J]. Chemical Engineering Journal, 2015, 280: 241-247. doi: 10.1016/j.cej.2015.06.022 [95] SONG Z, TANG H Q, WANG N, et al. Reductive defluorination of perfluorooctanoic acid by hydrated electrons in a sulfite-mediated UV photochemical system [J]. Journal of Hazardous Materials, 2013, 262: 332-338. doi: 10.1016/j.jhazmat.2013.08.059 [96] BENTEL M J, YU Y C, XU L H, et al. Defluorination of per- and polyfluoroalkyl substances (PFASs) with hydrated electrons: Structural dependence and implications to PFAS remediation and management [J]. Environmental Science & Technology, 2019, 53(7): 3718-3728. [97] GU Y R, LIU T Z, ZHANG Q, et al. Efficient decomposition of perfluorooctanoic acid by a high photon flux UV/sulfite process: Kinetics and associated toxicity [J]. Chemical Engineering Journal, 2017, 326: 1125-1133. doi: 10.1016/j.cej.2017.05.156 [98] SUN Z Y, ZHANG C J, CHEN P, et al. Impact of humic acid on the photoreductive degradation of perfluorooctane sulfonate (PFOS) by UV/Iodide process [J]. Water Research, 2017, 127: 50-58. doi: 10.1016/j.watres.2017.10.010 [99] PARK H, VECITIS C D, CHENG J, et al. Reductive defluorination of aqueous perfluorinated alkyl surfactants: Effects of ionic headgroup and chain length [J]. Journal of Physical Chemistry. A, 2009, 113(4): 690-696. doi: 10.1021/jp807116q [100] SUN Z Y, ZHANG C J, XING L, et al. UV/nitrilotriacetic acid process as a novel strategy for efficient photoreductive degradation of perfluorooctanesulfonate [J]. Environmental Science & Technology, 2018, 52(5): 2953-2962. [101] GU P F, ZHANG C J, SUN Z Y, et al. Enhanced photoreductive degradation of perfluorooctanesulfonate by UV irradiation in the presence of ethylenediaminetetraacetic acid [J]. Chemical Engineering Journal, 2020, 379: 122338. doi: 10.1016/j.cej.2019.122338 [102] HUANG L, DONG W B, HOU H Q. Investigation of the reactivity of hydrated electron toward perfluorinated carboxylates by laser flash photolysis [J]. Chemical Physics Letters, 2007, 436(1/2/3): 124-128. [103] TENORIO R, LIU J Y, XIAO X, et al. Destruction of per- and polyfluoroalkyl substances (PFASs) in aqueous film-forming foam (AFFF) with UV-sulfite photoreductive treatment [J]. Environmental Science & Technology, 2020, 54(11): 6957-6967. [104] TIAN H T, GAO J, LI H, et al. Complete defluorination of perfluorinated compounds by hydrated electrons generated from 3-indole-acetic-acid in organomodified montmorillonite [J]. Scientific Reports, 2016, 6: 32949. doi: 10.1038/srep32949 [105] TIAN H T, GU C. Effects of different factors on photodefluorination of perfluorinated compounds by hydrated electrons in organo-montmorillonite system [J]. Chemosphere, 2018, 191: 280-287. doi: 10.1016/j.chemosphere.2017.10.074 [106] CHEN Z H, TIAN H T, LI H, et al. Application of surfactant modified montmorillonite with different conformation for photo-treatment of perfluorooctanoic acid by hydrated electrons [J]. Chemosphere, 2019, 235: 1180-1188. doi: 10.1016/j.chemosphere.2019.07.032 [107] CHEN Z H, LI C, GAO J, et al. Efficient reductive destruction of perfluoroalkyl substances under self-assembled micelle confinement [J]. Environmental Science & Technology, 2020, 54(8): 5178-5185. [108] CHEN Z H, TENG Y, LI C, et al. Rapid photodegradation and defluorination of hexafluoropropylene oxide trimer acid (HFPO-TA) under ambient conditions: the synergistic effects of hydrated electron and stable self-assembled micelle [J]. Chemical Engineering Journal, 2021, 56: 136254. [109] CHEN Z H, TENG Y, MI N, et al. Highly efficient hydrated electron utilization and reductive destruction of perfluoroalkyl substances induced by intermolecular interaction [J]. Environmental Science & Technology, 2021, 55(6): 3996-4006. [110] CHEN J H, QIU X Q, FANG Z Q, et al. Removal mechanism of antibiotic metronidazole from aquatic solutions by using nanoscale zero-valent iron particles [J]. Chemical Engineering Journal, 2012, 181/182: 113-119. doi: 10.1016/j.cej.2011.11.037 [111] DENG S S, BAO Y X, CAGNETTA G, et al. Mechanochemical degradation of perfluorohexane sulfonate: Synergistic effect of ferrate(VI) and zero-valent iron [J]. Environmental Pollution, 2020, 264: 114789. doi: 10.1016/j.envpol.2020.114789 [112] SAKULCHAICHAROEN N, O'CARROLL D M, HERRERA J E. Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd particles [J]. Journal of Contaminant Hydrology, 2010, 118(3/4): 117-127. [113] ARVANITI O S, HWANG Y, ANDERSEN H R, et al. Reductive degradation of perfluorinated compounds in water using Mg-aminoclay coated nanoscale zero valent iron [J]. Chemical Engineering Journal, 2015, 262: 133-139. doi: 10.1016/j.cej.2014.09.079 [114] PARK S, ZENOBIO J E, LEE L S. Perfluorooctane sulfonate (PFOS) removal with Pd0/nFe0 nanoparticles: Adsorption or aqueous Fe-complexation, not transformation? [J]. Journal of Hazardous Materials, 2018, 342: 20-28. doi: 10.1016/j.jhazmat.2017.08.001 [115] HORI H, NAGAOKA Y, YAMAMOTO A, et al. Efficient decomposition of environmentally persistent perfluorooctanesulfonate and related fluorochemicals using zerovalent iron in subcritical water [J]. Environmental Science & Technology, 2006, 40(3): 1049-1054. [116] HORI H, NAGAOKA Y, SANO T, et al. Iron-induced decomposition of perfluorohexanesulfonate in sub- and supercritical water [J]. Chemosphere, 2008, 70(5): 800-806. doi: 10.1016/j.chemosphere.2007.07.015 [117] LIU Y Y, PTACEK C J, BALDWIN R J, et al. Application of zero-valent iron coupled with biochar for removal of perfluoroalkyl carboxylic and sulfonic acids from water under ambient environmental conditions [J]. Science of the Total Environment, 2020, 719: 137372. doi: 10.1016/j.scitotenv.2020.137372 [118] DINGLASAN M J A, YE Y, EDWARDS E A, et al. Fluorotelomer alcohol biodegradation yields poly- and perfluorinated acids [J]. Environmental Science & Technology, 2004, 38(10): 2857-2864. [119] ZHANG S, SZOSTEK B, MCCAUSLAND P K, et al. 6: 2 and 8: 2 fluorotelomer alcohol anaerobic biotransformation in digester sludge from a WWTP under methanogenic conditions [J]. Environmental Science & Technology, 2013, 47(9): 4227-4235. [120] CHEN H R, PENG H, YANG M, et al. Detection, occurrence, and fate of fluorotelomer alcohols in municipal wastewater treatment plants [J]. Environmental Science & Technology, 2017, 51(16): 8953-8961. [121] RHOADS K R, JANSSEN E M L, LUTHY R G, et al. Aerobic biotransformation and fate of N-ethyl perfluorooctane sulfonamidoethanol (N-EtFOSE) in activated sludge [J]. Environmental Science & Technology, 2008, 42(8): 2873-2878. [122] DIMITROV S, KAMENSKA V, WALKER J D, et al. Predicting the biodegradation products of perfluorinated chemicals using CATABOL [J]. SAR and QSAR in Environmental Research, 2004, 15(1): 69-82. doi: 10.1080/1062936032000169688 [123] 薛学佳, 周钰明, 吴敏, 等. 含氟有机化合物优势降解菌的筛选 [J]. 环境科学与技术, 2004, 27(1): 11-12,110. doi: 10.3969/j.issn.1003-6504.2004.01.006 XUE X J, ZHOU Y M, WU M, et al. Screening of dominant strains of degrading organo-fluorine compounds [J]. Environmental Science and Technology, 2004, 27(1): 11-12,110(in Chinese). doi: 10.3969/j.issn.1003-6504.2004.01.006
[124] HUANG S, JAFFÉ P R. Defluorination of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) by Acidimicrobium sp. strain A6 [J]. Environmental Science & Technology, 2019, 53(19): 11410-11419. [125] LUO Q, LU J H, ZHANG H, et al. Laccase-catalyzed degradation of perfluorooctanoic acid [J]. Environmental Science & Technology Letters, 2015, 2(7): 198-203. [126] APPLEMAN T D, DICKENSON E R V, BELLONA C, et al. Nanofiltration and granular activated carbon treatment of perfluoroalkyl acids [J]. Journal of Hazardous Materials, 2013, 260: 740-746. doi: 10.1016/j.jhazmat.2013.06.033 [127] TANG C Y, FU Q S, CRIDDLE C S, et al. Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater [J]. Environmental Science & Technology, 2007, 41(6): 2008-2014. [128] ZHANG K L, HUANG J, YU G, et al. Destruction of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) by ball milling [J]. Environmental Science & Technology, 2013, 47(12): 6471-6477. [129] KIM D Y, PARK D W. Decomposition of PFCs by steam plasma at atmospheric pressure [J]. Surface and Coatings Technology, 2008, 202(22/23): 5280-5283. [130] KUROKI T, MINE J, ODAHARA S, et al. CF4 decomposition of flue gas from semiconductor process using inductively coupled plasma [J]. IEEE Transactions on Industry Applications, 2005, 41(1): 221-228. doi: 10.1109/TIA.2004.840954