-
20世纪50年代美国食品与药物管理局首次批准抗生素用作饲料添加剂,世界各国相继将抗生素应用于畜牧生产,提高了畜牧业的经济效益. 但是,抗生素在养殖业和畜牧业中的广泛使用对环境和人体健康造成了很大危害[1]. 抗生素会加剧细菌的变异,使细菌产生耐药性,甚至可能产生超级细菌[2]. 抗生素还可能使人体发生“二重感染”,对人体的多个器官均有损害,导致过敏反应和药物性耳聋发生[3].
有研究显示,奶牛在饲养过程中用到的抗生素类药物,主要用于预防乳头发炎和细菌感染,并防止奶制品的细菌污染[4]. 奶牛体内无法被吸收的抗生素会有部分随着乳汁排出体外,并制成液态奶和奶粉等乳制品[5]. 这些奶粉中的抗生素可能会对于易感人群产生一定的危害. 其中婴幼儿因为对奶粉的需求量大、自身免疫力较弱、身体器官尚未发育成熟等原因,可能受到的影响较大. 因此,对于婴幼儿奶粉中抗生素残留的检测值得特别关注.
目前关于液态奶中抗生素残留的研究较多[6-8]. Zhang等[9]检测了中国市场上的巴氏奶和高温灭菌奶中四环素类、磺胺类和喹诺酮类药物的含量,Wang等[10]检测了牛奶中20种大环内酯、磺胺类和喹诺酮类抗生素残留量,均表明牛奶中含有一定的抗生素残留(μg·L−1). 另一方面,由于奶粉中抗生素残留低,并且含有大量蛋白质和脂肪,基体复杂,可能会干扰抗生素的检测[11],因此关于奶粉尤其是婴幼儿奶粉中的污染特征的研究较少. 张律[12]采用高效液相色谱-串联质谱法进行环丙沙星、氧氟沙星等11种喹诺酮类抗生素的检测,结果在深圳市110份奶粉样品中均未检出. Tian等[13]采用超高效液相色谱-串联质谱法应用于50个市售牛奶和奶粉样品中抗生素的检测,并在部分品牌样品中检出头孢噻呋和环丙沙星残留(μg·kg−1). 陆峥[14]和周显凤等[15]分别采用纸片扩散法对分离自婴幼儿配方奶粉的阪崎肠杆菌进行药敏实验,结果显示该细菌对头孢噻吩100%耐药,对环丙沙星等抗生素高度敏感[14-15],表明婴幼儿配方奶粉中存在抗生素污染. 因此,对常见市售奶粉中抗生素的含量进行检测,并根据检测结果主要对婴幼儿的暴露情况进行研究,这对于保障婴幼儿的健康具有很强的现实意义.
本研究建立了同时检测22种喹诺酮类、磺胺类和大环内酯类抗生素的分析方法,并用该方法对市面上常见的婴幼儿奶粉进行检测,根据其检测结果分析婴幼儿奶粉中抗生素的污染水平和分布规律. 通过计算抗生素对婴幼儿的暴露水平,评估奶粉中抗生素的含量对婴幼儿的生长发育的风险.
婴幼儿配方奶粉中22种抗生素污染特征及暴露风险
Study on pollution characteristics and human exposure of 22 antibiotic in infant milk powder
-
摘要: 作为一类新污染物,抗生素的环境污染及其潜在的健康风险受到国内外的广泛关注. 作为主要的抗菌药物和生长促进剂,抗生素在养殖业和畜牧业中的广泛使用可能会使其在奶粉等农副产品中有一定水平的残留,对人体尤其婴幼儿等易感人群造成潜在的危害. 本研究以婴幼儿奶粉为研究对象,采集41个国内外常见市售婴幼儿品牌奶粉,利用液相色谱串联质谱仪(LC-MS/MS)测定奶粉中22种抗生素的含量,并评价婴幼儿奶粉中抗生素对婴幼儿等易感人群的健康风险. 研究表明,抗生素在婴幼儿配方奶粉普遍存在,但残留水平较低(μg·kg−1). 其中喹诺酮类抗生素含量略高(∑QNs平均值2.92 μg·kg−1,浓度范围0.49—20.1 μg·kg−1),而磺胺(∑SAs平均浓度0.39 μg·kg−1,0.03—2.93 μg·kg−1)和大环内酯类(∑MCs平均浓度0.16 μg·kg−1,低于检出限(LOD)—1.14 μg·kg−1)抗生素浓度普遍较低. 统计分析表明不同阶段和不同奶源婴幼儿配方奶粉中抗生素残留水平无显著性差异(P>0.05). 总体来看,婴幼儿的暴露水平均处在较低的水平. 其中喹诺酮类抗生素的日暴露水平较高(均值范围3.40—13.2 ng·kg−1·d−1·bw),最高可达430 ng·kg−1·d−1·bw,而磺胺(1.04—4.05 ng·kg−1·d−1·bw)和大环内酯类(1.07—4.14 ng·kg−1·d−1·bw)抗生素的日暴露水平最低,均低于《动物性食品中兽药最高残留限量》中日允许摄入量(ADI). 因此,婴幼儿配方奶粉中所残留有抗生素,但尚不会对婴幼儿的成长发育造成明显的危害.Abstract: Antibiotics, an emerging group of environmental contaminant, have attracted wide attention due to their potential risks on human health and ecosystems. As a class of antibacterial drugs and growth promoters, antibiotics are widely used in livestock farming, which may cause a certain level of antibiotic residues in infant milk powder and pose a potential threat to infants and young children. In the present study, 41 common brands of infant milk powder were collected from domestic and foreign markets, and the levels of 22 antibiotics in the milk powder were determined by liquid chromatography tandem mass spectrometry (LC-MS/MS), and the health risks of antibiotics in infant milk powder to susceptible people such as infants and young children were evaluated. The results revealed that antibiotics were widely distributed in the infant milk powder. Quinolones were the predominant compounds with mean concentrations of 2.92 μg·kg−1 (0.49—20.1 μg·kg−1), which were one order of magnitude higher than those of sulfonamides (mean: 0.39 μg·kg−1, 0.03—2.93 μg·kg−1) and macrolides (mean: 0.16 μg·kg−1,<limits of detection (LODs)—1.14 μg·kg−1). Statistical analysis showed that there was no significant difference in antibiotic residues in infant milk powder at different stages and from different milk sources(P>0.05).The results showed that the average daily dose (ADD) of quinolone in infant milk powder was high (max: 430 ng·kg−1·d−1·bw; mean 3.40—13.2 ng·kg−1·d−1·bw), while the ADD of sulfonamide (1.04—4.05 ng·kg−1·d−1·bw) and macrolides (1.07—4.14 ng·kg−1·d−1·bw) were relatively low. Overall, the exposure of antibiotics in the milk powder to infants was at a low level, which were lower than acceptable daily intake (ADI) values. Therefore, the antibiotic residues in infant milk powder will not cause significant harm to the growth and development of infants.
-
Key words:
- antibiotics /
- infant milk powder /
- pollution characteristics /
- risk assessment
-
表 1 奶粉样品相关信息
Table 1. Information about infant milk powder samples
序号
No.奶粉品牌
Brand是否进口
Import/Local阶段
Stage序号
No.奶粉品牌
Brand是否进口
Import/Local阶段
Stage1 A1 是 1段 22 J1 否 2段 2 A2 是 2段 23 K 否 1段 3 B1 否 1段 24 L 是 3段 4 C1 是 1段 25 M1 是 2段 5 C2 否 3段 26 M2 是 2段 6 C3 是 3段 27 M3 是 2段 7 C4 是 3段 28 M4 是 1段 8 C5 是 3段 29 N1 是 1段 9 C6 是 2段 30 O1 是 2段 10 D1 是 2段 31 O3 是 3段 11 E1 否 1段 32 P1 否 2段 12 E2 否 3段 33 Q1 否 2段 13 E3 否 1段 34 Q2 否 3段 14 E4 否 3段 35 R1 是 1段 15 F1 是 1段 36 S1 是 1段 16 F2 是 3段 37 T1 是 3段 17 F3 是 1段 38 T2 是 3段 18 G1 是 2段 39 X1 否 2段 19 H1 是 3段 40 X1 否 1段 20 I1 否 1段 41 Y1 是 3段 21 A1 是 2段 表 2 22种抗生素的回收率、线性范围和检出限(S/N=3)
Table 2. Recoveries (%),linear range, and limits of detection (LODs,S/N=3) of 22 antibiotics
抗生素
Antibiotics替代物
Surrogate相关系数r
Correlation线性范围/(μg·kg−1)
Linear range回收率/%
(加标10 μg·kg−1)
RecoveryLODs/
(μg·kg−1)NOR NOR-d5 0.9974 0.1—500 87.5±7.4 0.09 CIP NOR-d5 0.9987 0.05—500 82.7±11.4 0.08 DIF OFL-d3 0.9985 0.05—500 74.3±10.3 0.08 ENR OFL-d3 0.9990 0.05—500 97.4±8..9 0.08 FLE OFL-d3 0.9984 0.1—500 97.6±6.8 0.04 OFL OFL-d3 0.9988 0.1—500 104.0±8.5 0.06 LOM OFL-d3 0.9967 0.05—500 72.4±3.3 0.05 SAR SAR-d8 0.9992 0.05—200 95.9±4.6 0.09 STZ SMX-d4 0.9974 0.01—500 84.2±5.9 0.04 SMX SMX-d4 0.9991 0.1—500 101.0±4.3 0.06 SIA SMX-d4 0.9987 0.02—500 88.3±2.7 0.06 SPD SMZ-d4 0.9985 0.02—500 98.0±5.3 0.04 SDM SMZ-d4 0.9996 0.01—500 121.0±5.6 0.04 SMZ SMZ-d4 0.9993 0.01—500 102.0±3.7 0.04 SDZ SMZ-d4 0.9986 0.05—500 101.0±3.5 0.04 SMR SMZ-d4 0.9977 0.02—500 107.0±7.1 0.04 SMM SMZ-d4 0.9985 0.02—500 112.0±7.3 0.01 SPI SPI I-d3 0.9980 0.1—500 104.0±5.2 0.08 JOS SPI I-d3 0.9934 0.05—200 84.4±5.6 0.04 TYL SPI I-d3 0.9934 0.05—200 90.0±7.1 0.10 ROX SPI I-d3 0.9905 0.05—500 101.0±6.1 0.04 ERY ERY-13C,d3 0.9992 0.1—500 109.0±5.3 0.04 表 3 婴幼儿配方奶粉中抗生素的浓度(n=41, μg·kg−1)
Table 3. Concentrations of antibiotics in infant milk power
抗生素
Antibiotics最小值
Minimum中位数
Median最大值
Maximum平均值
Mean检出率/%
Detection rateNOR <LOD 0.44 5.78 0.68 90.2 CIP 0.15 0.47 9.95 0.87 100 DIF <LOD <LOD 0.54 0.04 12.2 ENR <LOD 0.16 3.76 0.48 90.2 FLE <LOD <LOD 0.68 0.06 26.8 OFL <LOD 0.08 1.55 0.16 58.5 LOM <LOD <LOD 0.84 0.07 39.0 SAR <LOD <LOD 0.92 0.08 36.6 STZ <LOD <LOD 0.30 0.02 17.1 SMX <LOD <LOD 0.50 0.05 39.0 SIA <LOD 0.06 0.77 0.07 51.2 SPD <LOD <LOD <LOD <LOD <LOD SDM <LOD <LOD 0.54 0.03 7.32 SMZ <LOD 0.04 0.43 0.07 58.5 SDZ <LOD <LOD 0.24 0.01 7.32 SMR <LOD 0.04 0.30 0.05 58.5 SMM <LOD <LOD 0.53 0.05 41.5 SPI <LOD <LOD <LOD <LOD <LOD JOS <LOD <LOD <LOD <LOD <LOD TYL <LOD <LOD 0.24 0.01 7.32 ROX <LOD <LOD 1.08 0.06 17.1 ERY <LOD 0.04 0.51 0.08 53.7 ∑QNs 0.49 1.96 20.1 2.92 100 ∑SAs 0.03 0.27 2.93 0.39 100 ∑MCs <LOD 0.05 1.14 0.16 83.0 Total 0.71 2.39 23.1 3.46 100 大类
Group抗生素
Antibiotics简写
Abbreviation主要用途
Application使用量/t
Usage amount人
Human猪
Pig鸡
Chicken其他
Other汇总
SummaryQNs 诺氟沙星 NOR 医用,兽用 1013 2820 961 644 5440 环丙沙星 CIP 医用,兽用 455 3110 1060 712 5340 双氟沙星 DIF 兽用 0 378 172 117 667 恩诺沙星 ENR 兽用 0 3090 1150 940 5180 氟罗沙星 FLE 医用,兽用 119 60.6 21.6 15.1 216 氧氟沙星 OFL 医用,兽用 1286 2440 832 557 5110 洛美沙星 LOM 医用,兽用 228 650 222 149 1250 沙拉沙星 SAR n.a. n.a. n.a. n.a. n.a. n.a. Total 3101 12549 4419 3134 23203 SAs 磺胺噻唑 STZ 兽用 0.66 40.2 13.7 9.18 63.7 磺胺甲基异恶唑 SMX 医用,兽用 2.0 198 67.6 45.3 313 磺胺二甲基异恶唑 SIA 医用 n.a. n.a. n.a. n.a. n.a. 磺胺吡啶 SPD n.a. n.a. n.a. n.a. n.a. n.a. 磺胺间二甲氧嘧啶 SDM 兽用 n.a. n.a. n.a. n.a. n.a. 磺胺二甲基嘧啶 SMZ 医用,兽用 68.4 388 132 88.7 677 磺胺嘧啶 SDZ 医用,兽用 238 648 221 148 1260 磺胺甲基嘧啶 SMR 医用 n.a. n.a. n.a. n.a. n.a. 磺胺间甲氧嘧啶 SMM 兽用 9.93 1400 477 320 2210 Total 319 2674 911 611 4524 MCs 螺旋霉素 SPI 医用 n.a. n.a. n.a. n.a. n.a. 交沙霉素 JOS n.a. n.a. n.a. n.a. n.a. n.a. 泰乐菌素 TYL 兽用 0 3090 1050 706 4850 红霉素 ERY 医用,兽用 1244 1580 565 377 3770 罗红霉素 ROX 医用,兽用 184 112 67.3 22.5 386 Total 1428 4782 1682 1106 9006 n.a.: 没有数据来源;其他:包括除猪和鸡之外的牛、羊等其他家畜. 表 5 不同阶段奶粉∑QNs、∑SAS和∑MCs浓度的单因素方差分析
Table 5. One-way ANOVA of ∑QNs, ∑SAS and ∑MCs of milk powder at different stages
P 1段 vs 2段 1段 vs 3段 2段 vs 3段 ∑QNs 0.648 0.380 0.195 ∑SAs 0.611 0.309 0.642 ∑MCs 0.263 0.483 0.638 Total 0.678 0.381 0.210 表 6 动物性食品中部分兽药最大残留限量(μg·kg−1) [22]
Table 6. Maximum residue limits of some veterinary drugs in animal foods (μg·kg−1) [22]
抗生素
Antibiotics标志残留物
Marker residue动物种类
Animal species靶组织
Target tissueMRL ADI DIF DIF 所有食品动物 肌肉
脂肪300
1000—10 ENR ENR与CIP总量 所有食品动物 肌肉
脂肪100
1000—2 SAR SAR 鸡 肌肉
脂肪10
200—0.3 ERY ERY A 所有食品动物 奶 40 0—5 TYL TYL A 牛 奶 50 0—6 SPI SPI总量 牛 奶 100 0—6 SAs SAs总量 牛/羊 奶 100 0—50 MRL:最高残留限量,μg·kg−1;ADI: 日允许摄入量,ng·kg−1·d−1·bw. 表 7 奶粉中抗生素对婴幼儿的日暴露水平(ng·kg−1·d−1·bw)
Table 7. Daily exposure to antibiotics in powdered milk for infants(ng·kg−1·d−1·bw )
抗生素
Antibiotics年龄
Age男
Male女
Female最小值
Minimum最大值
Maximum均值
Mean最小值
Minimum最大值
Maximum均值
Mean喹诺酮类 0—2周 0.00 143 8.22 0.00 190 10.9 2—4周 0.00 137 7.88 0.00 182 10.4 2月 0.00 331 10.2 0.00 430 13.2 3—4月 0.00 139 7.98 0.00 139 7.98 5—6月 0.00 112 7.24 0.00 127 8.21 7—12月 0.00 165 5.96 0.00 177 6.38 13—24月 0.00 47.9 3.94 0.00 50.8 4.17 25—36月 0.00 39.8 3.27 0.00 41.4 3.40 磺胺类 0—2周 0.00 19.0 2.52 0.00 25.3 3.36 2—4周 0.00 18.2 2.42 0.00 24.2 3.21 2月 0.00 44.1 3.12 0.00 57.3 4.05 3—4月 0.00 18.6 2.45 0.00 18.6 2.45 5—6月 0.00 15.0 2.22 0.00 17.0 2.52 7—12月 0.00 8.34 1.83 0.00 8.93 1.96 13—24月 0.00 5.73 1.21 0.00 6.06 1.28 25—36月 0.00 4.76 1.00 0.00 4.95 1.04 大环内酯类 0—2周 0.00 10.4 2.58 0.00 13.8 3.44 2—4周 0.00 9.95 2.47 0.00 13.2 2.39 2月 0.00 24.1 3.19 0.00 31.2 4.14 3—4月 0.00 10.2 2.50 0.00 10.1 2.50 5—6月 0.00 8.18 2.27 0.00 9.28 2.57 7—12月 0.00 18.0 1.87 0.00 19.3 2.00 13—24月 0.00 6.79 1.23 0.00 7.19 1.31 25—36月 0.00 5.64 1.02 0.00 5.87 1.07 -
[1] SUN J T, ZENG Q T, TSANG D C W, et al. Antibiotics in the agricultural soils from the Yangtze River Delta, China [J]. Chemosphere, 2017, 189: 301-308. doi: 10.1016/j.chemosphere.2017.09.040 [2] LIU X H, LU S Y, GUO W, et al. Antibiotics in the aquatic environments: A review of lakes, China [J]. Science of the Total Environment, 2018, 627: 1195-1208. doi: 10.1016/j.scitotenv.2018.01.271 [3] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance [J]. Environmental Science & Technology, 2015, 49(11): 6772-6782. [4] 蒋波. 奶及奶制品安全问题及抗生素残留检测技术概述 [J]. 中兽医学杂志, 2018(7): 70-71. JIANG B. Summary of safety problems of milk and dairy products and detection technology of antibiotic residues [J]. Chinese Journal of Traditional Veterinary Science, 2018(7): 70-71(in Chinese).
[5] HUANG R C, GUO Z T, GAO S T, et al. Assessment of veterinary antibiotics from animal manure-amended soil to growing alfalfa, alfalfa silage, and milk [J]. Ecotoxicology and Environmental Safety, 2021, 224: 112699. doi: 10.1016/j.ecoenv.2021.112699 [6] LU G Y, CHEN Q, LI Y P, et al. Status of antibiotic residues and detection techniques used in Chinese milk: A systematic review based on cross-sectional surveillance data [J]. Food Research International, 2021, 147: 110450. doi: 10.1016/j.foodres.2021.110450 [7] KARAMI-OSBOO R, MIRI R, JAVIDNIA K, et al. Extraction and determination of sulfadiazine and sulfathiazole in milk using magnetic solid phase extraction-HPLC-UV [J]. Analytical Methods, 2015, 7(4): 1586-1589. doi: 10.1039/C4AY02503B [8] MORETTI S, CRUCIANI G, ROMANELLI S, et al. Multiclass method for the determination of 62 antibiotics in milk [J]. Journal of Mass Spectrometry, 2016, 51(9): 792-804. doi: 10.1002/jms.3834 [9] ZHANG Y D, ZHENG N, HAN R W, et al. Occurrence of tetracyclines, sulfonamides, sulfamethazine and quinolones in pasteurized milk and UHT milk in China’s market [J]. Food Control, 2014, 36(1): 238-242. doi: 10.1016/j.foodcont.2013.08.012 [10] WANG H X, REN L S, YU X, et al. Antibiotic residues in meat, milk and aquatic products in Shanghai and human exposure assessment [J]. Food Control, 2017, 80: 217-225. doi: 10.1016/j.foodcont.2017.04.034 [11] 马娅, 马丽娜, 史俊杰, 等. 牛奶中抗生素残留检测的研究现状 [J]. 山东化工, 2020, 49(17): 83-84. doi: 10.3969/j.issn.1008-021X.2020.17.031 MA Y, MA L N, SHI J J, et al. Research status of antibiotic residue detection in milk [J]. Shandong Chemical Industry, 2020, 49(17): 83-84(in Chinese). doi: 10.3969/j.issn.1008-021X.2020.17.031
[12] 张律, 卓菲, 岳亚军. 深圳市售奶粉中11种喹诺酮类抗生素含量检测分析 [J]. 食品安全质量检测学报, 2020, 11(11): 3665-3671. doi: 10.19812/j.cnki.jfsq11-5956/ts.2020.11.053 ZHANG L, ZHUO F, YUE Y J. Detection and analysis on 11 kinds of quinolones antibiotics in Shenzhen market milk powder [J]. Journal of Food Safety & Quality, 2020, 11(11): 3665-3671(in Chinese). doi: 10.19812/j.cnki.jfsq11-5956/ts.2020.11.053
[13] TIAN H, WANG J Q, ZHANG Y D, et al. Quantitative multiresidue analysis of antibiotics in milk and milk powder by ultra-performance liquid chromatography coupled to tandem quadrupole mass spectrometry [J]. Journal of Chromatography B, 2016, 1033/1034: 172-179. doi: 10.1016/j.jchromb.2016.08.023 [14] 陆峥, 王丽丽, 王迪, 等. 国产婴幼儿配方奶粉及婴幼儿米粉中阪崎肠杆菌分离株的药敏分析 [J]. 中国卫生检验杂志, 2008, 18(11): 2301-2302,2310. doi: 10.3969/j.issn.1004-8685.2008.11.049 LU Z, WANG L L, WANG D, et al. Antibiotic susceptibility of Enterobacter sakazakii isolated from milk powder and rice powder for infant and young children [J]. Chinese Journal of Health Laboratory Technology, 2008, 18(11): 2301-2302,2310(in Chinese). doi: 10.3969/j.issn.1004-8685.2008.11.049
[15] 周显凤, 高建新, 龙慧, 等. 婴幼儿配方奶粉中肺炎克雷伯菌与阪崎肠杆菌分离株的药敏分析 [J]. 现代预防医学, 2012, 39(6): 1511-1513. ZHOU X F, GAO J X, LONG H, et al. Antibiotic susceptibility of Klebsiella pneumoniae and Enterobacter sakazakii isolated from powdered infant formula [J]. Modern Preventive Medicine, 2012, 39(6): 1511-1513(in Chinese).
[16] EPA. Exposure factors handbook: 2011edition [EB/OL]. U.S.Environmental Protection Agency, Washington, DC, USA, 2011[2023-2-27].https://www.epa.gov/expobox/exposure-factors-handbook-2011-edition [17] LI W H, SHI Y L, GAO L H, et al. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China [J]. Chemosphere, 2012, 89(11): 1307-1315. doi: 10.1016/j.chemosphere.2012.05.079 [18] KÜMMERER K. Antibiotics in the aquatic environment–A review–Part I [J]. Chemosphere, 2009, 75(4): 417-434. doi: 10.1016/j.chemosphere.2008.11.086 [19] KUMAR K, GUPTA S C, BAIDOO S K, et al. Antibiotic uptake by plants from soil fertilized with animal manure [J]. Journal of Environmental Quality, 2005, 34(6): 2082-2085. doi: 10.2134/jeq2005.0026 [20] 程兆康. 典型抗生素在土壤-生菜系统和市售牛奶中的残留及其风险评价[D]. 南京: 南京信息工程大学, 2022. CHENG Z K. Residues and risk assessment of typical antibiotics in soil-lettuce system and milk on the market[D]. Nanjing: Nanjing University of Information Science & Technology, 2022 (in Chinese).
[21] 吴小莲, 莫测辉, 李彦文, 等. 蔬菜中喹诺酮类抗生素污染探查与风险评价: 以广州市超市蔬菜为例 [J]. 环境科学, 2011, 32(6): 1703-1709. WU X L, MO C H, LI Y W, et al. Investigation and heath risk assessment of quinolone antibiotics in vegetables: Taking supermarket vegetables of Guangzhou city for an exemple [J]. Environmental Science, 2011, 32(6): 1703-1709(in Chinese).
[22] 农业部. 动物性食品中兽药最高残留限量[EB/OL]. [2023-2-27]. http://www.moa.gov.cn/gk/tzgg_1/gg/200302/P020050610333735313696.doc [23] 卫生部. 中国7岁以下儿童生长发育参照标准 [EB/OL]. [2023-2-27]. http://www.nhc.gov.cn/cmsresources/mohfybjysqwss/cmsrsdocument/doc6260.doc [24] 谢跃杰, 王仲明, 熊政委, 等. 配方奶粉和母乳中结构脂质差异及其对婴幼儿生理功能的影响研究进展[J]. 食品科学, 2018, 39(21) : 293-298. XIE Y J, WANG Z M, XIONG Z W, et al. Differences in structural lipids between infant formula and breast milk and their effects on physiological functions of infants. Journal of Food Science, 2018, 39(21) : 293-298 (in Chinese)
[25] 袁蕊, 崔霞, 刘平, 等. 2021年北京市售婴幼儿配方奶粉中氯丙醇酯和缩水甘油酯污染状况及暴露风险初步评估 [J]. 卫生研究, 2022, 51(4): 645-649,679. doi: 10.19813/j.cnki.weishengyanjiu.2022.04.024 YUAN R, CUI X, LIU P, et al. Contamination characteristics and preliminaery exposure risk assessment of chloropropanol esters and glycidyl esters in infant formula sold in Beijing in 2021 [J]. Journal of Hygiene Research, 2022, 51(4): 645-649,679(in Chinese). doi: 10.19813/j.cnki.weishengyanjiu.2022.04.024